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The proposed algorithm consists of solving an alternating sequence of Relaxed

Master Problems (a Mixed-Integer Linear Program) and nonlinear programming

problems. The number of major iterations can be significantly decreased by use of

piecewise linear relaxations of the nonconvex functions. The introduction of piece-

wise linear relaxations improves the lower bound on the problem but increases the

number of constraints and binary variables in the Relaxed Master Problem. A se-

quence of valid nondecreasing lower bounds and upper boundsare generated by

the algorithm that converge in a finite number of iterations.Numerical results are

presented for example problems, illuminating the potential benefits of the proposed

algorithm.
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1 Introduction

Global optimization can be described as a procedure that attempts to find the alsolute best objective

value that satisfies all conditions. Mathematical programming is an efficient method for optimiza-

tion of various problems which are often quite difficult. Combinatorial optimization is a branch

of optimization which includes a discrete search space. These problems are generally NP-hard

and are often quite difficult to be solved. In many cases, these problems can be shown to exhibit

combinatorial complexity which in the worst case requires examination of all binary realizations

and essentially requires the total enumeration of the binary space. A very general class of difficult

optimization problems involving integer and continuous variables can be defined as:

min
x,y

f(x, y)

s.t. φ(x, y) = 0

g(x, y) ≤ 0 (1)

x ∈ X ⊂ R
n

y ∈ Y = {0, 1}q

The solution of this problem requires one to determine the minimum of a real valued function

f subject to constraints defined by vector-valued functionsg andφ in the continuous-discrete (x-y)

space withn continuous variables andq binary variables. Note that integer and discrete valued

variables with given lower and upper bounds may be represented by sets of binary variables [17].

Additionally, equality constraints can be represented by two inequality constraints without loss

of generality. Problems of this type are generally termed Mixed-Integer Nonlinear Programming

(MINLP) problems. Although the presence of binary variables makes the problem nonconvex, in

many cases the individual functionsf , φi, orgi may also be nonconvex. Nonconvexities in continu-

ous only nonlinear programming problems gives rise to multiple local optima and classical descent
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or hill-climbing methods may only yield local solutions which are far from being globally optimal.

Traditional approaches of nonlinear programming have onlybeen very successful in determining

local optimal solutions because of the nonconvexities in the optimization problems and hence these

approaches are still inadequate. The solution procedure for problems involving discrete and con-

tinuous variables can be even more complicated as the problem space involves a combinatorial

number of discrete points i.e., the set of feasible solutions is discrete as some of the variables are

restricted to take only discrete values. Finding global optima of nonconvex mixed integer nonlin-

ear optimization problems has been an important paradigm for recent optimization researchers. In

this work, we considered global optimization of nonseparable and factorable nonconvex nonlinear

programming problems. The namefactorable function denotes that these functions are recursive

combinations of sums and products of univariate functions.Additionally, a function is separable if

it can be transformed to a product of different functions where each new function will depend on

only one of the original variables. Most functions of several variables used in nonlinear optimiza-

tion are factorable and can easily brought into separable form.

Many industrial and process design problems such as heat exchanger network synthesis prob-

lem [45] and reactor network design problems [30] have some kinds of nonlinearities when posed

as optimization problems. For instance, in order to attain better designs for existing or new pro-

cesses in the area of process synthesis in chemical engineering it is often required to solve noncon-

vex mixed integer nonlinear optimization problems. Applications of MINLP have also emerged

in the area of Design [22, 23], Production scheduling [34], and Planning of batch/continuous pro-

cesses in chemical engineering [43]. Other applications include parameter estimation in molecular

mechanics force fields and yield optimization of biochemical systems [44].

Global optimization algorithms can be primarily classifiedinto two categories: Stochastic

