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A rigorous decomposition-based approach for solution ofseparable mixed-
integer nonlinear programs involving factorable noncarfugctions is presented.
The proposed algorithm consists of solving an alternatieguence of Relaxed
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presented for example problems, illuminating the potébgaefits of the proposed

algorithm.
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1 Introduction

Global optimization can be described as a procedure thahats to find the alsolute best objective
value that satisfies all conditions. Mathematical programgs an efficient method for optimiza-
tion of various problems which are often quite difficult. Climatorial optimization is a branch
of optimization which includes a discrete search space.sé&lpgoblems are generally NP-hard
and are often quite difficult to be solved. In many cases glpesblems can be shown to exhibit
combinatorial complexity which in the worst case requineamgination of all binary realizations
and essentially requires the total enumeration of the pispace. A very general class of difficult

optimization problems involving integer and continuousatales can be defined as:

min f(z, y)
x?y

st. o(z,y) =

g(x,y) <0 (1)
reXCR"
yeY ={0,1}1

The solution of this problem requires one to determine th@mum of a real valued function

f subject to constraints defined by vector-valued functipasde in the continuous-discrete<{y)
space withn continuous variables anglbinary variables. Note that integer and discrete valued
variables with given lower and upper bounds may be repreddm sets of binary variables [17].
Additionally, equality constraints can be representedviy inequality constraints without loss
of generality. Problems of this type are generally termedddiinteger Nonlinear Programming
(MINLP) problems. Although the presence of binary variahieakes the problem nonconvex, in
many cases the individual functiorfise;, or g; may also be nonconvex. Nonconvexities in continu-

ous only nonlinear programming problems gives rise to mpldtiocal optima and classical descent



or hill-climbing methods may only yield local solutions whiare far from being globally optimal.
Traditional approaches of nonlinear programming have beln very successful in determining
local optimal solutions because of the nonconvexitieseoibtimization problems and hence these
approaches are still inadequate. The solution procedunerédlems involving discrete and con-
tinuous variables can be even more complicated as the pnofi@ace involves a combinatorial
number of discrete points i.e., the set of feasible solstisrdiscrete as some of the variables are
restricted to take only discrete values. Finding globairoptof nonconvex mixed integer nonlin-
ear optimization problems has been an important paradigmeé@nt optimization researchers. In
this work, we considered global optimization of nonsepkeraind factorable nonconvex nonlinear
programming problems. The narfeetorable function denotes that these functions are recursive
combinations of sums and products of univariate functiédwailitionally, a function is separable if

it can be transformed to a product of different functions keheach new function will depend on
only one of the original variables. Most functions of seVeriables used in nonlinear optimiza-

tion are factorable and can easily brought into separalohe.fo

Many industrial and process design problems such as heblaeger network synthesis prob-
lem [45] and reactor network design problems [30] have soimeskof nonlinearities when posed
as optimization problems. For instance, in order to attaitelo designs for existing or new pro-
cesses in the area of process synthesis in chemical enigigées often required to solve noncon-
vex mixed integer nonlinear optimization problems. Apations of MINLP have also emerged
in the area of Design [22, 23], Production scheduling [34Y Blanning of batch/continuous pro-
cesses in chemical engineering [43]. Other applicatioclsitte parameter estimation in molecular

mechanics force fields and yield optimization of biochersgatems [44].

Global optimization algorithms can be primarily classifiedo two categories: Stochastic
[38, 13] vs. Deterministic [40, 24]. Stochastic global optation methods randomly search
for global optimum over the domain of interest and typicaily on statistics and probabilistic
arguments to prove convergence to the global solution. thaddilly, convergence cannot be ac-

curately proved. The advantage of these methods is thatdivey need a specific structure for



