6.1 INTRODUCTION

This chapter is devoted to a series of case studies showing applications of modern control theory to chemical, petroleum, and metallurgical processes. For each problem, one or more of the techniques discussed in earlier chapters is used, and the performance of the resulting design is compared with more conventional approaches. It is hoped that this set of example problems will stimulate the reader to further applications in the real world of the process industries.

6.2 CONTROL OF A MULTI-SIDESTREAM DISTILLATION COLUMN*

The goal of this case study is to develop a control strategy for the multi-side-stream distillation column shown in Fig. 6.1. The compositions of the overhead and two sidestreams are the output variables \(y_1, y_2, y_3\), and the drawoff rates of these streams constitute the manipulated variables \(u_1, u_2, u_3\). Although one could formulate a very high-order time-domain model of the column involving concentrations and temperatures on every tray, this is not usually the best approach for process control design. As noted in Sec. 3.2, it is often possible to fit a linear

* This case study was carried out by Lance Lauerhass, Paul Noble, Larry Biegler, and Tunde Ogunnaike as a project in the graduate course in Advanced Process Control at the University of Wisconsin.
transfer function model to the observed sidestream composition dynamics through step- or frequency-response experiments. We shall assume this has been done in the present case, yielding the open-loop transfer function

\[\bar{y}(s) = G(s)\bar{u}(s) \]

where

\[G(s) = \begin{bmatrix} 0.7 & 0 & 0 \\ \frac{2.0}{1 + 9s} & \frac{0.4}{1 + 6s} & 0 \\ \frac{2.3}{1 + 8s} & \frac{2.3}{1 + 8s} & \frac{2.1}{1 + 7s} \end{bmatrix} \]

Very often the experimentally determined transfer function \(G(s) \) includes pure time delays in some of the elements; however, we shall assume these are so small as to be negligible in the present case.

The present control scheme for the column consists of three single-loop controllers as shown in Fig. 6.2. For each loop, the composition \(y_i \) is measured and used in a PI controller to adjust the flow rate \(u_i \). Experience has shown that
there are two major operating difficulties with this present control system:

1. The response to disturbances is poor, yielding steady-state offset and oscillations.
2. Changing the set point in any one variable causes the other variables to go off specification and to oscillate.

To illustrate these problems, consider Fig. 6.3, which shows the response of three single-loop proportional controllers to set-point changes

$$\bar{y}_d = \begin{bmatrix} 0.05 \\ -0.05 \\ 0.02 \end{bmatrix} \quad (6.2.3)$$

Figure 6.3 Product compositions after a set-point change (proportional control with $k_{c11} = 5$, $k_{c22} = 20$, $k_{c33} = 20$).
while Fig. 6.4 illustrates the response with three proportional plus integral controllers. With only proportional control (Fig. 6.3), both set-point changes and disturbances cause large offsets. When integral action is added in an effort to prevent offsets, the three controllers fight one another, causing persistent oscillations (Fig. 6.4). In this case study, two control strategies designed to eliminate these difficulties shall be evaluated.

Set-Point Compensation

In some distillation towers with multiple products, the effect of disturbances is minor and the principal difficulties arise due to frequent set-point changes. As discussed in Chap. 3, the simple techniques of set-point compensation can correct many of these types of difficulties. Recall from Sec. 3.2 that the addition of set-point compensation modifies Fig. 6.2 to the control scheme shown in Fig. 6.5. The closed-loop transfer function becomes

\[\ddot{y} = (I + GG_c)^{-1}GG_c S \dot{y}_d \]

(3.2.94)

where the controller matrix is

\[
G_c = \begin{bmatrix}
 g_{c11} & 0 & 0 \\
 0 & g_{c22} & 0 \\
 0 & 0 & g_{c33}
\end{bmatrix}
\]
and the set-point compensator

\[
S = \begin{bmatrix}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{bmatrix}
\]

is to be chosen to make

\[
(I + GG_e)^{-1}GG_eS = I \tag{6.2.4}
\]

at steady state. Thus, if the single-loop controllers are proportional controllers \(g_{cil} = K_{cil}, i = 1, 2, 3, \) then

\[
S = \begin{bmatrix}
1.43 / K_{c11} + 1 & 0 & 0 \\
-7.14 / K_{c22} & 2.5 / K_{c22} + 1 & 0 \\
6.26 / K_{c33} & -2.74 / K_{c33} & 0.48 / K_{c33} + 1
\end{bmatrix} \tag{6.2.5}
\]

satisfies Eq. (6.2.4). The performance of this compensator is discussed below.