[38, 13] vs. Deterministic [40, 24]. Stochastic global optimization methods randomly search

for global optimum over the domain of interest and typicallyrely on statistics and probabilistic

arguments to prove convergence to the global solution. Additionally, convergence cannot be ac-

curately proved. The advantage of these methods is that theydon’t need a specific structure for
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the problem being solved and may help when the problems involve uncertainty or randomness,

or when the problem does not have a suitable algebraic formulation. Other disadvantage is that

they often cannot handle highly constrained optimization problems and do not offer bounds on the

solution. Some of these methods include: Simulated annealing [36, 10, 12], Tableau search [20],

and Genetic algorithms [21]. As opposed to stochastic methods, deterministic global optimization

methods can rigorously guarantee optimal solutions withinan ε tolerance, where this tolerance

is the difference between the objective function value of the true global optimum point and that

of the solution obtained. Deterministic global optimization techniques can explicitly handle large

constrained optimization problems, and therefore are often favorable compared to stochastic tech-

niques. These techniques however require specific mathematical structure and hence can only

be applied to specific problems in order to obtain global solutions. Identifying global solutions

with arbitrary accuracy however presents significant advantages and challenges. These algorithms

proceed by rigorously reducing the feasible space until theglobal solution has been found with

prescribed accuracy. Converging sequences of valid upper and lower bounds are generated which

approach the global solution from above and below. The rigorous generation of bounds on the

optimal solution is a significant part of deterministic global optimization and this usually requires

generation of convex function relaxations to nonconvex expressions.

Several methods for solving MINLP problems have been proposed in the past. These meth-

ods include Branch-and-Bound [16, 33, 24], Generalized Benders Decomposition GBD [6, 19],

and Outer-Approximation algorithms [14]. Recently, improved interior point methods have been

developed to solve MINLP problems [8]. Most of the existing techniques for solving MINLP

problems require assumptions on the types of allowable constraint or objective functions to deter-

mine global solution. Recently, an Outer-Approximation based algorithm for separable nonconvex

MINLP problems was developed by Kesavan et al [28, 27]. This algorithm depends on gener-

ation of relaxations to the original problem and consists ofsolving an alternating sequence of

Mixed-Integer Linear Programming (MILP) Problems and two Non Linear Programming (NLP)

problems. The shortcoming with this technique is that it mayoften result in total enumeration of
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the binary space due to poor relaxations. The goal of the current work is to examine algorithms for

solution of nonconvex MINLP problems using improved relaxation techniques.

Numerous methods [2, 31, 41] have been proposed to constructconvex relaxations of general

nonconvex functions. The reformulation method of McCormick [31, 39, 9] converts the original

factorable nonconvex nonlinear algebraic functions into an equivalent form by the introduction of

new variables and constraints. The reformulated problem contains only linear and simple nonlin-

ear constraints. The convex relaxations for the simpler nonlinear constraints can be constructed

using the convex and concave envelopes that are known for many simple algebraic functions. The

αBB method [2, 1] also generates convex relaxations for generaltwice-differentiable constrained

nonlinear problems. One advantage of this method as compared to the basic reformulation tech-

nique is thatαBB does not require introduction of new variables. TheαBB method requires

the determination of bounds on the minimum eigenvalues of the Hessian of the nonconvex func-

tions. The Hybrid relaxation method [18] combines both basic reformulation andαBB methods.

This method may be advantageous in some cases where one of theabove mentioned methods fails

to generate a tight convex relaxation for the original NLP. Convex linear relaxations can also be

generated by using the linearization strategy of Tawarmalani and Sahinidis [41]. This method gen-

erates a convex nonlinear relaxation for the original factorable nonlinear problem. This nonlinear

convex relaxation is further relaxed using multiple linearizations based on outer approximation at

multiple points. The feasible space resulting from these outer approximations gives a convex linear

relaxation of the original nonlinear problem. The bound on the relaxed problem is found by the

solution of the resulting convex Linear Programming (LP) problem.

Global optimization algorithms when used with the existingrelaxation techniques may take a

large amount of time to converge to the global solution. In this work, a method using a MILP-

based piecewise linear relaxation technique is used for generating relaxations to nonconvex ex-

pressions. Using McCormick’s [31] reformulation method together with the propositional logic

constraints [5, 4, 42], the original nonlinear problem is relaxed to a MILP problem. The solution

to this MILP problem gives the lower bound on the original problem. This method is similar to
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previous decomposition methods [7] but uses solution of theupper bounding NLP problem by

spatial branch-and-bound or branch-and-reduce. This method appears to be advantageous in cases

where the above mentioned relaxation methods fail to generate tight function relaxations, with the

reservation that it requires the solution to a nonconvex MILP problem. The MILP relaxation can

provide a tight lower bound making use of existing robust MILP solution methods. The quality

of this lower bound can be modified by changing the number of piecewise linear regions used in

the lower bounding MILP problem. The availability of robustMixed Integer Programming (MIP)

solvers like CPLEX 8.1 [26] and IBM OSL [25] may justify the use of this particular technique

in many cases for solving nonconvex nonlinear problems. Solution of the MILP lower bounding

problem is often quite rapid due to well-developed branch-and-cut methods.

