Chapter 10

Nonlinear control of industrial
processes

Babatunde A. Ogunnaike

Abstract

As a result of increased customer demand for consistent attainment of high product
quality, coupled with increasingly stringent safety and environmental regulations,
and intensified global competition, the current drive in the chemical and allied
industries has been towards more efficient utilisation of existing assets (especially
capacity and energy) rather than new capital expenditure. The reswelt is that a
growing number of industrial processes must now operate under conditions that
emphasise their inherent nonlinearities. Nonlinear control is thus becoming more
important in industrial practice. This chapter assesses the current status of
nonlinear control applications in the chemical industry, discusses some of the most
pertinent issues of, and barriers to, practical implementation, and presents an
actual industrial application to illustrate the main points.

10.1 Introduction

It is well known that virtually all processes of practical importance exhibit some
degree of nonlinear behaviour. Nevertheless, the vast majority of well-established
controller design techniques are for linear systems. Such techniques typically work
well in practice for processes that exhibit only mildly nonlinear dynamic behaviour.
More recently, increasingly stringent requirements on product quality and energy
utilisation, as well as on safety and environmental responsibility, demand that a
growing number of industrial processes operate in such a manner as to emphasise
their inherent nonlinearity even more. There is therefore increased industrial and
academic interest in the development and implementation of controllers that will be
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effective when process nonlinearities cannot be ignored without serious
consequences.

The growing interest of the process control community in nonlinear control is
reflected in several reviews of currently used techniques (see, for example,
References 1-4). To be sure, many significant theoretical and practical issues
remain unresolved; nevertheless, the impact of the available theory on industrial
practice is becoming more noticeable. First, observe that it has become standard
industrial practice to use certain simple nonlinear elements to improve performance
in some control loops — for example, square root correction in flow control (see
Reference 5). But beyond such simple applications, there is a growing number of
more complex nonlinear control applications that have appeared in the open
literature — for example, see Reference 6, model based control of an industrial
extruder; Reference 7, generic model control of an industrial blast furnace;
Reference 8, geometric nonlinear model-based control of a binary distillation
column; Reference 9, geometric nonlinear control of an industrial CO; adsorption/
desorption pilot plant process; References 10 and 11, nonlinear control of industrial
pH processes; Reference 12, nonlinear model predictive control of an industrial
packed-bed reactor; Reference 13, nonlinear model predictive control for economic
optimisation and control of gas processing plants. For a more recent overview of
nonlinear model predictive control applications, see Reference 14.

However, while the number of industrial applications of nonlinear control is
growing, a careful consideration of the current opportunities vis-a-vis the currently
available theory indicates that such applications are, in fact, not as widespread as
they could be. This chapter has a twofold overall objective:

1. to discuss the issues involved in implementing nonlinear control in industry:
assessing the current status (the problems and challenges) and identifying the
means by which the impact of nonlinear control on industrial practice can be
improved

2. to use an industrial case study (a) to demonstrate the potential impact of
nonlinear control, appropriately applied; and (b) to illustrate the main issues
involved in successful industrial implementations of nonlinear control.

10.2 Applying nonlinear control to industrial processes

A significant proportion of the demands placed on the typical industrial production
facility translates into one, or more, of the following:

. the need to increase capacity (to meet overall market demands)

2. the need to improve product quality (to meet individual customer demands)

3. the need to reduce environmental emissions (to meet safety and environmental
regulatory demands).
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Traditionally, it has been customary to adopt the ‘capital expenditure’ approach in
solving these problems: for example, building new production facilities to handle
the ‘capacity problem’; adding blending facilities to handle the ‘quality problem’
and redesigning and retrofitting processing units to handle the ‘environmental
problem’. More recently, however, increasing global competition has dictated the
current trend towards finding alternative solutions requiring little or no capital
expenditure. This almost invariably implies seeking effective control solutions first,
wherever possible. But when most processes are operated under the conditions
dictated by these stringent market, customer and environmental demands, the
tendency is for the inherent process nonlinearities to become more pronounced —
making it more difficult to obtain acceptable solutions from traditional linear
controller design techniques. The prevailing global economic conditions thus
continue to create opportunities for the application of nonlinear control techniques.