Noninteracting Control

A second control strategy to be evaluated is multivariable noninteracting control, shown in Fig. 6.6. It may be implemented using single-loop controllers, but the signals from these controllers must be sent to decoupling operators to accomplish the noninteractive control. Recall from Chap. 3 that the closed-loop transfer function for the structure in Fig. 6.6 is

\[
\tilde{y} = (I + GG_eG_e)^{-1}GG_eG_e\tilde{y}_d \tag{3.2.81}
\]

and \(G_i\) must be chosen to make

\[
T = (I + GG_eG_e)^{-1}GG_e \tag{3.2.82}
\]

a diagonal matrix.
For the simple case of steady-state compensation, which eliminates steady-state interactions, one could choose to let
\[G_f = (G_{ss}^{-1}) \text{diag } G_{ss} \]
(3.2.85)
where
\[G_{ss} = \lim_{s \to 0} G(s) = \begin{bmatrix} 0.7 & 0 & 0 \\ 2.0 & 0.4 & 0 \\ 2.3 & 2.3 & 2.1 \end{bmatrix} \]

However, in this example, we shall be even more demanding and require that perfect steady-state compensation be accomplished; i.e., we must choose
\[G_f = (G^{-1})_{ss} = \begin{bmatrix} 1.43 & 0 & 0 \\ -7.14 & 2.5 & 0 \\ 6.26 & -2.74 & 0.48 \end{bmatrix} \]

Furthermore, we could pursue the even more ambitious goal of perfectly compensating for dynamic interactions. For this example, such a "perfect" dynamic compensator would take the form
\[G_f = G^{-1} = \begin{bmatrix} 1.43(1 + 9s) \\ -7.14(1 + 9s)(1 + 6s) \\ 7.82(1 + 9s)(1 + 6s)(1 + 7s) - 1.56(1 + 9s)(1 + 7s) \\ (1 + 8s)^2 \end{bmatrix} \]
\[\begin{bmatrix} \frac{1.43(1 + 9s)}{(1 + 8s)} \\ -\frac{7.14(1 + 9s)(1 + 6s)}{(1 + 8s)^2} \\ \frac{7.82(1 + 9s)(1 + 6s)(1 + 7s) - 1.56(1 + 9s)(1 + 7s)}{1 + 10s} \\ 0 \end{bmatrix} \]
\[\begin{bmatrix} 0 \\ 2.50(1 + 6s) \\ 0 \\ -2.74(1 + 6s)(1 + 7s) \end{bmatrix} \frac{1 + 8s}{1 + 8s} \frac{0.48(1 + 7s)}{1 + 8s} \]
(6.2.6)
This compensator may be implemented by noting that
\[u = G_r G_c \epsilon \] \hspace{1cm} (6.2.7)
determines the desired control action. If \(G_c \) represents an actual set of three controllers as shown in Fig. 6.6, then
\[z_1 = g_{c11} \epsilon_1 \quad z_2 = g_{c22} \epsilon_2 \quad z_3 = g_{c33} \epsilon_3 \] \hspace{1cm} (6.2.8)
and
\[u = G_r z \] \hspace{1cm} (6.2.9)
is the operation which must be carried out to accomplish this dynamic decoupling. From Eq. (6.2.6), this operation requires that
\[u_1(s) = 1.43(1 + 9s)z_1(s) \] \hspace{1cm} (6.2.10)
\[u_2(s) = \frac{-7.14(1 + 9s)(1 + 6s)}{1 + 8s} z_1(s) + 2.50(1 + 6s)z_2(s) \] \hspace{1cm} (6.2.11)
\[u_3(s) = \left[\frac{7.82(1 + 9s)(1 + 6s)(1 + 7s)}{(1 + 8s)^2} - \frac{1.56(1 + 9s)(1 + 7s)}{1 + 10s} \right] z_1(s) \]
\[- \frac{2.74(1 + 6s)(1 + 7s)}{1 + 8s} z_2(s) + 0.48(1 + 7s)z_3(s) \] \hspace{1cm} (6.2.12)
Transforming these expressions to the time domain, one obtains
\[u_1(t) = 1.43 \left[z_1(t) + 9 \frac{dz_1(t)}{dt} \right] \] \hspace{1cm} (6.2.13)
\[u_2(t) = -7.14 \left[6.75 \frac{dz_1}{dt} + 1.03z_1 - 0.0039 \int_0^t \exp \left(-\frac{t - \tau}{8} \right) z_1(\tau) \, d\tau \right] \]
\[+ 2.50 \left[z_2(t) + 6 \frac{dz_2}{dt} \right] \] \hspace{1cm} (6.2.14)
\[u_3(t) = 7.82 \left[5.91 \frac{dz_1}{dt} + 1.01z_1 - (0.000488 + 0.00006101r) \right. \]
\[\times \int_0^t \exp \left(-\frac{t - \tau}{8} \right) z_1(\tau) \, d\tau + 0.00006101 \int_0^t \exp \left(-\frac{t - \tau}{8} \right) \tau z_1(\tau) \, d\tau \] \]
\[-1.56 \left[6.3 \frac{dz_1}{dt} + 0.97z_1 + 0.003 \int_0^t \exp \left(-\frac{t - \tau}{10} \right) z_1(\tau) \, d\tau \right] \]
\[-2.74 \left[5.25 \frac{dz_2}{dt} + 9.69z_2 + 0.0022 \int_0^t \exp \left(-\frac{t - \tau}{8} \right) z_2(\tau) \, d\tau \right] \]
\[+ 0.48 \left[z_3(t) + 7 \frac{dz_3}{dt} \right] \] \hspace{1cm} (6.2.15)
This integration and differentiation of the signal $z_i(t)$ can clearly be implemented either with analog circuitry or by a real-time digital controller. For the case of DDC, Eq. (6.2.8) would also be carried out by the digital computer.

