Forcefield Optimization

Homayoun Valafar
Department of Computer Science and Engineering, USC
Forcefield Optimization

• Structure can be modified to optimize a forcefield
• Can use programs such as Xplor-NIH, CNS, DYANA, CYANA, Amber, Charm, etc.
• Most use local optimization techniques such as Gradient Descent
• Most have methods of implementing Simulated Annealing to overcome limitations of GD
• We will use Xplor-NIH
• Xplor-NIH used to minimize total empirical energy
• We will use Minimize.inp as the starting seed script
Topology and Parameter Files

• Topology
 – Indicates and describes the topology of macromolecules
 • DNA, RNA, Carbohydrates, Lipids and Proteins.
 • What atoms are present in an amino acid.
 • What atoms are connected to each other.

• Parameter
 – Empirical information
 • Van Der Waals Radii
 • Charge files
 • Bond angles
 • Etc.
Powell Minimization

• General Structure of a Powell minimization:
• Force field description:
 – flags exclude * include bond angl impr end
• Powell minimization:
 – minimize powell
 – nstep= 1000
 – nprint=100
 – drop=1
 – tolgradient=0.01
 – debug=False
 – end
Constraint Minimization

• Use constraint directive to fix coordinates of a region
• Example:
 – constraints fix=(resid 1:8 or resid 13:20) end
• Will fix residues 1-8 and 13-20 and will minimize 9-12.
• Demonstrate example.
Manipulation of Weights

- Can turn energy terms on or off by “flags” statement.
- May terms on but with different importance.
- Use “weights” term.
- Example:
 - constraints fix=(resid 1:8 or resid 13:20)
 - weights
 - * 1.0
 - bond 2.0
 - end
 - end

\[
E_{\text{Total}} = \sum \left[w_{\text{BOND}}^p E_{\text{BOND}} + w_{\text{ANGL}}^p E_{\text{ANGL}} + w_{\text{DIHE}}^p E_{\text{DIHE}} + w_{\text{IMPR}}^p E_{\text{IMPR}} + w_{\text{VDW}}^p E_{\text{VDW}} + w_{\text{ELEC}}^p E_{\text{ELEC}} \right]
\]
Rigid Body Minimization

• May want to fix the relative structure of a region (not the coordinates).
• Use “minimize rigid” term
 – minimize rigid
 – drop=1
 – group=(residue 1:7)
 – group=(residue 14:20)
 – nprint=10
 – nstep= 100000
 – tolerance=0.0001
 – end
Rigid Body Minimization

• Here the structure of residues 1-7 and 14-20 will remain unchanged.

• The total energy term will depend on
 – All variables for the none groups.
 – Six parameters for each group.
 • \((\alpha, \beta, \gamma, \Delta x, \Delta y, \Delta z)\)

• Demonstration
Effective Energy Term

- Remember that:
 - \(E_{\text{Total}} = E_{\text{Empirical}} + E_{\text{Effective}} \)
 - \(E_{\text{Empirical}} \): energy of the molecule as a function of the atomic coordinates
 - \(E_{\text{Effective}} \): restraining energy terms that use experimental information.

- Xplor allows the inclusion of relevant experimental data.
 - Experimental data can be collected by X-ray crystallography or NMR spectroscopy.
 - Dihedral restraints: set \(\phi_{15} \) to \(-120^\circ \pm 30^\circ\)
 - Distance restraints: set dist(HN15, O43) = 3.5Å ± 1.5Å
 - Residual Dipolar Couplings restraints.
 - And many more…