Given the current potential for nonlinear control to contribute significantly to
industrial productivity, we now consider the issues that must be addressed for such
potential to be realised fully.

10.2.1 Quantitative needs assessment

It is widely accepted that only about 10-20 per cent of industrial control problems
require the application of so-called ‘advanced control’. It is also accepted that
processes in which such problems are encountered account for close to 80 per cent
of the revenue. Of the industrial control problems in need of advanced control
applications, there is now an increasing realisation that a certain proportion cannot
be solved effectively by linear techniques, which constitute the bulk of the most
widely applied of these advanced techniques. However, the application of nonlinear
techniques requires incrementally greater investments in implementation effort and
costs, and such costs must therefore be economically justifiable. Thus, being able to
answer the following questions as objectively as possible will increase the impact
of nonlinear control in industrial practice:

1. For which problem is the application of nonlinear control critical to the
achievement of the desired operational objectives (and which of the available
tools is most appropriate for the specific application)?

2. How does the cost of implementation compare to the potential benefits to be
derived from the application?

For many of the documented applications of nonlinear control, these questions were
relatively straightforward to answer. When the process nonlinearity is obvious, and
severe enough (as with the application soon to be discussed), the need for nonlinear
control is usually clear. By the same token, if a critical process is wirtually
inoperable with linear controllers, it will be relatively straightforward to quantify
the benefit of nonlinear control. The vast, virtually untapped — and currently
difficult to quantify — potential for nonlinear control lies with the class of problems

|
i



208 Nonlinear predictive control: theory and practice

for which linear control methods are applicable, but for which nonlinear methods
will result in significant process performance improvements. In this regard, observe
that theoretical tools for quantifying the degree of process interaction (and process
conditioning) have been useful in assessing the applicability of multivariable
control and have thereby promoted industrial application. Similar tools for
measuring the degree of process nonlinearity could conceivably play a
commensurate role in promoting the industrial application of nonlinear control
methods.

10.2.2 Technological and implementation issues

There are a few major factors that currently prevent the widespread use of nonlinear
control, even in the cases where the need is obvious, and the potential benefit is
known to be substantial:

1. Centrol technology: The typical analytical tools required for rigorous nonlinear
systems analysis and controller design still remain largely inaccessible to all
but a few researchers concerned with such problems. Naturally, these
techniques tend to be more complicated and less transparent and ‘intuitive’
than the linear techniques.

2. Model developmens: Virtually all high performance controllers are model
based; and nonlinear controllers in general require nonlinear process models.
Developing linear process models can be difficult enough in practice;
developing nonlinear models is several orders of magnitude more difficult.

3. Implementation: Most nonlinear controller design techniques give rise to
complex controllers that often require unique, specialised software and
hardware resources for real-time implementation.

These issues arise primarily because of the intrinsic characteristics of nonlinear
systems, First, because nonlinearity is an intrinsically more complex phenomenon
to analyse than linearity, nonlinear systems are understandably more difficult to
analyse, and nonlinear controllers more difficult to design; by extension, nonlinear
control technology will therefore not be as widely accessible as its linear
counterpart.

Second, because of all the nice properties enjoyed by linear systems (additivity,
homogeneity, superposition, efc.) linear model development is relatively straight-
forward, in concept, if sometimes tedious in practice. The literature on linear model
identification from empirical plant data in particular, is vast, and essentially
complete; and industrial practice of linear empirical modelling is reasonably well
developed. When the desired process model is to be nonlinear, however, many
additional issues immediately arise by virtue of this departure from linearity, the
most important of which has to do with what modelling approach to adopt: the
theoretical (or first-principles) approach, the empirical approach or the ‘hybrid’
approach.
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The first-principles approach is often not employed because it requires a
significant amount of process knowledge which may not always be available; when
such knowledge is available, the resulting model may simply be too difficult to be
useful for controller design purposes. The empirical approach has the advantage of
depending strictly on data, but it requires an a priori choice of model structure
(itself a very difficult task); in addition it requires a very careful design of the input
sequence to be used for the identification (see, for example, Reference 15). An
increasingly promising approach is the so-called ‘grey-box’ or hybrid approach in
which basic first-principles information is augmented with empirical data, thereby
taking advantage of the benefits of each approach. For some sample hybrid
modelling applications, see, for example, References 16-19.