Control System Performance Testing

In order to test the performance of these two control schemes when implemented on the process control digital computer, the distillation column was simulated on the analog computer and the control algorithms programmed to respond in real time on the digital computer. The information flow is shown in Fig. 6.7, and the analog circuit diagram representing the column is presented in Fig. 6.8.

Before proceeding further to test these algorithms, it is useful to investigate the **controllability** of the column. The transfer function model [Eq. (6.2.1)] may be easily put into the time domain to yield equations of the form

$$\frac{dx}{dt} = Ax + Bu \quad (6.2.16)$$

$$y = Cx \quad (6.2.17)$$

where

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_6 \end{bmatrix}$$

$$A = \begin{bmatrix} -0.111 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.125 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0.167 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.125 & 0 \\ 0 & 0 & 0 & 0 & 0 & -0.143 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \quad (6.2.18)$$

The output controllability matrix, which is

$$L_y = [CB; CAB; \ldots; CA^5B] \quad (6.2.19)$$

clearly has rank 3 because

$$CB = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad (6.2.20)$$

is nonsingular; thus the column is completely controllable.
Figure 6.7 Digital computer control of the simulated process.

Figure 6.8 Analog circuit diagram.
The set-point compensation algorithm shown in Fig. 6.5 was applied for the same conditions as for Fig. 6.3 [i.e., with three proportional controllers and a set-point change given by Eq. (6.2.3)]. The dynamic response of the column, shown in Fig. 6.9, is much improved over the uncompensated case, showing rapid attainment of steady state, with very little offset and no oscillations. Further experiments confirmed that good performance for set-point changes

![Graph showing product compositions](image)

Figure 6.9 Product compositions after a set-point change (set-point compensator used with proportional controllers, same conditions as for Fig. 6.3).

![Graph showing product compositions](image)

Figure 6.10 Product compositions after a set-point change (steady-state decoupling together with proportional plus integral controllers, $k_w = 2.0, \tau_i = 2.0$).
Figure 6.11 Product compositions after a set-point change (dynamic decoupling together with proportional plus integral controllers, $k_u = 0.25, \tau_i = 0.5$).

should be expected with this control scheme. Unfortunately, the set-point compensator does not help in the case of disturbances because it is not contained in the feedback loop.

To improve the control system performance in the face of disturbances, both steady-state and dynamic noninteracting control schemes were tested. Figure 6.10 shows the effect of adding steady-state compensation for the conditions of Fig. 6.4. Notice that even though there are still some oscillations, they are smaller in amplitude and settle faster than the response shown in Fig. 6.4. By adding dynamic compensation, the response is improved even more dramatically, as shown in Fig. 6.11. The settling time without any compensation (Fig. 6.4) is on the order of 50 to 60 min, while for steady-state decoupling (Fig. 6.10) this drops to ~ 25 min. What is even more impressive is that the dynamic decoupling controller produces a settling time of only about 6 min—an order-of-magnitude improvement over multiple single-loop control.

Evaluation

Although all the new control schemes worked better than the multiple single-loop controllers, the dynamic noninteracting controller performed best and handled both disturbances and set-point changes. The set-point compensation algorithm is much simpler to implement and gives good response to set-point changes, but cannot respond to disturbances. Thus if one does not wish to
implement the complicated dynamic noninteracting controller, then the steady-state noninteracting control scheme is preferred because it eliminates steady-state interactions for both set-point changes and disturbances.

6.3 THE CONTROL OF A MULTIPLE-EFFECT EVAPORATOR

As our second case study, we shall consider the computer control of the pilot plant multiple-effect evaporator shown in Fig. 6.12. A whole series of these case studies were carried out at the University of Alberta, Edmonton, Alberta, Canada by Professors Fisher and Seborg and their students through links to an IBM 1800 process control computer. In our discussion here we shall treat only a small part of their work and refer to their monograph [1] for the whole story. The goal of the present discussion is to illustrate the performance of several advanced process control algorithms when applied to this pilot plant process.