the problem being solved and may help when the problemsvavahcertainty or randomness,
or when the problem does not have a suitable algebraic fatioul Other disadvantage is that
they often cannot handle highly constrained optimizati@mbfems and do not offer bounds on the
solution. Some of these methods include: Simulated amef86, 10, 12], Tableau search [20],
and Genetic algorithms [21]. As opposed to stochastic nusthaeterministic global optimization
methods can rigorously guarantee optimal solutions witlmna tolerance, where this tolerance
is the difference between the objective function value eftiine global optimum point and that
of the solution obtained. Deterministic global optiminatitechniques can explicitly handle large
constrained optimization problems, and therefore arandéieorable compared to stochastic tech-
niques. These techniques however require specific matimhatructure and hence can only
be applied to specific problems in order to obtain global ttmhs. Identifying global solutions
with arbitrary accuracy however presents significant athgas and challenges. These algorithms
proceed by rigorously reducing the feasible space untilglbbal solution has been found with
prescribed accuracy. Converging sequences of valid uppkelosver bounds are generated which
approach the global solution from above and below. The og®rgeneration of bounds on the
optimal solution is a significant part of deterministic ghblptimization and this usually requires

generation of convex function relaxations to nonconvexesgions.

Several methods for solving MINLP problems have been pregas the past. These meth-
ods include Branch-and-Bound [16, 33, 24], GeneralizeddBesrDecomposition GBD [6, 19],
and Outer-Approximation algorithms [14]. Recently, imyped interior point methods have been
developed to solve MINLP problems [8]. Most of the existieghniques for solving MINLP
problems require assumptions on the types of allowablet@nsor objective functions to deter-
mine global solution. Recently, an Outer-Approximatioséaalgorithm for separable nonconvex
MINLP problems was developed by Kesavan et al [28, 27]. Thisrghm depends on gener-
ation of relaxations to the original problem and consistsafing an alternating sequence of
Mixed-Integer Linear Programming (MILP) Problems and tworNLinear Programming (NLP)

problems. The shortcoming with this technique is that it raeign result in total enumeration of



the binary space due to poor relaxations. The goal of theotwork is to examine algorithms for

solution of nonconvex MINLP problems using improved retéxatechniques.

Numerous methods [2, 31, 41] have been proposed to constroeex relaxations of general
nonconvex functions. The reformulation method of McColr81, 39, 9] converts the original
factorable nonconvex nonlinear algebraic functions imequivalent form by the introduction of
new variables and constraints. The reformulated problemagas only linear and simple nonlin-
ear constraints. The convex relaxations for the simplefinear constraints can be constructed
using the convex and concave envelopes that are known foy siaaple algebraic functions. The
aBB method [2, 1] also generates convex relaxations for gehered-differentiable constrained
nonlinear problems. One advantage of this method as comparthe basic reformulation tech-
nique is thate BB does not require introduction of new variables. ThBB method requires
the determination of bounds on the minimum eigenvaluesetHassian of the nonconvex func-
tions. The Hybrid relaxation method [18] combines both basformulation andvB3 B methods.
This method may be advantageous in some cases where oneafiiye mentioned methods fails
to generate a tight convex relaxation for the original NLBn@ex linear relaxations can also be
generated by using the linearization strategy of Tawarmalad Sahinidis [41]. This method gen-
erates a convex nonlinear relaxation for the original feadite nonlinear problem. This nonlinear
convex relaxation is further relaxed using multiple lingations based on outer approximation at
multiple points. The feasible space resulting from thegerapproximations gives a convex linear
relaxation of the original nonlinear problem. The bound loa telaxed problem is found by the

solution of the resulting convex Linear Programming (LR)lppem.

Global optimization algorithms when used with the existiaxation techniques may take a
large amount of time to converge to the global solution. s thork, a method using a MILP-
based piecewise linear relaxation technique is used foergéing relaxations to nonconvex ex-
pressions. Using McCormick’s [31] reformulation methodédther with the propositional logic
constraints [5, 4, 42], the original nonlinear problem isxed to a MILP problem. The solution

to this MILP problem gives the lower bound on the originallgem. This method is similar to



previous decomposition methods [7] but uses solution ofughyger bounding NLP problem by
spatial branch-and-bound or branch-and-reduce. Thisodethpears to be advantageous in cases
where the above mentioned relaxation methods fail to géméght function relaxations, with the
reservation that it requires the solution to a nonconvex ®problem. The MILP relaxation can
provide a tight lower bound making use of existing robust Mlisolution methods. The quality
of this lower bound can be modified by changing the number @fgwise linear regions used in
the lower bounding MILP problem. The availability of robidixed Integer Programming (MIP)
solvers like CPLEX 8.1 [26] and IBM OSL [25] may justify theausf this particular technique

in many cases for solving nonconvex nonlinear problemsuttwl of the MILP lower bounding

problem is often quite rapid due to well-developed branet-eut methods.