Finally, by definition, and intrinsically, nonlinear systems tend to defy
classification: they are all characterised by the property they lack — linearity. Each
nonlinear control application thus tends to be unique and specialised, making it
difficult to employ any generalised approach, or tools or implementation platforms.

Taken together, all the foregoing factors argue strongly for the development of
commercial nonlinear control packages in the same spirit as those available for
(linear) model predictive control (MPC). Observe that, even though (i) linear MPC
analysis and design techniques, obviously less complicated than nonlinear
techniques, are still complicated enough compared to classical methods, and (ii)
linear model development for MPC applications is still not a trivial task,
commercial packages such as DMC and IDCOM (see Reference 20, Chapter 27, for
a summary of other commercial MPC packages) have made the implementation of
this technology much more widely accessible than would otherwise be possible.

Despite the obvious difficulties regarding ‘standardisation’ of model forms and
design techniques, Continental Controls, Inc. has commercialised one nonlinear
control package — MVC — with the claim that it could potentially do for nonlinear
control what IDCOM and DMC did for linear model predictive control. One of the
reported applications of this technology may be found in Reference 13. (See also
Reference 14.)

In the next section we discuss the development and on-line performance of a
nonlinear control system for an industrial process, to illustrate how the problems
noted above — control technology, modelling and control system implementation —
were addressed in this specific case.

10.3 Model predictive control of a spent acid recovery converter

10.3.1 The process

The process in question is the ‘spent acid recovery’ converter shown schematically
in Figure 10.1. It consists of a series arrangement of four vanadium pentoxide
fixed-bed reactors used to convert a cold feed of sulphur dioxide, (SO,), oxygen,
(0y) and some inerts into SO3. Because the reaction is highly exothermic, interstage



210 Nonlinear predictive control: theory and practice

k
(o)

vaive G -m" ‘m" valve D

— L
alem%mamm.ﬂ
Cold
xchg mom

MON+ Dm

(), 6),6) 6 - sonsors

Figure 10.1  Spent acid recovery converter

cooling is provided primarily via heat exchange with the incoming cold feed,
excepl between stages 3 and 4, where cooling is achieved via heat transfer to steam
in a superheated steam generator.

10.3.2 Process operation objectives

Safe, reliable and economic process operation requires close regulation of the inlet
temperatures of the first, second and third stages. In general, there is an "oﬁ:_.:_._i.
inlet temperature for each stage (or pass) that will give rise to optimum conversion.
These desired target values are determined by ‘gas strength’ (SO, oo:om:xmﬂ.r.usv,
production rate and the conversion achieved in the preceding passes. In m&:_o:,
these temperatures must not fall below 410° (otherwise the reaction will be
quenched) or rise above 600° (otherwise the catalyst active life will be shortened
considerably).

Frequent fluctuations in feed conditions — the blower speed, gas strength (3O,
concentration) and O, concentration — constitute the main obstacles to smooth
process operation. Primarily to minimise yield losses, and to comply with strict
environmental regulations on SO, emissions, these persistent disturbances must be
rejected cffectively and quickly. Ineffective process control has been responsible
for low conversions, and low conversions result in both high SO, emission rates
and high yield losses.

The indicated network of pipings, baffles and valves A, B and C provide the
means for controlling the inlet temperatures through by-pass feeding of cold
reactants. (For reasons that will soon become clear, only the valve openings — or
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‘valve loadings’ — for valves A, B and C are available for manipulation; the valve
loading of valve D is not.) For example, observe that increasing by-pass flow
through valve C will reduce the first pass inlet temperature.