Modeling

The first step in this control study was to develop a simple yet reliable mathematical model of the process. The relevant variables and their steady-state values are given in Table 6.1. From Fig. 6.12 it is seen that the solution to be concentrated enters the first effect at feed rate F, solute concentration C_f, and
Table 6.1 Evaporator variables and steady-state values [1]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Feed</th>
<th>First Effect</th>
<th>Second Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1, B_2—bottoms flow rate (lb/min)</td>
<td>—</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>C_f, C_1, C_2—solute concentration (wt %)</td>
<td>3.2</td>
<td>4.85</td>
<td>9.64</td>
</tr>
<tr>
<td>F—feed flow rate (lb/min)</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>h_f, h_1—liquid enthalpy (Btu/lb)</td>
<td>1.62</td>
<td>194</td>
<td>—</td>
</tr>
<tr>
<td>S_f—steam flow rate (lb/min)</td>
<td>1.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>W_1, W_2—solute holdup (lb)</td>
<td>—</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>O_1, O_2—overhead vapor flow (lb/min)</td>
<td>—</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>T_f, T_1, T_2—temperature (°F)</td>
<td>190</td>
<td>225</td>
<td>160</td>
</tr>
<tr>
<td>P_1, P_2—pressure (psia)</td>
<td>—</td>
<td>< 25</td>
<td>7.5</td>
</tr>
</tbody>
</table>

temperature T_f. For the present study the feed solution was triethylene glycol in water. Steam at rate S_f is injected into the first effect to vaporize the water, producing vapor stream O_1. The first-effect liquid effluent B_1 at concentration C_1 goes to the tube side of the second effect and is vaporized further under reduced pressure by condensation of the first-effect vapor stream on the shell side. The concentrated liquid B_2 from the second effect is the product at concentration C_2. The quantities W_1 and W_2 are the liquid holdups in each effect. A fifth-order nonlinear model of the evaporator was developed [1] under the following assumptions:

1. The heat capacitances of the steam chests, tube walls, etc., are all sufficiently small that they may be neglected.
2. The pressure controller on the second effect (see Fig. 6.12) is sufficiently powerful to hold the temperature in the second effect T_2 at steady state with negligible dynamic variations.
3. The solute concentration in the vapor leaving each effect of the evaporator is negligibly small compared with the amount of solute leaving in the liquid.

Under these conditions, total material, solute, and heat balances on the first effect may be written

$$\frac{dW_1}{dt} = F - B_1 - O_1$$ \hspace{1cm} (6.3.1)

$$W_1 \frac{dC_1}{dt} = F(C_f - C_1) + O_1 C_1$$ \hspace{1cm} (6.3.2)

$$W_1 \frac{dh_1}{dt} = F(h_f - h_1) - O_1(H_{1o} - h_1) + Q_1 - L_1$$ \hspace{1cm} (6.3.3)

Similarly material balances on the second effect give

$$\frac{dW_2}{dt} = B_1 - B_2 - O_2$$ \hspace{1cm} (6.3.4)

$$W_2 \frac{dC_2}{dt} = B_1(C_1 - C_2) + O_2 C_2$$ \hspace{1cm} (6.3.5)
while a steady-state heat balance on the second effect yields

\[
O_2 \left(H_{2o} - h_2 + \frac{\partial h_2}{\partial C_2} C_2 \right) = Q_2 - L_2 + B_1(h_1 - h_2) + \frac{\partial h_2}{\partial C_2} B_1(C_2 - C_1)
\]

(6.3.6)

Here \(Q_1 \) and \(Q_2 \) are the heat inputs to each effect, given by

\[
Q_1 = u_1 A_1(T_s - T_i) = \lambda_s S_f
\]

(6.3.7)

\[
Q_2 = u_2 A_2(T_1 - T_2)
\]

(6.3.8)

The quantities \(L_1 \) and \(L_2 \) are the environmental heat losses from each effect; \(h_f \), \(h_1 \), and \(h_2 \) are liquid enthalpies; \(H_{1o} \) and \(H_{2o} \) are the vapor enthalpies; and \(\lambda_s \) represents the heat of vaporization of the input steam at temperature \(T_s \).

This set of equations constitutes a fifth-order nonlinear model of the process. By linearization of these equations around the steady state shown in Table 6.1, a fifth-order linear model may be obtained in the form

\[
\dot{x} = Ax + Bu + \Gamma d
\]

(6.3.9)

\[
y = Cx
\]

(6.3.10)

where the state vector \(x \), control vector \(u \), disturbance vector \(d \), and output vector \(y \) are

\[
x = \begin{bmatrix} W_1 \\ C_1 \\ h_1 \\ W_2 \\ C_2 \end{bmatrix}, \quad u = \begin{bmatrix} S_f \\ B_1 \\ B_2 \end{bmatrix}, \quad d = \begin{bmatrix} F \\ C_f \\ h_f \end{bmatrix}, \quad y = \begin{bmatrix} W_1 \\ W_2 \\ C_2 \end{bmatrix}
\]

(6.3.11)

while

\[
A = \begin{bmatrix}
0 & -0.00156 & -0.1711 & 0 & 0 \\
0 & -0.1419 & 0.1711 & 0 & 0 \\
0 & -0.00875 & -1.102 & 0 & 0 \\
0 & -0.00128 & -0.1489 & 0 & 0.00013 \\
0 & 0.0605 & 0.1489 & 0 & -0.0591
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
0 & -0.143 & 0 \\
0 & 0 & 0 \\
0.392 & 0 & 0 \\
0 & 0.108 & -0.0592 \\
0 & -0.0486 & 0
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\Gamma = \begin{bmatrix}
0.2174 & 0 & 0 \\
-0.074 & 0.1434 & 0 \\
-0.036 & 0 & 0.1814 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

(6.3.12)
Figure 6.13 Block diagram for conventional control of the evaporator.