A rigorous decomposition-based approach for solutionsasfseparable factorable MINLP
problems is presented. The method proceeds by iteratizdyng an sequence of MILPs and
NLPs. A piecewise linear relaxation technique is used foregation of relaxations to nonconvex
expressions. The use of piecewise linear relaxations imgsrthe lower bound on the problem
but can increase the problem complexity of the lower boundLP. A sequence of valid non-
decreasing lower bounds and upper bounds is generated bjgtbrethm that converge in a finite

number of iterations. A convergence proof is provided.

2 Problem Description and Refor mulation

The class of nonconvex MINLPs considered in the present wonorm to the following formu-

lation.



min f(z, y)
T,y
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o

p_ s.t. g(z,y) @
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wheref : X xY — Randg: X x Z — RPwithY C Z = R?, with f andg; are continuous and
possibly nonconvex. The problem as defined by equation bwiteferred to as P hereafter. These
assumptions are sufficient to guarantee that either a mmienists or the problem is infeasible.

Without loss of generality, the problem can be rewritten as:

min zg
x7y

P s.t. §(z,y) 3

re X CR™

IN
o

yeY ={0,1}1
\

Here,d now includes a new variable and an additional constrainirtite form f(x, y) — z¢ < 0.
Assuming that allg; are factorable, new variables and constraints can be usennfify the
problem nonlinearity. Some of the new variables are definetinear constraints, while some
variables are defined by simple nonlinear equality congsanvolving two or three variables. See
2.2 for details on reformulation of nonlinear expressiohise new problem can be written in the

form:



P2 =

min zg
"E7y
s.t. Al yTwT)T <

AolaT yTw )T =
w— h(z,y,w) =
re X CR™

yeY ={0,1}7

we W C RHn

B,

(4)

Here,h : X x Y x W — R define thex new nonlinear variables aridinear equality constraints

are introduced to define the new linear variables. Boundslarged onw based on the original

bounds forz andy using interval analysis [32]. The problem as defined by equat will be

referred to as P2 hereafter. Obviously, this problem is oowex, as any nonlinear equality con-

straint requires that the resulting mathematical progrargmproblem be nonconvex. It is assumed

that Problems P, P1, and P2 are equivalent.

This reformulation is useful in that convex underestimgand concave lower bounding func-

tions can readily be determined for each individual nordmieinctionh;. As a result, a convex

nonlinear problem can be formulated as follows:

P3 =

\

yeY ={0,1}7

we W C RH»
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(5)

Here, h; is a convex underestimating function fbr and h; is a concave overestimating function



for h;. Note that many of the resulting under and overestimatimgtions are actually linear
functions which result from the secants derived for convegancave envelopes. Additionally,
bilinear nonlinear terms result in four new linear ineqtyationstraints for convex relaxation. Also
note that problem P3 is still nonconvex, @s= {0, 1}%. If the integrality constraint fory were

removed from problem P3, the solution of the resulting cariVeP would provide a lower bound

on the solution of P, P1, and P2.

Problem P3 can be further relaxed by outer approximatiohehbnlinear convex and concave
constraint functions. This allows for all the constrairtde written as linear equations, resulting

in a mixed integer linear program:

min xg
$7y
s.t. Azt yTwT)T By
AT yTwT]T = B

P4 = A3 [xT yTwT]T

IA

(6)
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Here, the constraints definedny are composed of the linear secant constraints from theatetax
of simple functions, the linear constraints appearing dueliaxation of bilinear terms, and linear
constraints introduced due to linearization of convex m@ar functions at multiple points. As
bounds on all variables are known, linearization of the eansonstraints may be performed at
multiple locations, resulting in a tunable parameter tilata for improvement of the relaxation
value. As additional linearizations are introduced, thetson of P4 should approach the solution

of P3. Both P3 and P4 are valid relaxations of the originabfam P.