A rigorous decomposition-based approach for solutions of nonseparable factorable MINLP

problems is presented. The method proceeds by iteratively solving an sequence of MILPs and

NLPs. A piecewise linear relaxation technique is used for generation of relaxations to nonconvex

expressions. The use of piecewise linear relaxations improves the lower bound on the problem

but can increase the problem complexity of the lower bounding MILP. A sequence of valid non-

decreasing lower bounds and upper bounds is generated by thealgorithm that converge in a finite

number of iterations. A convergence proof is provided.

2 Problem Description and Reformulation

The class of nonconvex MINLPs considered in the present workconform to the following formu-

lation.
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min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

x ∈ X ⊂ R
m

y ∈ Y = {0, 1}q

(2)

wheref : X × Y → R andg : X × Z → R
p with Y ⊂ Z = R

q, with f andgi are continuous and

possibly nonconvex. The problem as defined by equation 2 willbe referred to as P hereafter. These

assumptions are sufficient to guarantee that either a minimum exists or the problem is infeasible.

Without loss of generality, the problem can be rewritten as:

P1 =







































min
x,y

x0

s.t. ǵ(x, y) ≤ 0

x ∈ X ⊂ R
m

y ∈ Y = {0, 1}q

(3)

Here,ǵ now includes a new variable and an additional constraint andin the formf(x, y)−x0 ≤ 0.

Assuming that allgi are factorable, new variables and constraints can be used tosimplify the

problem nonlinearity. Some of the new variables are defined by linear constraints, while some

variables are defined by simple nonlinear equality constraints involving two or three variables. See

2.2 for details on reformulation of nonlinear expressions.The new problem can be written in the

form:
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P2 =















































































min
x,y

x0

s.t. A1[x
T yT wT ]T ≤ B1

A2[x
T yT wT ]T = B2

w − h(x, y, w) = 0

x ∈ X ⊂ R
m

y ∈ Y = {0, 1}q

w ∈ W ⊂ R
l+n

(4)

Here,h : X × Y ×W → R
n define then new nonlinear variables andl linear equality constraints

are introduced to define the new linear variables. Bounds arederived onw based on the original

bounds forx andy using interval analysis [32]. The problem as defined by equation 4 will be

referred to as P2 hereafter. Obviously, this problem is nonconvex, as any nonlinear equality con-

straint requires that the resulting mathematical programming problem be nonconvex. It is assumed

that Problems P, P1, and P2 are equivalent.

This reformulation is useful in that convex underestimating and concave lower bounding func-

tions can readily be determined for each individual nonlinear functionhi. As a result, a convex

nonlinear problem can be formulated as follows:

P3 =















































































min
x,y

x0

s.t. A1[x
T yTwT ]T ≤ B1

A2[x
T yTwT ]T = B2

ȟ(x, y, w) ≤ w ≤ ĥ(x, y, w)

x ∈ X ⊂ R
m

y ∈ Y = {0, 1}q

w ∈ W ⊂ R
l+n

(5)

Here,ȟi is a convex underestimating function forhi andĥi is a concave overestimating function
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for hi. Note that many of the resulting under and overestimating functions are actually linear

functions which result from the secants derived for convex or concave envelopes. Additionally,

bilinear nonlinear terms result in four new linear inequality constraints for convex relaxation. Also

note that problem P3 is still nonconvex, asy ∈ {0, 1}q. If the integrality constraint fory were

removed from problem P3, the solution of the resulting convex NLP would provide a lower bound

on the solution of P, P1, and P2.