Figure 6.14 Comparison of fifth-order linear and nonlinear models with experimental data for the case of a 20% increase in stream feed rate. (Reproduced with permission from I & EC Process Design Development 11, 216 (1972). Copyright by American Chemical Society.)
The feedback relationship between controls u and outputs y under the conventional control scheme is shown in Fig. 6.13.

Figure 6.14 presents a typical comparison of both the nonlinear (5NL) and linear (5L) models with an experimental run under conventional control of W_1, W_2 for the case of a 20 percent increase in inlet steam flow-rate disturbance. Note that both models compare reasonably well with the experimental data except when predicting the temperature dynamics in the first effect. The model responds much more strongly than the experimental equipment, indicating that the thermal capacitance of the equipment itself should perhaps be included in Eq. (6.3.3).

Multivariable Control

Having developed a reliable linear model, we can now design multivariable control algorithms and compare these with the performance of the conventional single-loop control shown in Fig. 6.13. A large number of algorithms have been tested [1], but we shall only discuss the application of optimal multivariable feedback control algorithms here (see Chap. 3 to review the theory).

The standard optimal linear-quadratic multivariable controller design was modified to allow integral control action on the output variables. By defining a composite state vector $\hat{x} = \begin{bmatrix} x \\ z \end{bmatrix}$, where

$$\dot{\hat{x}} = A\hat{x} + Bu + \Gamma d$$
$$\dot{z} = y - y_d$$
$$y = C\hat{x}$$

and y_d is the set point of the output variables, one obtains the optimal feedback control law in the form (see Sec. 3.3)

$$u(t) = -K\hat{x} = -K_1x - K_2z = -K_1x - K_2\int_0^t (y - y_d) \, dt$$

thus yielding proportional and integral control. Recall that K_1, K_2 must be computed off-line from the solution of a Riccati equation. This controller, whose block diagram may be seen in Fig. 6.15, was implemented on the evaporator for the case where all five states were measured and optimal constant gains were used (corresponding to the infinite-time optimal control problem). Simulation results shown in Fig. 6.16 illustrate the superior performance of the optimal multivariable controller for both proportional and proportional plus integral action. An experimental comparison is seen in Fig. 6.17 and illustrates even more effectively the advantages of the optimal multivariable feedback control scheme over conventional control. Note that in both instances the conventional controller allowed significant upsets in the process dynamics, while the disturbances had almost no effect on the system under optimal multivariable control.
Figure 6.15 Deterministic optimal multivariable feedback control system having both proportional and integral action

Figure 6.16 Simulation comparison of evaporator responses under optimal multivariable and conventional PI control. Disturbance: 10% increase in feed rate. (Reproduced from Automatica 8, 247 (1972) by permission of Pergamon Press Ltd.)
State Estimation and Stochastic Feedback Control

Fisher and Seborg [1] also carried out experimental evaluations of state-estimation and stochastic feedback control algorithms for the case when only $W_1, W_2,$ and C_2 were available as outputs. A Luenberger observer and a Kalman filter (see Chap. 5) were implemented to estimate the state variables. Both of these were found to work well and give reliable estimates when properly tuned. These estimators were then coupled to the optimal multivariable feedback controller to form the stochastic feedback control system shown in Fig. 6.18.

When the observer was coupled to an optimal multivariable state feedback control scheme, the control system behavior may be seen in Fig. 6.19. These

![Diagram of stochastic optimal multivariable feedback control scheme utilizing an on-line state estimator.](image-url)
Figure 6.19 Optimal stochastic control system response with observer state estimates; disturbances: (a) single “unknown" 20% feed-rate decrease; (b) single “known" 30% decrease in feed solute concentration. (Reproduced from Proceedings 4th IFAC/IFIP Conference on Digital Computer Applications to Process Control, 1974, p. 154, by permission of Springer-Verlag.)

Figure 6.20 Optimal stochastic control system response with Kalman filter state estimates; disturbances: two 20% changes in feed rate at times denoted by \(\Delta \); (a) “known" disturbance, (b) “unknown" disturbance. (Reproduced from Proceedings 4th IFAC/IFIP Conference on Digital Computer Applications to Process Control, 1974, p. 154, by permission of Springer-Verlag.)
almost "bumpless" responses to rather large input disturbances are very impres-
sive; however, the observer behavior was seen to deteriorate rapidly if the noise
level of the data increased.

The Kalman filter, on the other hand, was found to be more robust in the
face of noisy data. Some typical responses to feed-rate disturbances are shown
in Fig. 6.20. Note that while the stochastic control system responds better to
measured "known" disturbances, it also responds well to large "unknown"
upsets.