2.1 Piecawise Linear Relaxations

In the previous section, the problem was relaxed based oreg@mnd concave under and over esti-
mating functions. The feasible space of problem P2 canmateely be relaxed by introduction of
propositional logic constraints. These logic constraivitkallow for tight relaxation of nonconvex

functions, but the new constraints will require additiobizary variables.

A MILP-based piecewise linear relaxation technique caregate tighter relaxations as com-
pared to those generated by LP-based and NLP-based relaxatéthods. The problem space
for the nonlinear function is divided into multiple regionsing propositional logic constraints.
Outer approximations of convex or concave nonlinear fumstiand secant under-estimates and
over-estimates are then generated for each individuadmethereby converting the mixed integer
nonlinear problem P3 into a mixed integer linear prograngpiroblem. Most of the constraints in
this MILP problem are relaxed while enforcing only those stoaints corresponding to the single

region containing the solution.

The variable space for is divided intoS regions separated lyy — 1) boundaries. A binary
variableb; is introduced for each region resulting $hnew binary variables. For thg regions,
2(S — 1) propositional logic inequality constraints are then adtietepresent these regions. In
this techniquep, is forced to a take a value dfif z is between:' ands;, wheres; is the upper

bound on the first region. The first region constraint is dptas follows:

—S1+x S M(l—bl)

The region2 through(S — 1) are specified with the following constraints:
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si—x+0 < M(1—by)
—sot+x < M(1—by)

sp—x+0 < M(1-—1b3) (7)
—s3+x < M(1-—b3)

whered is a small value used to ensure that the value of the varialdees not end up at the

boundaries separating the regions. The final region consissspecified as follows:

8(5_1)—23'+5 < M(l—bs)

Since only a single region can contain the solution, an égyuadnstraint is added to ensure that

solution lies in only one region.

b= 1 (8)

Based on these propositional logic constraints and thet@nsshown in Equation 8, if the
value of the variable is smaller thar,, the binary variablé, is forced to take value of. On the
other hand, if a binary variable takes a value of zero, theaets/e constraint is relaxed as the right
hand side takes a large valuef. The nonlinear expression is replaced by outer approxanati
constraints written for each region. Depending on the nurobénearizations(), used to outer
approximate the nonlinear expression in each piecewiserrgiipe linear over-estimate constraints

for a concave nonlinear expression can be written as follows
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w < (@) + ) (@ —x7;)+ M(1—b)

j ox
(W)

Val., where j=1.0 andVi=1.5

Z7J’

wherez;”; are the linearization pointg;(z) is the nonlinear expression, aﬂgzﬂ is the gradient
of the nonlinear expression. For each region, the nonliegairession can be under estimated by a

secant constraint written as follows:

secant(f(z), v* 2¥) <w+ M1 —b) Vi=1..5

wherez ©, 2V are the lower and upper bounds for a particular region. Caims$ corresponding
to a convex nonlinear expression can be written similarighwi sign change. If the binary vari-
able related to a particular region takes a valué,ahe corresponding linearization and secant
constraints are enforced while relaxing the constraintsesponding to other regions. The final

MILP-based piecewise linear relaxation problem can beasgrted in a general form as follows:

min xg

xT,Y,w,z
s.t. Azt yTwT)T
A2 yTwT]T
Ay[2T yTwT]T

P5= A, [xT yTwTZT]T

A
=l S
N [

IA
&

by 9

IA

ze X CR™
yeY ={0,1}7
ey =1{0,1)

we W c RH”

Here, ~ are the binary variables introduced ang [:cTyTszT]T < b, are the linear constraints
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representing logic constraints, outer approximation tairgs, and secant constraints for @l

regions.