Problem P3 can be further relaxed by outer approximation of the nonlinear convex and concave

constraint functions. This allows for all the constraints to be written as linear equations, resulting

in a mixed integer linear program:

P4 =















































































min
x,y

x0

s.t. A1[x
T yT wT ]T ≤ B1

A2[x
T yT wT ]T = B2

A3[x
T yT wT ]T ≤ B3

x ∈ X ⊂ R
m

y ∈ Y = {0, 1}q

w ∈ W ⊂ R
l+n

(6)

Here, the constraints defined inA3 are composed of the linear secant constraints from the relaxation

of simple functions, the linear constraints appearing due to relaxation of bilinear terms, and linear

constraints introduced due to linearization of convex nonlinear functions at multiple points. As

bounds on all variables are known, linearization of the convex constraints may be performed at

multiple locations, resulting in a tunable parameter that allows for improvement of the relaxation

value. As additional linearizations are introduced, the solution of P4 should approach the solution

of P3. Both P3 and P4 are valid relaxations of the original problem P.
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2.1 Piecewise Linear Relaxations

In the previous section, the problem was relaxed based on convex and concave under and over esti-

mating functions. The feasible space of problem P2 can alternatively be relaxed by introduction of

propositional logic constraints. These logic constraintswill allow for tight relaxation of nonconvex

functions, but the new constraints will require additionalbinary variables.

A MILP-based piecewise linear relaxation technique can generate tighter relaxations as com-

pared to those generated by LP-based and NLP-based relaxation methods. The problem space

for the nonlinear function is divided into multiple regionsusing propositional logic constraints.

Outer approximations of convex or concave nonlinear functions and secant under-estimates and

over-estimates are then generated for each individual region, thereby converting the mixed integer

nonlinear problem P3 into a mixed integer linear programming problem. Most of the constraints in

this MILP problem are relaxed while enforcing only those constraints corresponding to the single

region containing the solution.

The variable space forx is divided intoS regions separated by(S − 1) boundaries. A binary

variablebi is introduced for each region resulting inS new binary variables. For theS regions,

2(S − 1) propositional logic inequality constraints are then addedto represent these regions. In

this technique,b1 is forced to a take a value of1 if x is betweenxl ands1, wheres1 is the upper

bound on the first region. The first region constraint is specified as follows:

−s1 + x ≤ M(1 − b1)

The regions2 through(S − 1) are specified with the following constraints:
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s1 − x + δ ≤ M(1 − b2)

−s2 + x ≤ M(1 − b2)

s2 − x + δ ≤ M(1 − b3) (7)

−s3 + x ≤ M(1 − b3)

...

whereδ is a small value used to ensure that the value of the variablex does not end up at the

boundaries separating the regions. The final region constraint is specified as follows:

s(S−1) − x + δ ≤ M(1 − bS)

Since only a single region can contain the solution, an equality constraint is added to ensure that

solution lies in only one region.

S
∑

i=1

bi = 1 (8)

Based on these propositional logic constraints and the constraint shown in Equation 8, if the

value of the variablex is smaller thans1, the binary variableb1 is forced to take value of1. On the

other hand, if a binary variable takes a value of zero, the respective constraint is relaxed as the right

hand side takes a large value ofM . The nonlinear expression is replaced by outer approximation

constraints written for each region. Depending on the number of linearizations,O, used to outer

approximate the nonlinear expression in each piecewise region, the linear over-estimate constraints

for a concave nonlinear expression can be written as follows:
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w ≤ f(x)|x=x ∗
i, j

+
∂f(x)

∂x

∣

∣

∣

∣

x=x ∗
i, j

(x − x ∗

i, j) + M(1 − bi)

∀x ∗

i, j, where j = 1..O and ∀ i = 1..S

wherex ∗

i, j are the linearization points,f(x) is the nonlinear expression, and∂f(x)
∂x

is the gradient

of the nonlinear expression. For each region, the nonlinearexpression can be under estimated by a

secant constraint written as follows:

secant(f(x), xL, xU) ≤ w + M(1 − bi) ∀ i = 1...S

wherexL, xU are the lower and upper bounds for a particular region. Constraints corresponding

to a convex nonlinear expression can be written similarly with a sign change. If the binary vari-

able related to a particular region takes a value of1, the corresponding linearization and secant

constraints are enforced while relaxing the constraints corresponding to other regions. The final

MILP-based piecewise linear relaxation problem can be represented in a general form as follows:

P5 =







































































































min
x,y,w,z

x0

s.t. A1[x
T yTwT ]T ≤ b1

A2[x
T yTwT ]T = b2

A3[x
T yTwT ]T ≤ b3

A4[x
T yTwTzT ]T ≤ b4

x ∈ X ⊂ R
m

y ∈ Y = {0, 1}q

z ∈ Y = {0, 1}r

w ∈ W ⊂ R
l+n

(9)

Here,z are the binary variables introduced andA4

[

xT yTwT zT
]T

≤ b4 are the linear constraints
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representing logic constraints, outer approximation constraints, and secant constraints for allQ

regions.