Evaluation

The studies of Fisher and Seborg and their students [1] in applying advanced
process algorithms to this pilot plant evaporator serve as a fine demonstration of
computer control applied easily and profitably to an important chemical en-
gineering process. Both the deterministic and stochastic multivariable feedback
controllers performed well and proved to be a great improvement over the
conventional control system.

6.4 A STRATEGY FOR STEEL MILL SOAKING PIT CONTROL

The soaking pit furnace is a major unit operation in the traditional steel mill.
Large steel ingots which have been cast into molds and allowed to cool must be
reheated in soaking pits to achieve a proper temperature distribution for rolling.
Figure 6.21 shows the interior of a typical soaking pit. The ingots are placed in
the furnace in a batchwise fashion, and some 6 to 12 h later they are removed
for rolling in a rolling mill.

Unfortunately, the initial temperature distribution of the ingots is unknown,
and the temperature distribution cannot be measured directly. Only furnace wall
temperatures are routinely recorded, and these are augmented by sporadic
optical pyrometric ingot surface temperature measurements. Thus it is difficult
to determine how to control the furnace gas firing rate and to know when the
ingots should be removed from the furnace. Too high a furnace firing rate will
accelerate corrosion of the ingot surface (and can even cause surface melting),
resulting in yield loss, while very low firing rates require excessive residence time
in the furnace. Determining when the desired temperature distribution has been
achieved (so that the ingots can be removed from the furnace) is even more of a
problem. Removing ingots too soon results in poor rolling performance and
requires the return of the ingot to the soaking pit for further heating. On the
other hand, conservative, overlong heating cuts down the productivity of the
process and increases production costs. In current steel mill practice, the furnace
firing rate and ingot withdrawal time are based on certain "rules of thumb" and
visual observations of an experienced operator, but steel industry figures indi-
cate that this control scheme is not very reliable or effective.
The present case study, described in more detail elsewhere [2–4], is devoted to testing the feasibility of an advanced process control scheme capable of solving these practical problems. Specifically, the control scheme must:

1. Estimate in real time the temperature distribution in the ingots residing in the soaking pit.
2. Provide a feedback control law for furnace firing rate.
3. Determine precisely when the ingots have achieved the desired temperature distribution and should be removed from the furnace.

Clearly specifications (1) and (3) call for on-line state estimation, while (2) requires feedback controller design based on these estimates. Because the ingots are distributed in nature, having a nearly cylindrical shape with both axial and radial temperature variations, our control strategy must involve distributed parameter state estimation and control algorithms such as those discussed in Chaps. 4 and 5. The equations to be solved for such algorithms are multidimensional partial differential equations, and the real-time computations could be substantial. Therefore, the principal aim of the feasibility study is to investigate the control system performance on a pilot plant process and to determine if the required computations can be readily performed in real time.
The pilot plant ingot and furnace, shown in Fig. 6.22, consists of a stainless steel cylindrical ingot in a three-zone electrical furnace. A hole was drilled through the center of the ingot, through which cooling water could be passed. This allowed rapid cooling of the ingot after a test so that a new run could begin. Although only ingot surface temperatures were made available to the control algorithm (to emulate optical pyrometry measurements in an actual soaking pit), the actual ingot temperature distribution was measured by 32 thermocouples placed at 8 axial positions \(z_i, \ i = 1, 2, 3, \ldots, 8, \) and 4 radial positions \(r_j, \ j = 1, 2, 3, \) and 4, as shown in Fig. 6.23.

The ingot was modeled assuming angular symmetry, negligible heat losses at each end, and constant physical parameters. Under these conditions, the ingot model takes the form

\[
\frac{\partial T}{\partial t'} = \alpha \left(\frac{\partial^2 T}{\partial r'^2} + \frac{1}{r'} \frac{\partial T}{\partial r'} + \frac{\partial^2 T}{\partial z'^2} \right) \quad 0 \leq z' \leq L
\]

\[
r'_0 \leq r \leq R
\]

\[
t' > 0
\]

where \(\alpha = k/\rho C_p \) is the thermal diffusivity and the boundary conditions are given as

\[
\frac{\partial T}{\partial z'} = 0 \quad \text{at } z' = 0 \quad (6.4.2)
\]

\[
\frac{\partial T}{\partial z'} = 0 \quad \text{at } z' = L \quad (6.4.3)
\]

\[
k \frac{\partial T}{\partial r'} = h(T - T_w) \quad \text{at } r' = r'_0 \quad (6.4.4)
\]

\[
k \frac{\partial T}{\partial r'} = q'(z', t') \quad \text{at } r' = R \quad (6.4.5)
\]