2.2 Example Reformulation and Relaxation

The reformulation of the original MINLP problem (P) into aguevalent simpler MINLP problem
(P2) is illustrated on an standard test problem taken fromddaok of Test Problems in Local and

Global Optimization [15].

min 2x1 + 3x2 + 1.5y 4+ 2y — 0.5y3

x?y

1.25 = 234y

3 = a3° + Loy

—1.6 S —T1 — U
-3 S —13331’2 — Y2
0 < mit+y2—ys

0<zy,2 <10,y € {0,1}3

As mentioned earlier, the MINLP test problem which is of then P is reformulated into an equiv-
alent simpler form P2. New variables; for the objective function and,andw, for nonlinear
terms are introduced resulting in a simple nonlinear MINk&tem shown below. It can be seen
that bounds on these new variables are derived based onairigiunds for: andy using interval

analysis. The simplified nonlinear problem shown in Equaiif is of the form P2.

13



min xg

Y
125 = w, +u
3 = ws+ 1.5y
-16 < —z1—wn
-3 < —1.333z9 — yo
0 < 1 +y2—ys
xg = 2x1 4+ 3x9+ 1.5y1 + 2y2 — 0.5y3 (20)
w, = I
wy = x3°
0 < x1,29 <10
0 < w <100

y €{0,1}°

The MILP-based piecewise linear relaxation technique aplically illustrated on the nonlinear
constraintw, = x® involved in the above problem. Herey, is the new variable introduced
during reformulation and.5 is a non-integer constant. The nonlinear expression isefdhm

w = z° with the secant under estimating constraint and outer appedion based over estimating
constraints shown in Figure 1. In this example, the variapkgce forz is divided into2 regions
and?2 linearizations are derived for each region. Complex fadita nonlinear problems can be
automatically reformulated using McCormick’s method sat tihe final reformulated problem has
expressions that involve onyor 3 variables. These simple expressions include bilineardemm
variable raised to constants, wherec can be non integer constant, even integer, odd integer, or

negative integer. Other expressions include natural l@eguafiablen(z), exponential of a variable

14



exp(z), sin(x), cos(x). In the case of bilinear terms, binary variables and logitst@ints can be
used for both variables. MILP-based piecewise linear eglars can be developed to nonconvex

problems involving these simple nonlinear terms.

xpower c- exanpl emai n- nodi fi ed. eps

Figure 1: (a) Original nonlinear nonconvex constraint= z¢. (b) Relaxation ofw = x¢ using
the secant under estimate. (c) Two outer approximationtrings over estimating the nonlinear
expression resulting in linear constraints. (d) Two oufgsraximation constraints and a secant
under estimate constraint for each region in the MILP-bgsecewise relaxation problem.

3 MINLP Solution Algorithm

A decomposition-based deterministic global optimizatedgorithm for solutions of nonconvex
MINLP problems is presented. As stated, this algorithm mignoresult in total enumeration
of the binary space due to generation of poor relaxations.alvantage with the decomposition-
based algorithm is that it may require fewer number of magrations with the use of MILP-based

piecewise linear relaxation technique.

The proposed algorithm iteratively solves an alternateguence of Relaxed Master Problems

(MILP) and nonlinear programming problems (NLPs). The ukpiecewise linear relaxations
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improves the lower bound on the problem but increases thebaumf constraints and binary
variables in the Relaxed Master Problem MILP. Tighter bauod the variables can be obtained
by performing a nonlinear presolve based on interval amapysor to global search for the solution.
After setting the initial upper and lower bounds on the peot| a Relaxed Master Problem P5 is
solved to generate a valid lower bound to the solution ofinalgMINLP problem. A nonconvex
NLP problem is obtained by fixing the binary variables in thgioal problem P to the integer
realization obtained from the solution of Relaxed MILP gewsb. This nonconvex NLP problem is
then solved to global solution using Branch-and-Reducpd@bal optimization algorithm. As the
algorithm proceeds, integer cuts [3] are added to the Mivietdounding problem to ensure that
previously examined integer realizations are excludee. Sdtution of the Relaxed MILP problem
with added integer cuts yields a new integer realizationthedteration is repeated. A sequence
of valid nondecreasing lower bounds and upper bounds asggéinerated by the algorithm. These
bounds converge in a finite number of iterations when the idwend exceeds the upper bound

by somer tolerance.