2.2 Example Reformulation and Relaxation

The reformulation of the original MINLP problem (P) into an equivalent simpler MINLP problem

(P2) is illustrated on an standard test problem taken from Handbook of Test Problems in Local and

Global Optimization [15].

min
x,y

2x1 + 3x2 + 1.5y1 + 2y2 − 0.5y3

1.25 = x2
1 + y1

3 = x1.5
2 + 1.5y2

−1.6 ≤ −x1 − y1

−3 ≤ −1.333x2 − y2

0 ≤ y1 + y2 − y3

0 ≤ x1, x2 ≤ 10 , y ∈ {0, 1}3

As mentioned earlier, the MINLP test problem which is of the form P is reformulated into an equiv-

alent simpler form P2. New variables,x0 for the objective function andw1andw2 for nonlinear

terms are introduced resulting in a simple nonlinear MINLP problem shown below. It can be seen

that bounds on these new variables are derived based on original bounds forx andy using interval

analysis. The simplified nonlinear problem shown in Equation 10 is of the form P2.

13



min
x,y

x0

1.25 = w1 + y1

3 = w2 + 1.5y2

−1.6 ≤ −x1 − y1

−3 ≤ −1.333x2 − y2

0 ≤ y1 + y2 − y3

x0 = 2x1 + 3x2 + 1.5y1 + 2y2 − 0.5y3 (10)

w1 = x2
1

w2 = x1.5
2

0 ≤ x1, x2 ≤ 10

0 ≤ w1 ≤ 100

0 ≤ w2 ≤ 31.6

y ∈ {0, 1}3

The MILP-based piecewise linear relaxation technique is graphically illustrated on the nonlinear

constraintw2 = x1.5
2 involved in the above problem. Here,w2 is the new variable introduced

during reformulation and1.5 is a non-integer constant. The nonlinear expression is of the form

w = xc with the secant under estimating constraint and outer approximation based over estimating

constraints shown in Figure 1. In this example, the variablespace forx is divided into2 regions

and2 linearizations are derived for each region. Complex factorable nonlinear problems can be

automatically reformulated using McCormick’s method so that the final reformulated problem has

expressions that involve only2 or 3 variables. These simple expressions include bilinear termsxy,

variable raised to constantsxc, wherec can be non integer constant, even integer, odd integer, or

negative integer. Other expressions include natural log ofa variableln(x), exponential of a variable
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exp(x), sin(x), cos(x). In the case of bilinear terms, binary variables and logic constraints can be

used for both variables. MILP-based piecewise linear relaxations can be developed to nonconvex

problems involving these simple nonlinear terms.

xpowerc-examplemain-modified.eps

Figure 1: (a) Original nonlinear nonconvex constraintw = xc. (b) Relaxation ofw = xc using
the secant under estimate. (c) Two outer approximation constraints over estimating the nonlinear
expression resulting in linear constraints. (d) Two outer approximation constraints and a secant
under estimate constraint for each region in the MILP-basedpiecewise relaxation problem.

3 MINLP Solution Algorithm

A decomposition-based deterministic global optimizationalgorithm for solutions of nonconvex

MINLP problems is presented. As stated, this algorithm may often result in total enumeration

of the binary space due to generation of poor relaxations. The advantage with the decomposition-

based algorithm is that it may require fewer number of major iterations with the use of MILP-based

piecewise linear relaxation technique.

The proposed algorithm iteratively solves an alternating sequence of Relaxed Master Problems

(MILP) and nonlinear programming problems (NLPs). The use of piecewise linear relaxations
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improves the lower bound on the problem but increases the number of constraints and binary

variables in the Relaxed Master Problem MILP. Tighter bounds on the variables can be obtained

by performing a nonlinear presolve based on interval analysis prior to global search for the solution.