Figure 6.22 The experimental ingot and furnace system.
Figure 6.23 Axial cross section of the experimental apparatus.
Here k is the thermal conductivity, h is the experimentally determined overall heat transfer coefficient, T_w is the mean water temperature, and $q(z', t')$ is the heat flux from the heaters at the outer surface into the cylinder. Let us define the following dimensionless quantities:

$$
\theta = \frac{T - T_w}{T_w}, \quad z = \frac{z'}{l}, \quad r = \frac{r'}{R}, \quad r_0 = \frac{r_0'}{R},
$$

$$
t = \frac{\alpha t'}{R^2}, \quad \alpha' = \frac{R^2}{L^2}, \quad Bi = \frac{hR}{k}
$$

$$
q(z, t) = \frac{q'(z', t')R}{kT_w} = g^T(z)\nu(t) \quad (6.4.6)
$$

where $g(z)$ is the spatial distribution of heat flux and $\nu(t)$ the heater power for the ith zone of the furnace. Then by inserting the heater input into the partial differential equations, in order to make the boundary conditions homogeneous, we obtain

$$
\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} + \alpha' \frac{\partial^2 \theta}{\partial z^2} + \delta(r - 1)g^T(z)\nu(t) \quad (6.4.7)
$$

$$
\frac{\partial \theta}{\partial z} = 0 \quad \text{at } z = 0 \quad \text{and} \quad z = 1 \quad (6.4.8)
$$

$$
\frac{\partial \theta}{\partial r} = Bi\theta \quad \text{at } r = r_0 \quad (6.4.9)
$$

$$
\frac{\partial \theta}{\partial r} = 0 \quad \text{at } r = 1 \quad (6.4.10)
$$

The temperature measurements are given by

$$
y_{ik}(t) = \theta(r_i, z_k, t) + \eta_{ik}(t) \quad i = 1, 2, 3, 4, \quad k = 1, 2, \ldots, 8 \quad (6.4.11)
$$

where η_{ik} represents the measurement error.

State Estimation

The first step in the control system synthesis is to develop the state estimation equations. By extending the linear distributed parameter state estimation results of Chap. 5 to two space dimensions, one obtains

$$
\frac{\partial \hat{\theta}(r, z, t)}{\partial t} = \frac{\partial^2 \hat{\theta}(r, z, t)}{\partial r^2} + \frac{1}{r} \frac{\partial \hat{\theta}(r, z, t)}{\partial r} + \alpha' \frac{\partial^2 \hat{\theta}(r, z, t)}{\partial z^2} + \delta(r - 1)g^T(z)\nu(t)
$$

$$
+ \sum_{i=1}^{N_r} \sum_{j=1}^{N_z} \sum_{k=1}^{M_i} \sum_{l=1}^{M_j} P(r, r_i, z, z_k, t)Q_{ijkl}(t) \times [y_{il}(t) - \hat{\theta}(r_j, z_l, t)] \quad (6.4.12)
$$
which when solved with the boundary conditions of Eqs. (6.4.8) to (6.4.10) gives
the estimated ingot temperature distribution, \(\hat{\theta}(r, z, t) \).

The estimate covariance \(P(r, s, z, u, t) \) is the solution of

\[
\frac{\partial P(r, s, z, u, t)}{\partial t} = \frac{\partial^2 P(r, s, z, u, t)}{\partial r^2} + \frac{1}{r} \frac{\partial P(r, s, z, u, t)}{\partial r}
\]

\[
+ \frac{\partial^2 P(r, s, z, u, t)}{\partial s^2} + \frac{1}{s} \frac{\partial P(r, s, z, u, t)}{\partial s}
+ \alpha' \frac{\partial^2 P(r, s, z, u, t)}{\partial z^2}
\]

\[
+ \alpha' \frac{\partial^2 P(r, s, z, u, t)}{\partial u^2} - \sum_{i=1}^{N_r} \sum_{j=1}^{N_s} \sum_{k=1}^{M_u} \sum_{l=1}^{M_z} P(r, r_i, z, z_k, t) Q_{ijkl}(t)
\]

\[
\times P(r, s, z_l, u, t) + R^+(r, s, z, u, t)
\]

\[r_0 \leq r \leq 1 \]
\[0 \leq z \leq 1 \]
\[0 \leq t \leq t_f\] \hspace{1cm} (6.4.13)

with the boundary conditions

\[
\frac{\partial P(r, s, z, u, t)}{\partial r} - B_i P(r, s, z, u, t) + R_0^{-1}(t) \delta(s - r_0) = 0 \hspace{1cm} \text{at } r = r_0
\] \hspace{1cm} (6.4.14)

\[
\frac{\partial P(r, s, z, u, t)}{\partial r} - R_1^{-1}(t) \delta(s - 1) = 0 \hspace{1cm} \text{at } r = 1
\] \hspace{1cm} (6.4.15)

\[
\frac{\partial P(r, s, z, u, t)}{\partial z} + \alpha' R_2^{-1}(t) \delta(u) = 0 \hspace{1cm} \text{at } z = 0
\] \hspace{1cm} (6.4.16)

\[
\frac{\partial P(r, s, z, u, t)}{\partial z} - \alpha' R_3^{-1}(t) \delta(u - 1) = 0 \hspace{1cm} \text{at } z = 1
\] \hspace{1cm} (6.4.17)

A similar set of boundary conditions holds for \(s = r_0, r = 1 \) and \(u = 0, u = 1 \).