The advantage of using MILP-based piecewise linear ralax#&chnique is that much tighter
lower bounds are generated. The MILP algorithm branchedl oniginal binary variables and the
new binary variables introduced during reformulation gganopositional logic. The MINLP algo-
rithm terminates in fewer major iterations as the brancleingontinuous variables is significantly
decreased as the decomposition-based MILP lower boundsjdirom y (%) to y(k + 1) solving
global NLP for upper bound. Assuming the original binaryiables are branch upon first with the
new binary variables branched only after all original vialés are specified, this technique is illus-
trated in the figure 2. Tighter lower bounds on the MINLP obyexfunction can be derived with
the reservation that one must find the solution of a more diffiRelaxed Master MILP problem.
However, the availability of robust MILP solvers and the &werations during MINLP algorithm
may justify the use of this particular technique. The robass of MILP solvers is due to various

branch-and-cut cutting plane methods.
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O Original binary variable

Decomposition based MILP @ New binary variable

lower bounds changes from y(k) to y(k+1)
Continuous variable

Branch on original
binary variables 8 ég
Fewer iterations

but bigger MILP
Branch on new
binary variables

6 666666 666666(;6 Branch on
3o 36 36 &b

continuous variables

Figure 2: lllustration of variable branching in decompmsitbased MILP lower bounding tech-
nique.

The proposed MILP-based piecewise linear relaxation tecienand MINLP solution algo-
rithm are implemented in Matl&and is scheduled for distribution as an open source software
package called Global Optimization Toolbox for Matlab (Q). Several tools for performing
variable bound contraction using interval analysis andhaipation-based bound tightening [35]
are included in the package. The decomposition-based MiNgé&¥ithm is illustrated in the flow

chart shown in Figure , and can be explained by the followsegupoo code.
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Algorithm 1 Pseudo code for decomposition-based MINLP algorithm.
Perform nonlinear presolve to tighten variable boundsdaseanterval analysis
Set UBD =0, LBD = —00, k =0
Solve Relaxed MILP problem P5 foi(k) and LBD
If (Infeasible)
LBD =00
END If
WhileLBD < UBD - ¢
Solve nonconvex NLP problem withfixed toy(k) to get an upper bound (k)
If (Feasible and/ (k) <UBD)
UBD = U(k)
END If
Add integer cuts to Relaxed MILP problem to excludé)
k=k+1
Solve Relaxed MILP problem P5 fot(k) and LBD
If (Infeasible)
LBD = oo
END If
END While

deconp- m nl p. eps

Figure 3: Flow chart for Decomposition-based MINLP algamit

Theorem 1. The MINLP solution algorithm terminates in a finite numbeistéps withe conver-

gence providing an optimal solution o or terminates indicating thd is infeasible.
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Pr oof.

First it is shown that the algorithm terminates in a finite f@mof steps. The s& = {0,1}%
contains all possible combinations of the original binaayiables in the original MINLP problem.
Since the seY is finite, the integer cuts added to the Relaxed Master ProlM@LP are finite.

Therefore the MINLP solution algorithm terminates in a gnitumber of major iterations.

Second it is shown that the algorithm terminates witla aonvergence providing an optimal solu-

tion to the problem ifP is feasible or else indicate that the problem P is infeasible

Upon termination at iteratioh, we havef*, «*, y* as the solution to original MINLP problem
P where f*is the optimal solution objective function; is the continuous variable solution, and
y* is the binary variable solution. The theorem is proved bytraatiction that no better solution
to the MINLP problem exists other than the best solution tbaa far. For this, assume that an
improved solution does exist with < f*, andy’ € Y\Yx whereY is the set of all points in
the binary variable space that includes all the integer adtied to the Relaxed MILP problem
P5 at the termination step, stép. The MILP relaxation problen®5 with integer cuts excluding
some set’y is a lower bound on the MINLP problei that excludes thosgy. From the above

statement we have:

P5(Yk) < P(Y\Yk) (11)

The Algorithm terminates when the MILP lower bound exceduskest upper bound found i.e.

