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Abstract

A multi-disciplinary laboratory for control education has
been developed at the University of Delaware to expose
students to realistic process system applications and ad-
vanced control methods. One of the experiments is level
control of a four-tank system. This paper describes two
model-based methods students can implement for control
of this interacting four-tank system. Sub-space identifica-
tion is used to develop an empirical state space model of
the experimental apparatus. This model is then used for
model based control using Internal Model Control (IMC).
This represents an application of inner-outer factorization
for non-minimum phase multivariable IMC design. Mod-
eling is also performed using step tests and Aspen soft-
ware for use with Dynamic Matrix Control (DMC).

Keywords: Predictive Control, Internal Model Con-
trol, Process Control Education, Experimental Apparatus

Introduction

Process control courses for chemical engineers often
emphasize complex theoretical and mathematical issues
while devoting limited time to implementation of applica-
tion of control methods. In order to reinforce and demon-
strate the concepts presented in a lecture, practical labora-
tory applications can be developed for students. The ex-
perience of working on a laboratory experiment in an aca-
demic setting exposes students to realistic industrial prob-
lems. Laboratory work can expose students to process
details that are often neglected in computer simulation,
including measurement noise, measurement bias, process
nonlinearity, equipment failure, actuator constraints, and
external disturbances.

A multi-disciplinary process control laboratory has
been developed at the University of Delaware. Experi-
ments currently include: an inverted pendulum, an elec-
tric servo motor, a gyroscope, a distillation column, a
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Figure 1: Schematic of the interacting four-tank process.
The two manipulated variables are the pump speeds. The
two controlled variables are the levels of tanks one and
two. Unmeasured flow disturbances can affect tanks three
and four.

spring mass damper system, a virtual boiler, and a four-
tank system. The undergraduate experimental control
course is offered every year in the Spring semester. Stu-
dents from mechanical, electrical, and chemical engineer-
ing disciplines participate in this class. The students are
grouped with students from other majors. This multi-
disciplinary group facilitates peer learning in that students
familiar with the principles of a given experiment must
help other group members. The students enrolled in the
process control laboratory have all taken the basic pro-
cess control course taught in their individual departments.
The basic knowledge of process control allows the exper-
imental laboratory course to cover advanced applications
of process control.

A four-tank level control system has been constructed
for use in the control laboratory. This paper details the use
of model identification and model-based control methods
for control of this interacting four-tank system. The four-
tank system is based on the system presented by Johans-
son and Nunes [2]. A schematic of the process is shown in
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Figure 1. The experiment has two inputs (pump speeds)
which can be manipulated to control the two outputs (tank
levels). The system exhibits interacting multivariable dy-
namics because each of the pumps affects both of the out-
puts. The system has an adjustable multivariable zero that
can be set to a right-half or left-half plane value by chang-
ing the valve settings of the experiment. Unmeasured dis-
turbances can be applied by pumping water out of the top
tanks and into the lower reservoir. This exposes students
to disturbance rejection as well as reference tracking.
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Table 1: Nonlinear model equations for the four-tank sys-
tem.

A full nonlinear mass balance model of the system is
given in Table 1. Here, Bernoulli’s law is used for flows
out of the tanks,hi is the level of water in tanki, �1 and
�2 are the manipulated inputs (pump speeds), andd1and
d2 are external disturbances representing flow out of tanks
three and four. The linearized model is given in Table 2
and the estimated model parameters for the experimental
setup are given in Table 3.Ai is the area of Tanki and
ai is the area of the pipe flowing out of tanki. The ratio
of water diverted to tank one rather than tank three is1
and2 is the corresponding ratio diverted from tank two
to tank four. It can be shown that for the linear system,
a multivariable right half plane zero will be present when
1 + 2 < 1.
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Table 2: Linearized model equations for the four-tank sys-
tem.