After setting the initial upper and lower bounds on the problem, a Relaxed Master Problem P5 is

solved to generate a valid lower bound to the solution of original MINLP problem. A nonconvex

NLP problem is obtained by fixing the binary variables in the original problem P to the integer

realization obtained from the solution of Relaxed MILP problem. This nonconvex NLP problem is

then solved to global solution using Branch-and-Reduce [35] global optimization algorithm. As the

algorithm proceeds, integer cuts [3] are added to the MILP lower bounding problem to ensure that

previously examined integer realizations are excluded. The solution of the Relaxed MILP problem

with added integer cuts yields a new integer realization andthe iteration is repeated. A sequence

of valid nondecreasing lower bounds and upper bounds are thus generated by the algorithm. These

bounds converge in a finite number of iterations when the lower bound exceeds the upper bound

by someε tolerance.

The advantage of using MILP-based piecewise linear relaxation technique is that much tighter

lower bounds are generated. The MILP algorithm branches on all original binary variables and the

new binary variables introduced during reformulation using propositional logic. The MINLP algo-

rithm terminates in fewer major iterations as the branchingon continuous variables is significantly

decreased as the decomposition-based MILP lower bound jumps from y(k) to y(k + 1) solving

global NLP for upper bound. Assuming the original binary variables are branch upon first with the

new binary variables branched only after all original variables are specified, this technique is illus-

trated in the figure 2. Tighter lower bounds on the MINLP objective function can be derived with

the reservation that one must find the solution of a more difficult Relaxed Master MILP problem.

However, the availability of robust MILP solvers and the fewer iterations during MINLP algorithm

may justify the use of this particular technique. The robustness of MILP solvers is due to various

branch-and-cut cutting plane methods.
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2 1

Branch on new
binary variables

Branch on original
binary variables

Fewer iterations
but bigger MILP

Decomposition based MILP
lower bounds changes from y(k) to y(k+1)

Branch on
continuous variables

Original binary variable

New binary variable

Continuous variable

Figure 2: Illustration of variable branching in decomposition-based MILP lower bounding tech-
nique.

The proposed MILP-based piecewise linear relaxation technique and MINLP solution algo-

rithm are implemented in MatlabR© and is scheduled for distribution as an open source software

package called Global Optimization Toolbox for Matlab (GLOBO). Several tools for performing

variable bound contraction using interval analysis and optimization-based bound tightening [35]

are included in the package. The decomposition-based MINLPalgorithm is illustrated in the flow

chart shown in Figure , and can be explained by the following pseudo code.

17



Algorithm 1 Pseudo code for decomposition-based MINLP algorithm.
Perform nonlinear presolve to tighten variable bounds based on interval analysis
Set UBD =∞, LBD = −∞, k = 0
Solve Relaxed MILP problem P5 fory(k) and LBD
If (Infeasible)

LBD =∞
END If
While LBD < UBD - ε

Solve nonconvex NLP problem withy fixed toy(k) to get an upper boundU(k)
If (Feasible andU(k) <UBD)

UBD = U(k)
END If
Add integer cuts to Relaxed MILP problem to excludey(k)
k = k + 1
Solve Relaxed MILP problem P5 fory(k) and LBD
If (Infeasible)

LBD = ∞
END If

END While

decomp-minlp.eps

Figure 3: Flow chart for Decomposition-based MINLP algorithm.

Theorem 1. The MINLP solution algorithm terminates in a finite number ofsteps withε conver-

gence providing an optimal solution toP or terminates indicating thatP is infeasible.
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Proof.

First it is shown that the algorithm terminates in a finite number of steps. The setY = {0, 1}Q

contains all possible combinations of the original binary variables in the original MINLP problem.

Since the setY is finite, the integer cuts added to the Relaxed Master Problem MILP are finite.

Therefore the MINLP solution algorithm terminates in a finite number of major iterations.

Second it is shown that the algorithm terminates with anε convergence providing an optimal solu-

tion to the problem ifP is feasible or else indicate that the problem P is infeasible.

Upon termination at iterationk, we havef ∗, x∗, y∗ as the solution to original MINLP problem

P wheref ∗is the optimal solution objective function,x∗ is the continuous variable solution, and

y∗ is the binary variable solution. The theorem is proved by contradiction that no better solution

to the MINLP problem exists other than the best solution found so far. For this, assume that an

improved solution does exist withf
′

< f ∗, andy
′

∈ Y\YK whereYK is the set of all points in

the binary variable space that includes all the integer cutsadded to the Relaxed MILP problem

P5 at the termination step, stepK. The MILP relaxation problemP5 with integer cuts excluding

some setYK is a lower bound on the MINLP problemP that excludes thoseYK . From the above

statement we have:

P5(YK) ≤ P (Y\YK) (11)

The Algorithm terminates when the MILP lower bound exceeds the best upper bound found i.e.