P5(Yx) > NLP(y*). As it was assumed that is an improved solution compared b, we have

P5(Yx) > NLP(y*) > NLP(y) (12)

But from Equation 11 we hav®5(Yx)<P(Y\Yx) and sinceN LP with fixed y is an upper
bound on MINLP problenP, we haveP(Y'\Yx) < NLP(y'). This leads to

19



P5(Yx) < P(Y\Yx) < NLP(y') (13)

Equation12 contradicts Equation 13 thereby disprovingassumption that the overall problem
P has a improved solutiopf compared to the best solutignfound so far. This proves that the

MINLP algorithm terminates providing an optimal solutian® when the problen® is feasible.

If P is infeasible, the MILP lower bound may or may not be fbksi All nonconvex NLP
problems with fixedy must be infeasible. The algorithm never updates the uppendon the

problem and terminates indicating that P is infeasible.

O

4 Computational Results

The decomposition-based MINLP algorithm is implementegeveral standard global optimiza-
tion test problems. Computational results are presenteithfee simple test problems taken from
Chapter 12 of [15] and one larger scale problem. The MINLRtsmh algorithm is implemented
in Matlab® by taking advantage of the Matlab’s solver “fmincon” to detene feasible local so-
lutions. At each major iteration, nonconvex NLP problenmesguaranteed to global solution using
Branch-and-Reduce based global optimization algorithRLEX 8.1 is used for solution of MILP
problems. The proposed algorithm is implemted in Matlabdha hyperthreaded 3.20 GHz Intel
Pentium(R) 4 CPU with 1 Gbyte memory running a Debian-basedx.installation using a SMP

version of the 2.6.6 kernel.

As mentioned earlier, the quality of the lower bound can bédlifrexl by changing the number
of piecewise linear regions used in the lower bounding Mikk&bfem. Simple test problems can
be solved quickly, so only piecewise linear region is used during lower bound germratihich
is equivalent to LP-based relaxation. However, for thedagale problem, the algorithm requires

large amount of time to converge to the global solution whaditional relaxation techniques are
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used. For this, more number of piecewise regions are useehtoiistrate the potential benefit of
MILP-based piecewise linear relaxation technique. Comujrtal results for these test problems
are shown in Table 1. For these simple problems, the nongdivE problems obtained by fixing

the binary variables are solved at the root node of the BramchReduce method. The number of

major iterations, upper bound, and average total soluime &re presented for each problem.
Problem 1.

This test problem was initially presented in [29].

min 2z1 + 322 + 1.5y 4+ 2y — 0.5y3

x?y

1.25 = 234y

3 = a3° + Loy

—1.6 S —T1 — U
-3 S —1333{23'2 — Y2
0 < yi+y2—us

0 <z1,20 <10, y € {0,1}3

The global solution to this problem is attainedzat= (1.12,1.31)", y = (0,1,1)” with an

objective function value of.667.
Problem 2.

This problem was presented in Porn et al. (1997).
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min Tr1 + 1029
T,y

24 < —:)3%'2:)3%'7 + Tx1 + 929
-5 < 214219
-1 < 3x; — 29
—11 < —4z; + 3z9
0 = —z1+y1+ 2y +4ys
0 = —Z24+ys+2ys +us

1§£L’1,I2§5, y€{0,1}6

The minimum objective function value for Problem 23$ attained atzr = (3,1),y =

(1,1,0,1,0,0). For Problem 3, the global minimum 1§ atz = (4,1), y = (1,0,0).
Problem 3.

This problem is taken from [27].

rgiyn —bx1 + 3x9
-39 < —223+229° + 22922 — 112y — 82y
-3 < -1+ 1
—24 < —3x1 — 2x4
0 = —z+y+ 2y +4ys

(1, 1) < xq, z9 < (10, 6)

y € {0,1}°
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Problem | 1| 2 ] 3 |

Continuous Variables 2 2 2
Binary Variables 3 6 3
Average Solution Time (secs) 1.78] 0.33| 1.44
Major Iterations in MINLP Solution Algorithm 1 1 1

Table 1: Computational results for 3 simple MINLP test pevbs.