The dynamic characteristics induced by the network of valves can be quite
complex. First, observe that the valves merely redistribute the feed. sending a
portion directly as cold feed, and the rest through the various heat exchangers. A
change in a single valve loading therefore affects not just the feed flow rate through
that valve; it also affects the flow rate through all the other valves. These
manipulated variables are therefore not entirely independent. Observe therefore that
only three of the four valves can be manipulated independently. Next, consider, for
the purpose of illustration, the effect of an increase in the valve C loading. The
initial direct response will be a decrease in the first pass inlet temperature (as a
result of increased cold feed bypass to this stage); but because the increased by-pass
through valve C causes a concurrent decrease in the amount of cold feed distributed
to the interstage heat exchangers, this action also results in an increase in the
second and third pass inlet temperatures. This otherwise ‘normal’ process
interaction is then complicated by secondary effects resulting from the fact that a
reduction in the first pass inlet temperature ultimately causes a reduction in the exit
temperature, which in turn causes a reduction in the inlet and outlet temperatures in
the succeeding stages. The reduced temperature in all the stages then produces a
tertiary effect in which the amount of the first stage feed preheating provided by the
three interstage heat-exchangers is reduced, further reducing the first pass inlet
temperature. This now starts another round of inlet temperature reductions with the
potential for open-loop instability induced by the progressive cooling, and the
possibility of quenching the reaction outright. Finally, as a result of the nonlinearity
induced by the chemical reaction kinetics and the heat exchanger characteristics, a
‘mirror image’ decrease in the valve C loading will not give rise to a precise,
‘mirror image’ reverse net effect in inlet temperatures. To keep the process away
from potentially unstable operating regimes, a lower constraint of 30 percent is
imposed on the valve loadings; the upper constraint of 100 per cent is physical.

The overall process objective may therefore be stated as follows:

In the face of persistent process disturbances, control the inlet temperature for
each of the first three passes to their respective prespecified desired target
values, maintaining them between the operating constraints of 410°C. and 600°C
at all times, with the loadings for valves A, B, and C constrained to lie between
30 and 100 per cent.

10.3.3 A control perspective of the process

.1:._m process variables may be categorised as follows:

e Output (controlled) variables:
1. first pass inlet temperature
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2. second pass inlet temperature
3. third pass inlet temperature.

e Input (manipulated) variables:
1. valve A loading
2. wvalve B loading
3. wvalve C loading.

e Disturbance variables:
. SO, concentration
2. 0, concentration
3. blower speed

4, valve D loading.

As summarised above, the main control problems are caused by persistent
disturbances, strong interactions among the process variables, constraints on both
the input and output variables, and the process nonlinearities due to the reaction
kinetics, heat transfer characteristics and the flow distribution network. The specific
objective of the application is to develop an effective control system for this
process, but the broader objective in this section is to use this specific application to
illustrate various aspects of how nonlinear control can be applied on an industrial
process.

10.3.4 Overall control strategy

The multivariable nature of the process, along with the process operating
constraints, make this an ideal candidate for model predictive control (MPC);
however, the severity of the process nonlinearities argues strongly for the
application of nonlinear MPC instead of the more popular standard, linear version.
The most important implications of this decision are as follows: technologically,
this boils down — in principle — to obtaining a reasonable, nonlinear process model
and a reliable nonlinear optimisation routine for performing the optimisation that
lies at the heart of MPC. In practice, however, unlike with linear MPC, few
theoretical results are available to guide the choice of critical design parameters
such as the prediction horizon, the control move horizon and the various weights in
the objective function. The nonlinear optimisation will thus have to be carried out
with extra care. Also, unlike with linear MPC, no standard commercial packages
were available at the time of this application (1991/92).