Sub-space identification is used to develop an empiri-
cal linear state space model of the experimental apparatus.
This model is then used for formulation and application of
model-based control methods. The identified state-space

a1; a2 2:3 cm2 k1 5:51 cm3=s
a3; a4 2:3 cm2 k2 6:58 cm3=s

A1; A2; A3; A4 730 cm2 g 981 cm
s2

�1(0) 60% 1 0:333
�2(0) 60% 2 0:307
T1 53:8 sec h1(0) 14:1 cm
T2 48:0 sec h2(0) 11:2 cm
T3 38:5 sec h3(0) 7:2 cm
T4 31:1 sec h4(0) 4:7 cm

Table 3: Model parameters of the experimental four-tank
system.

model is used explicitly in the control algorithms. The
methods considered in this work include multivariable In-
ternal Model Control (IMC) and Dynamic Matrix Control
(DMC). Non-minimum phase behavior of the system re-
quires that inner-outer factorization be used for the multi-
variable IMC design. The right-half plane pole also cre-
ates performance limitations for the closed-loop system.
Because the system has an adjustable zero, the system
can be adjusted to exhibit minimum phase behavior and
demonstrate improved control response.

The physical system is constructed so that it appears
to emulate elements of an industrial unit operation. Four
five-gallon tanks are used in the simulation. The addi-
tion of submersible pumps in the tanks can simulate a
leak disturbance in the tanks. An industrial Distributed
Control System (DCS) from ABB-Bailey is used for con-
trol of the system using the Freelance software package.
The operator interface relies on a PC communicating with
the Bailey ProcessStation using TCP/IP on a private LAN.
An interface has been developed using Dynamic Data
Exchange (DDE) that allows controllers developed using
MATLAB and Simulink to be used for simulation runs.
The apparatus has the flavor of an industrial system while
retaining the flexibility needed to quickly implement and
test advanced control strategies.

Sub-Space Process Modeling

Most advanced process control methodologies require the
development of accurate models of the system. For iden-
tification, the process is typically forced by known in-
puts and the resulting output responses are used for de-
velopment of a linear model relating system inputs to out-
puts. Some process data should be used for validation of
new process models. In industrial applications, one must
consider tradeoffs between the need for accurate process
models, the disadvantage of large excursions from normal
operating conditions during modeling, the problem of ex-
tended periods of process down time, and the desire for
"plant friendly" input sequences.
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To effectively balance the process modeling tradeoffs,
one may employ a Pseudo-Binary Random Binary Se-
quence (PRBS) of inputs. This type of input sequence can
effectively excite a multivariable process for use in iden-
tification and provide an accurate process model while
avoiding large process excursions and periods of off spec-
ification production. The PRBS of inputs can also be con-
sidered a "plant friendly" sequence because only two dif-
ferent levels of input are used.

The resulting input and output data are used to create
the linear model. For this task, a sub-space identification
procedure is used. This procedure is described in [5]. The
method develops an empirical linear state space model
from input and output data. For this type of modeling,
no prior process knowledge is used; no assumptions are
made about the state relationships or number of process
states. Only the number of states used in the resulting
process model must be determined.

It should be noted again that the sub-space identifica-
tion method is an empirical method. In many cases, a
model based on fundamental process knowledge (first-
principles modeling) may be more desirable. This may
be true for a process with significant nonlinear charac-
teristics and varied operating regimes. For process that
operate around a single steady state or have little nonlin-
ear character, empirical linear modeling can effectively be
used for process control.
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Figure 2: Model validation for sub-space identification on
the four-tank system.

Although there are fundamental models available for
the four-tank system, the sub-space identification method
was used to show that empirical modeling can effectively
be applied to real systems. Sub-space identification of a
four-tank process has been demonstrated in [2]. For the
current study, the normal input levels were 60% for both
pumps. A binary sequence was used that switched be-
tween levels of 40% and 80%. Switching could occur
every 35 seconds. The resulting output levels never ex-

ceeded +8 cm or -10 cm in relation to the nominal operat-
ing point. The N4SID algorithm from the Matlab Identi-
fication Toolbox was used to calculate the linear models.
Four states are needed to effectively capture the process
character. This result agrees with knowledge of the pro-
cess and the existing fundamental model. Figure 2 shows
a comparison of the process and the model, as well as pro-
cess residuals.