Problem 4:

A highly nonconvex nonlinear problem is formulated in ordertest the robustness of the
proposed MINLP algorithm. The objective is to minimize subject to some large number of
parabola constraints. The problem is then converted to allINroblem by assigning a binary
variable associated to each parabola subject to its presertbe problem formulation. For test
purposes, the problem is formulated to contiipparabolas. The objective is to determine how the
global minimum value of, changes as some parabolas are removed. In the problem &tiomy|
a;, b;, and¢; are the coefficients associated with each parahblais a large number used to
formulate the conditional constraints using propositldogic [5, 4, 42], andI" is the number of

parabolas to be removed.

min o

ai(vy —y)?+c < ap+ My Vi

yi = T
i=1,..,n
Yi € {07 1}q

Computational results are presented in Table 2. For théopkasremoved, the maximum number
of possible combinations of the parabolas that can be redidtie upper bounds, and number

of major iterations during MINLP solution algorithm are sia The best binary realization that
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resulted in global minimum are also presented. Resultsrasepted for the case d6 piecewise
linear regions during MILP lower bound generation. The g decomposition-based MINLP
algorithm is then compared with BARON [37, 41], a Branch-&etluce Optimization Navigator
for mixed integer nonlinear programming problems. For cotaponal and performace compar-
ison purpose, the number of Branch and Reduce (BaR) itesatiad the solution times are pre-
sented in Table 2. It can be noted that the newly proposed pesition based MINLP algorithm,
when implemented on the 60 parabola test problem, convéogeeé global solution requiring sig-
nificantly fewer iterations and in a considerably short amai time when compared to BARON.
Proposed MINLP algorithm and BARON are both implementedg$t—? absolute termination
tolerance. It was also observed that upon termination, ptienality gap was considerably smaller

when the proposed MINLP algorithm is used.

w
ko § MINLP Algorithm BARON
9 o Possible Major . BaR
IS ) Upper Time . . o
g © | Combina- Itera- Itera- | Time | Binary Realization
ax : Bound . (secs) )
tions tions tions | (secs)

0 1 7.24 2 3.43 19 0.42

1 60 6.72 6 18.44 104 3.12 4

2 1770 5.96 3 7.47 568 6.24 4,53

4 487635 4.32 3 11.37 3897 | 57.55 45,47,51,58

8 255x107 | -1.32 3 19.42 | 17506 | 247.63 9,19,26,29,45,47,51,58

Table 2: Computational results for 60 parabola MINLP prahle

Results for the problems optimized wher2 and4 parabola constraints are removed from the
overall problem are graphically illustrated in Figure 3.Higure 3, the curve represented by (a)
is the nonconvex nonlinear objective function. The hortabstraight line represented by (b) is
the global minimum for each problem. Optimal combinatiohparabolas that are to be removed
to get to the global solution are represented by (c). It candieed that as additional parabola
constraints are removed from the original problem, the glolbinimum moves in the decreasing

x5 direction.
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60 Parabola MINLP Problem, O Parabola Constraints Removed
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Figure 4. Graphical illustration of the results for 60 pa@MINLP problem. (a) Nonconvex
objective function and the global solution whemparabola constraints are removed. (b) Parabo-
las that are removed and the improved global solution whparabola constraints are removed.
(c) Parabolas that are removed and the improved globalisolathen4 parabola constraints are
removed.
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5 Conclusions

Numerous industrial and engineering design problems candukeled as mixed integer nonlinear
programming (MINLP) problems. The goal of this work is to dmp a general purpose optimiza-
tion algorithm to solve nonseparable factorable noncomwLP problems. Convergence speed
of the proposed decomposition-based MINLP algorithm casigpeificantly improved by gener-
ating tighter bounds on the objective function value. Thiktcan be accomplished by the use of
newly proposed MILP-based piecewise linear relaxatiohnieue. Computational results justify

and demonstrate the potential benefits of MILP-based rataxtechniques.
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