P5(YK) ≥ NLP (y∗). As it was assumed thaty
′

is an improved solution compared toy∗, we have

P5(YK) ≥ NLP (y∗) ≥ NLP (y
′

) (12)

But from Equation 11 we haveP5(YK)≤P (Y\YK) and sinceNLP with fixed y
′

is an upper

bound on MINLP problemP , we haveP (Y \YK) ≤ NLP (y
′

). This leads to
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P5(YK) ≤ P (Y \YK) ≤ NLP (y
′

) (13)

Equation12 contradicts Equation 13 thereby disproving ourassumption that the overall problem

P has a improved solutiony′ compared to the best solutiony found so far. This proves that the

MINLP algorithm terminates providing an optimal solution to P when the problemP is feasible.

If P is infeasible, the MILP lower bound may or may not be feasible. All nonconvex NLP

problems with fixedy must be infeasible. The algorithm never updates the upper bound on the

problem and terminates indicating that P is infeasible.

�

4 Computational Results

The decomposition-based MINLP algorithm is implemented onseveral standard global optimiza-

tion test problems. Computational results are presented for three simple test problems taken from

Chapter 12 of [15] and one larger scale problem. The MINLP solution algorithm is implemented

in MatlabR© by taking advantage of the Matlab’s solver “fmincon” to determine feasible local so-

lutions. At each major iteration, nonconvex NLP problems are guaranteed to global solution using

Branch-and-Reduce based global optimization algorithm. CPLEX 8.1 is used for solution of MILP

problems. The proposed algorithm is implemted in Matlab 6.5on a hyperthreaded 3.20 GHz Intel

Pentium(R) 4 CPU with 1 Gbyte memory running a Debian-based Linux installation using a SMP

version of the 2.6.6 kernel.

As mentioned earlier, the quality of the lower bound can be modified by changing the number

of piecewise linear regions used in the lower bounding MILP problem. Simple test problems can

be solved quickly, so only1 piecewise linear region is used during lower bound generation which

is equivalent to LP-based relaxation. However, for the large scale problem, the algorithm requires

large amount of time to converge to the global solution when traditional relaxation techniques are
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used. For this, more number of piecewise regions are used to demonstrate the potential benefit of

MILP-based piecewise linear relaxation technique. Computational results for these test problems

are shown in Table 1. For these simple problems, the nonconvex NLP problems obtained by fixing

the binary variables are solved at the root node of the Branch-and-Reduce method. The number of

major iterations, upper bound, and average total solution time are presented for each problem.

Problem 1.

This test problem was initially presented in [29].

min
x,y

2x1 + 3x2 + 1.5y1 + 2y2 − 0.5y3

1.25 = x2
1 + y1

3 = x1.5
2 + 1.5y2

−1.6 ≤ −x1 − y1

−3 ≤ −1.333x2 − y2

0 ≤ y1 + y2 − y3

0 ≤ x1, x2 ≤ 10, y ∈ {0, 1}3

The global solution to this problem is attained atx = (1.12, 1.31)T , y = (0, 1, 1)T with an

objective function value of7.667.

Problem 2.

This problem was presented in Pörn et al. (1997).
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min
x,y

7x1 + 10x2

24 ≤ −x1.2
1 x1.7

2 + 7x1 + 9x2

−5 ≤ x1 + 2x2

−1 ≤ 3x1 − x2

−11 ≤ −4x1 + 3x2

0 = −x1 + y1 + 2y2 + 4y3

0 = −x2 + y4 + 2y5 + y6

1 ≤ x1, x2 ≤ 5, y ∈ {0, 1}6

The minimum objective function value for Problem 2 is31 attained atx = (3, 1), y =

(1, 1, 0, 1, 0, 0). For Problem 3, the global minimum is17 atx = (4, 1), y = (1, 0, 0).

Problem 3.

This problem is taken from [27].

min
x,y

−5x1 + 3x2

−39 ≤ −2x2
2 + 2x0.5

2 + 2x0.5
1 x2

2 − 11x2 − 8x1

−3 ≤ −x1 + x2

−24 ≤ −3x1 − 2x2

0 = −x2 + y1 + 2y2 + 4y3

(1, 1) ≤ x1, x2 ≤ (10, 6)

y ∈ {0, 1}3
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Problem 1 2 3

Continuous Variables 2 2 2
Binary Variables 3 6 3

Average Solution Time (secs) 1.78 0.33 1.44
Major Iterations in MINLP Solution Algorithm 1 1 1

Table 1: Computational results for 3 simple MINLP test problems.