Internal Model Control

Internal Model Control (IMC) is a very effective method
of utilizing a process model for feedback control. IMC
directly uses the process model and requires very limited
on-line computation. For a full discussion of IMC, see
the monograph by Morari and Zafiriou [4]. IMC uses a
process model and "inverts" parts of the model for use
as a controller for the process. Some portions of a linear
process model cannot be inverted. These non-invertible
factors include time delays and Right-Half-Plane (RHP)
zeros. In addition, a process model that is not semi-proper
cannot be inverted. A linear filter can be added to make
the process model invertible. The filter parameters then
are available for adjusting the aggressiveness of the IMC
controller.

The following “inner-outer” factorization for the stable
processG(s) follows the procedure described in [4]. The
linear process transfer function can be written:

G(s) = C(sI � A)�1B +D = N(s)M(s)�1

where N(s) and M(s) are stable. Additionally,
N(i!)HN(i!) = I . The non-invertible portion of the
process,N(s), is given by:

N(s) = (C �QF )(sI � (A�BR�1F ))�1BR�1 +Q

ForN(s), the state space matrices are given as:

AN = A�BR�1F BN = BR�1

CN = C �QF DN = Q

The invertible part of the process,M(s)�1, is:

M(s)�1 = F (sI �A)�1B +R

ForM(s), the state space matrices are given as:

AM = A BM = B
CM = F DM = R

The following relation is given forR andQ:

D = QR
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For this example, the orthogonal matrixQ is selected
as identity. To make the process semi-proper,D is set to
�I , with � = 0:0001. For the factorization method,F is
calculated as

F = QTC + (BR�1)TX

whereX is the solution of the algebraic Riccati equation:

0 = (A�BR�1QTC)TX +X(A�BR�1QTC)
�X(BR�1)(BR�1)TX

Process

G(s) = N(s)M(s)
    Process Model

-1

M(s)N(0)   F(s)
     Controller

-1 u yr
+-

+

-

Figure 3: Internal Model Control (IMC) block diagram
showing “Inner-Outer” factorization of plantG(s) into
the invertible portionM(s)�1 and the non-invertible por-
tion N(s). F (s) is a filter used to adjust the aggressive-
ness of the control loop.

The controller for the IMC formulation is the inverse
of the invertible portion of the process model. For off-
set free steady state reference tracking in all channels,
the product of the controller inverse gain and the pro-
cess model gain must be identity. The current process
model factorization does not guarantee this. It can con-
veniently be achieved by scaling the non-invertible por-
tion of the plant byN(0)�1: Now, the noninvertible pro-
cess model isN(s)N(0)�1 and the invertible process
model isN(0)M�1(s). The IMC controller becomes
M(s)N(0)�1. SISO IMC systems incorporate a scalar
filter for strictly-proper process models so that the result-
ing controller is semi-proper. In this multivariable case,
the process model is already semi-proper. Each of the er-
ror signals sent to the MIMO 2x2 IMC controller can be
filtered with a first-order linear filter,Fi(s) = 1

�is+1
. This

filter allows for adjustment of the closed-loop dynamics.
Figure 4 shows closed-loop performance of the IMC

system for reference changes. In this example,�i are se-
lected to7 sec.

The process has zeros at values of0:0324 and�0:088.
The input direction corresponding to the RHP (as de-
scribed in [6]) is:[�0:736 0:677]T and the output direc-
tion is [�0:693 0:721]T . Multivariable performance lim-
itations related to RHP systems are described in [3]. In the
nominal case, the process is identical to the process model
and the filter time constants are set to 0. The comple-
mentary sensitivity function,T (s), for the nominal IMC
system reduces toN(s)N(0)�1. Ideally,T (s) is identity
at all frequencies. The presence of a RHP zero creates a
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Figure 4: Closed-loop reference tracking using IMC con-
troller with � = 7sec.

performance limitation for the system. In [4], it is shown
thatT (s) for a nonminimum phase system with a single
zero can be arbitrarily selected so that only a single row
deviates from identity. This implies that the performance
degradation caused by the RHP zero can be driven into
a single output channel. The complementary sensitivity
function for the 2x2 tank system with ideal performance
in the first measurement is:

T1(s) =

�
1 0
�1s
s+�

�s+�
s+�

�

and the complementary sensitivity function for the system
with ideal performance in the second measurement is:

T2(s) =

�
�s+�
s+�

�2s
s+�

0 1

�

where�1 and�2 are functions of the terms in the output
zero direction. Significant interaction can occur when the
values of�i are large. For the given system,�1 is 1:9
and�2 is 2:1. This implies that choosing either input for
ideal tracking in the nominal case will have essentially the
same amount of interaction. This result is expected due to
the symmetric nature of the system. For the developed
controller formulation, a first-order realization ofT (s) is
given as:

T (s)=

� 0:039s+1
s+0:32

1s+1
s+0:32

1s
s+0:32

�0:039s+1
s+0:32

�
=

�
1:2s+1

32s+1

32s
32s+1

32s
32s+1

�1:2s+1
32s+1

�

This also demonstrates that the system and controller
formulation is symmetric. Both output channels should
demonstrate equal performance limitations and interac-
tions.

Dynamic Matrix Control

Dynamic Matrix Control (DMC) refers to the commercial
implementation of model predictive control (MPC) pro-
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vided by Aspen Technology. Aspen is a member of the
University of Delaware Process Monitoring and Control
Consortium and has provided DMCPlus for student use
in University of Delaware teaching laboratories.

Figure 5: Screen shot of the DMC four-tank system mod-
eling interface.

Like other MPC algorithms, DMC uses an optimiza-
tion criterion to choose control moves. Using an explicit
process model for prediction of process outputs, DMC
chooses an optimal sequences of control moves based on
a trade-off between speed of setpoint tracking and avoid-
ance of rapid changes in control inputs. Some specific
features of the DMC algorithm include the following:

� Applicability to multivariable and non-square sys-
tems

� A step response model

� A quadratic optimization criterion

� Explicit tradeoff between setpoint tracking and ag-
gressive of control action through an “input suppres-
sion factor”

� Continuous adjustment of setpoints via linear pro-
gramming to target the most profitable steady-state
operating condition

DMC has been presented for control of a similar pro-
cess [1]. In the DMCPlus implementation presented here,
students in the control teaching laboratory learn an ad-
vanced multivariable control package that is not only in-
dustrially relevant, but isidenticalto that found in indus-
try. Figure 5 shows the DMCPlus modeling interface.
Figure 6 shows a screen shot of the DMCPlus interface
to the four-tank system. The DMCPlus system permits
students to explore several interesting aspects of the four-
tank system:

� Controller Tuning: Aggressive tuning of a DMC or
other MPC controller has the effect of computing a

controller that is the inverse of the process. Since
the four-tank system can be adjusted to have a right
half-plane zero, aggressive controller tuning can lead
to a controller that has a right half-plane pole and
is therefore unstable. Investigations on the lim-
its of controller tuning and ability to track setpoint
changes offer interesting opportunities for student
experiments.

� Process Identification: One of the first steps in im-
plementing a DMC controller is the identification of
a step response model for the process. The associ-
ated software tools can be used to store and imple-
ment different process models for different operating
conditions. In this way, students can also investigate
the effects of model mismatch on closed-loop perfor-
mance

� Gain scheduled DMC: DMCPlus contains features
to permit process gains to vary with operating condi-
tions, thereby incorporating a particular form of non-
linear model into the DMC algorithm. In the four-
tank system, this permits models to be used over a
wider operating range, and students can compare the
differences between gain-scheduled DMC to single-
model DMC.

Figure 6: Screen shot of the four-tank system DMC inter-
face showing a closed-loop run.

Implementation Details DMC implementation on the
four-tank system has some significant differences from
typical industrial implementations:

� An industrial implementation of DMC is imple-
mented in a cascade configuration that is built upon
a system of well-tuned, single-input/single-output
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(SISO) regulatory controllers. Industrial DMC then
chooses setpoints to be implemented in these reg-
ulatory controllers to effect process outputs. With
the simpler experimental process, it is not possible
to implement DMC in a cascade formulation since
the necessary instruments to measure flow are not
present. Therefore, the DMC controller directly ma-
nipulates pump speed to achieve optimal dynamic
performance.