At the heart of the nonlinear model predictive control technique is the nonlinear
process model, and based on the following three main points, the decision was
made to obtain this model via input/output data correlation:

1. Not enough is known about certain critical details of the process to generate a
first-principles model having sufficient integrity.
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2. Even if the required fundamental process knowledge were awailable, the
resulting first-principles model will be far too complicated for on-line
optimisation-based control. Observe that, at the very least, such a model will
consist of a combination of individual models for each subprocess making up
the overall process: a gas distribution network model; a heat transfer model for
the four heat exchangers; and a kinetic model for the four fixed-bed catalytic
reactors. Each contributing model could conceivably consist of a system of
several, coupled nonlinear partial differential equations, and- the overall
combination will clearly be far too complex for controller design.

3. From a process control perspective, the process is a 3 x 3 process with four
disturbances; this process dimensionality is actually not so high as to render
empirical modelling prohibitively time-consuming.

The issue of model structure selection in empirical nonlinear modelling is not
trivial, and many factors influence each individual choice (see, for example,
References 15 and 21). For this particular application, a recurrent neural network
representation was chosen because of the flexibility of the neural network paradigm
in general for representing arbitrary nonlinear input/output maps; the recurrent
structure (as opposed to the standard feed-forward structure) was chosen in
particular for improved long range prediction (see Reference 12), a critical
requirement for model predictive control.

The overall control strategy is therefore to represent the process dynamics with a
recurrent neural network, and to use this in a model predictive control framework in
conjunction with a nonlinear optimiser. This control structure is shown in Figure
10.2.

Controlled, feedforward

and
manipulated variables Model
—e prediction
Dynamic neural
network model
+
Disturbances
D
Future ﬂ +
manipulated
variables
Nonlinear Y+ Setpoint
To plant i e
Present
manipulated
variables

Figure 10.2  Control strategy
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10.3.5 Process model development

A systematic procedure for nonlinear empirical model development involves the
following steps [15]:

1. model structure selection

2. model identification (input sequence design; data collection and precondition-
ing; model parameter estimation)

3. model validation.

In this specific application, the selected model structure — a recurrent neural
network — and the reasons for the choice have been presented. The next step —
actual identification of the neural network model for the spent acid recovery
converter — involves making decisions about the input sequences to be used for the
model identification, implementing these input changes, collecting the sets of
process response data, and analysing the collected input/output data sets.

The theoretical issues concerning input sequence design for nonlinear model
identification remain largely unresolved (see, for example, Reference 15); much of
what is done in practice is influenced mostly by sensible, but vague heuristics. For
example, it is generally recommended that the magnitude of the inputs must be
such that the desired region of operation is ‘adequately covered’ and that the
‘frequency content’ must be such that those aspects of the process that must be
captured in the model are ‘adequately excited’. Such heuristics and available
theoretical results immediately rule out the typical inputs employed in industrial
practice for linear model identification, i.e. single steps, single pulses and the
PRBS; but there is as yet no comprehensive theory regarding ‘optimum’ input
sequences for general nonlinear model identification.

In this specific case, therefore, the decision was to employ six-level, pseudo-
random sequences (as opposed to the binary, i.e. two-level, sequences employed for
linear systems) that span the ‘normal’ input range. From process operation data,
and process knowledge, this ‘normal’ range was determined to be 30-80 percent
valve loadings. Because the ‘dominant time constant” for the process is known to be
approximately 40 min, the duration of each ‘step change’ in the sequence was fixed
at 5 min, at the end of which the valve loading was switched to a different randomly
drawn level. The total duration for each input sequence was fixed at 12 h.

Figure 10.3 shows the valve A loading input sequence and Figure 10.4 shows the
observed responses in the first, second and third pass inlet temperatures,
respectively. Similar responses were obtained from similar input changes in valves
B and C.

Each process data set acquired during the plant tests was partitioned into two:
one part for model development (the ‘training set’) and the other for model
validation (the ‘validation set’). The backpropagation-through-time algorithm was
used to obtain the seven-input, three-output recurrent NN model from the plant data
in the ‘training set’. The final NN model architecture consisted of three layers and
four nodes in the hidden layer, with unit time-delayed output feedback connections
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Figure 10.3  Identification input sequence for valve A loading

to the input layer. For additional details about the model development, see
Reference 12. The performance of the resulting model is illustrated in Figure 10.5,
where the long range, pure prediction of the first pass inlet temperature is compared
with corresponding validation data. Comparable performance was observed from
the other parts of the model.