Problem 4:

A highly nonconvex nonlinear problem is formulated in orderto test the robustness of the

proposed MINLP algorithm. The objective is to minimizex2 subject to some large number of

parabola constraints. The problem is then converted to a MINLP problem by assigning a binary

variable associated to each parabola subject to its presence in the problem formulation. For test

purposes, the problem is formulated to contain60 parabolas. The objective is to determine how the

global minimum value ofx2 changes as some parabolas are removed. In the problem formulation,

ai, bi, and ci are the coefficients associated with each parabola,M is a large number used to

formulate the conditional constraints using propositional logic [5, 4, 42], andT is the number of

parabolas to be removed.

min
x1, x2

x2

ai(x1 − yi)
2 + ci ≤ x2 + M yi ∀i

∑

i=1,..,n

yi = T

0 ≤ xi ≤ 1

yi ∈ {0, 1}q

Computational results are presented in Table 2. For the parabolas removed, the maximum number

of possible combinations of the parabolas that can be removed, the upper bounds, and number

of major iterations during MINLP solution algorithm are shown. The best binary realization that
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resulted in global minimum are also presented. Results are presented for the case of16 piecewise

linear regions during MILP lower bound generation. The proposed decomposition-based MINLP

algorithm is then compared with BARON [37, 41], a Branch-andReduce Optimization Navigator

for mixed integer nonlinear programming problems. For computational and performace compar-

ison purpose, the number of Branch and Reduce (BaR) iterations and the solution times are pre-

sented in Table 2. It can be noted that the newly proposed deomposition based MINLP algorithm,

when implemented on the 60 parabola test problem, convergedto the global solution requiring sig-

nificantly fewer iterations and in a considerably short amount of time when compared to BARON.

Proposed MINLP algorithm and BARON are both implemented using 1e−9 absolute termination

tolerance. It was also observed that upon termination, the optimality gap was considerably smaller

when the proposed MINLP algorithm is used.

MINLP Algorithm BARON

P
ar

ab
o

la
s

R
em

ov
ed

Possible
Combina-

tions

Upper
Bound

Major
Itera-
tions

Time
(secs)

BaR
Itera-
tions

Time
(secs)

Binary Realization

0 1 7.24 2 3.43 19 0.42
1 60 6.72 6 18.44 104 3.12 4
2 1770 5.96 3 7.47 568 6.24 4,53
4 487635 4.32 3 11.37 3897 57.55 45,47,51„58
8 255×10

7 -1.32 3 19.42 17506 247.63 9,19,26,29,45,47,51,58

Table 2: Computational results for 60 parabola MINLP problem.

Results for the problems optimized when0, 2 and4 parabola constraints are removed from the

overall problem are graphically illustrated in Figure 3. InFigure 3, the curve represented by (a)

is the nonconvex nonlinear objective function. The horizontal straight line represented by (b) is

the global minimum for each problem. Optimal combinations of parabolas that are to be removed

to get to the global solution are represented by (c). It can benoticed that as additional parabola

constraints are removed from the original problem, the global minimum moves in the decreasing

x2 direction.
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Figure 4: Graphical illustration of the results for 60 parabola MINLP problem. (a) Nonconvex
objective function and the global solution when0 parabola constraints are removed. (b) Parabo-
las that are removed and the improved global solution when2 parabola constraints are removed.
(c) Parabolas that are removed and the improved global solution when4 parabola constraints are
removed.
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5 Conclusions

Numerous industrial and engineering design problems can bemodeled as mixed integer nonlinear

programming (MINLP) problems. The goal of this work is to develop a general purpose optimiza-

tion algorithm to solve nonseparable factorable nonconvexMINLP problems. Convergence speed

of the proposed decomposition-based MINLP algorithm can besignificantly improved by gener-

ating tighter bounds on the objective function value. This task can be accomplished by the use of

newly proposed MILP-based piecewise linear relaxation technique. Computational results justify

and demonstrate the potential benefits of MILP-based relaxation techniques.
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