� Industrial implementation of DMC depend upon
economic criteria to determine steady state setpoints,
based upon prices of input and output streams in a
process. Since the laboratory system has no eco-
nomic criteria assigned to its operations, we have
to substitute equivalent criteria as DMC tuning pa-
rameters. In these experiments, we assigned a neg-
ative value (a cost) to pump speed and asked for
the DMC controller to choose operating points that
would maximize profits (minimize costs) subject to
a minimum-level constraint on measured tank levels.
This is equivalent to achieving a setpoint for tank lev-
els with minimum steady-state control action.

Conclusions

This paper has described advanced modeling and control
techniques that can be used by students in a hands-on ex-
perimental control laboratory. The students will be intro-
duced to sub-space identification for plant-friendly pro-
cess identification. IMC is applied to the nonminimum
phase process by mathematically factoring the model into
invertible and non-invertible sections. DMC is used to
control the system and explicitly implement process con-
straints. Students are introduced to advanced modeling
and control techniques in an application based environ-
ment. They are able to connect classroom theory with
concrete laboratory experiences.

The first offering of the laboratory class used the four-
tank system for SISO and multivariable decoupling. The
advanced identification and control methods presented in
this paper are being developed for use in upcoming course
offerings. The 15 students from the first offering of the
laboratory class were asked to evaluate the laboratory
course. These students were asked to rate the overall edu-
cational value as well as the practical value of each labo-
ratory experiment on a scale of 1 to 5, 5 being the highest.
Table 4 shows the quantitative ratings of the separate ex-
periments used in the first offering of the course. Note that
the four-tank system received the highest rating of the five
experiments. The students were also asked to give a free
response evaluation of each experiment. Some represen-
tative student quotes from the free response section of the
four-tank evaluation include:

Very good lab, extremely educational.

This was the most intuitive control problem for
me, very easy to see the direct physical results
of our control action. My personal favorite.

Real problem using industrial interfaces. Ex-
cellent practical problem, but it takes too long
due to the time constant.

Q1 Q1 Q2 Q2
Avg. St. Dev. Avg. St. Dev.

Four-Tank 4.0 0.93 4.4 0.91
Spring Mass 3.5 0.92 3.3 1.1
Pendulum 2.9 1.3 3.2 1.1

Servo Motor 2.9 0.99 3.2 1.1
Virtual Boiler 2.4 1.2 3.1 1.3

Table 4: Student evaluations of the multi-disciplinary lab-
oratory experiments. There were 15 students taking the
class. Question 1 was:“Rate the overall educational
value of each experiment using a scale of 1-5 (1=poor,
5= excellent).”Question 2 was:“Rate the practical value
of each experiment using a scale of 1-5 (1=poor, 5= ex-
cellent).”

References

[1] L. Dai and K. J. Åström. Dynamic Matrix Control of
a Quadruple Tank Process. InProceedings of the 14th
IFAC, pages 295–300, Beijing, China, 1999.

[2] K. H. Johansson and J. L. R. Nunes. A Multivariable
Laboratory Process with an Adjustable Zero. InProc.
American Control Conf., pages 2045–2049, Philadel-
phia, PA, 1998.

[3] K. H. Johansson and A. Rantzer. Multi-Loop Con-
trol of Minimum Phase Systems. InProc. American
Control Conf., pages 3385–3389, Albuquerque, NM,
1997.

[4] M. Morari and E. Zafiriou.Robust Process Control.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[5] P. Van Overshee and B. De Moor. N4SID: Sub-
space Algorithms for the Identification of Com-
bined Deterministic-Stochastic Systems.Automatica,
30(1):75–93, 1994.

[6] S. Skogestad and I. Postlethwaite.Multivariable
Feedback Control. John Wiley & Sons, New York,
NY, 1996.

6