10.3.6 Control system design and implementation

Conceptually, the nonlinear model predictive controller was implemented as shown
in Figure 10.2: the NN model provided the long-range prediction, and ‘ADS’, a
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Figure 10.5  First pass inlet temperature prediction and validation data

public domain nonlinear optimisation routine (obtained from the Naval Post-
graduate School in Monterey, CA) was used to determine optimal control action
sequences. The model prediction and control sequence horizon lengths were chosen
to be 20 and 5, respectively, with A7 = 10min. Additional details about the
optimisation routine are available in Reference 12.

The actual implemetation of this nonlinear MPC scheme requires a few
additional hardware and software considerations. Process operation data were
collected and archived by a PDP 11/85 host computer interfaced to a dedicated
DCS (distributed control system) through vendor-supplied software running on a
MicroVAX system. The NN process model and the optimiser were deployed within
an in-house expert system shell on the same MicroVAX computer. Apart from
providing a convenient environment for integrating all the Fortran routines used to
execute the modelling and the optimisation functions of the nonlinear MPC
scheme, the expert system also performed two additional relatively simple, but
critical, tasks: (i) it determined when it was time to execute the controller; and (ii) it
checked the availability and validity of process data, and the ‘reasonableness’ of
the computed control action.

At each control cycle, the desired setpoints computed for the valve loadings were
sent from the expert system (in the microVAX) to the host computer; this was then
communicated to the DCS, from where it was implemented on the actual process.
The implementation hardware/software architecture is shown in Figure 10.6.

10.3.7 Control system performance

Figures 10.7-10.9 are representative of the actual closed-loop performance of the
control system. Figure 10.7 shows the process output variables over a 24 h period
during which the process was subject to the disturbances indicated in Figure 10.8.
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Between t =500 and ¢= 900, the SO, concentration dropped by more than
15percent — by process operation standards, a significant feed disturbance; the
indicated change in the blower speed (related to the process throughput) is also
significant. In responding to these disturbances, the control scheme successfully
maintained the inlet temperatures close to their respective desired setpoints, as
shown in Figure 10.7, by implementing the control action sequences shown in
Figure 10.9.

Compared with standard process operation prior to the implementation of this
controller (not shown) the controller performed remarkably well. Observe that the
30-100 per cent constraint range was enforced for each of the valves during the
entire period. The SO, concentration ‘spike’ that occurred at = 1300 was due to
the daily scheduled analyser calibration; observe, however, that such a clearly
anomalous measurement did not affect the controller performance. This illustrates
the effectiveness of the expert system in checking and validating process
measurements before they are used in computing corrective control action. For
additional details on the performance of the controller and a comparison to
conventional control approaches, see Reference 12.
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10.4 Summary and conclusions

We have presented here one perspective of the ‘many-sided’ issues involved in the
industrial application of nonlinear control, using the ‘spent acid recovery’ process
as an illustrative case study of the successful design and implementation of one
such industrial nonlinear control system.

Clearly, nonlinear control is becoming ever more relevant to industrial practice;
the key issue now is essentially one of how best to identify and capture the stake
presented by the ever-increasing demands on process operation. In this regard, by
making the inevitable comparison with (linear) model predictive control and what
has been primarily responsible for the significant impact it has had on industrial
practice to date, it is not difficult to arrive at the following comclusion: the
commercialisation of nonlinear control packages similar in spirit to those available
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for linear MPC will significantly increase the impact of nonlinear control on
industrial practice. There are several obstacles to the widespread development and
application of such packages; some of the most important have been noted.
Nevertheless, that one such package is in fact already available is an encouraging
sign that the potential exists for a significant increase in the application of nonlinear
control techniques on many more actual industrial cases.
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