Because the system is linear, both the filter and covariance equations may be solved by a modal decomposition of the form

\[
\hat{\theta}(r, z, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} \hat{a}_{nm}(t) \phi_n(r) \psi_m(z)
\] \hspace{1cm} (6.4.18)

\[
P(r, s, z, u, t) = \sum_{n=1}^{N_c} \sum_{k=1}^{M_c} \sum_{m=1}^{M_u} \sum_{l=1}^{M_z} p_{nk'ml}(t) \phi_n(r) \phi_k'(s) \psi_m(z) \psi_l(u)
\] \hspace{1cm} (6.4.19)

where \(N, M \) and \(N_c, M_c \) represent the number of terms in the eigenfunction expansion necessary for an adequate representation of the filter and covariance, respectively. Here the \(\phi_n(r) \), \(\psi_m(z) \) are eigenfunctions of the system [1–3] given
by
\[\phi_n(r) = A_n \left[J_0(\sqrt{\mu_n} \, r) - \frac{J_1(\sqrt{\mu_n}) Y_0(\sqrt{\mu_n} \, r)}{Y_1(\sqrt{\mu_n})} \right] \]
(6.4.20)

\[\psi_m(z) = \begin{cases}
1 & m = 1 \\
\sqrt{2} \cos((m - 1)\pi z) & m > 1
\end{cases} \]
(6.4.21)

The quantities \(A_n, \mu_n \) may be determined from the solution to certain transcendental equations [2–4]. The time-dependent coefficients \(\dot{\alpha}_{nm}(t) \) and \(p_{nk'mp}(t) \) are the solutions of

\[\frac{d\dot{\alpha}_{nm}(t)}{dt} = -\lambda_{nm} \dot{\alpha}_{nm}(t) + \sum_{k=1}^{M} \sum_{l=1}^{M} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k' = 1}^{M} \sum_{l' = 1}^{M} p_{nk'l'm}(t) \times \phi_{k'}(r_i) \psi_{p'}(z_k) Q_{ijkl}(t) \left[y_{ij} - \sum_{n' = 1}^{N} \sum_{m' = 1}^{M} \dot{\alpha}_{n'm}(t) \phi_{n'}(r_j) \psi_{m'}(z_i) \right] + u_{nm}^*(t) \]
(6.4.22)

\[\frac{dp_{nk'mp}(t)}{dt} = -\gamma_{nk'mp} p_{nk'mp}(t) - \sum_{n' = 1}^{N} \sum_{m' = 1}^{M} \sum_{l' = 1}^{M} \sum_{i = 1}^{N} \sum_{j = 1}^{N} \sum_{k = 1}^{M} \sum_{l = 1}^{M} p_{n'l'mp}(t) \times \phi_{l'}(r_i) \psi_{p'}(z_k) Q_{ijkl}(t) \phi_{n}(r_j) \psi_{m}(z_i) p_{n'k'm'}(t) \]
\[+ r_{nk'mp}(t) + \sum_{i=0}^{3} r_{i,nk'mp}(t) \]
(6.4.23)

where

\[\lambda_{nm} = \mu_n + \alpha' [(m - 1)\pi]^2 \]
(6.4.24)

\[u_{nm}^*(t) = \int_0^1 \phi_m(1) \psi_n(z) g^T(z) v(t) \, dz \]
(6.4.25)

The covariance equations (6.4.23) may be solved off-line, so that only the state estimator equations (6.4.22) must be solved in real time. The experimental testing of this state estimator and subsequent controller designs was accomplished using the communications and computing scheme shown in Fig. 6.24. Temperature measurements were transmitted to the computer, which carried out the estimation and control calculations necessary to determine adjustments to be made in the heater power to the three zones of the furnace.

Optimal Stochastic Feedback Control

In order to control the furnace heat input, a distributed linear-quadratic optimal stochastic feedback controller was developed and tested.* For this problem, the

* See Chaps. 4 and 5 to review the necessary theory.
Figure 6.24 Communications for on-line testing of the ingot-furnace system.
control law takes the form [2-4]

\[v(t) = v^*(t) + \Gamma_u^{-1} \int_0^1 \int_0^1 \int_0^1 R_c(r, r', z, z', t) \]

\[\times \left[\theta_d(r', z', t) - \tilde{\theta}(r', z', t) \right] g(z) \delta(r - 1) \, dr \, dr' \, dz \, dz' \]

(6.4.26)

where \(\theta_d \) is the desired temperature distribution set point, \(v^*(t) \) is the furnace heat flux which holds \(\theta \) at \(\theta_d \), and \(R_c \) is found from the solution of

\[\frac{\partial R_c}{\partial t} = -\frac{\partial^2 R_c}{\partial r^2} + \frac{\partial}{\partial r} \left(\frac{1}{r} R_c \right) - \frac{\partial^2 R_c}{\partial r'^2} + \frac{\partial}{\partial r'} \left(\frac{1}{r'} R_c \right) \]

\[- \alpha \left(\frac{\partial^2 R_c}{\partial z^2} + \frac{\partial^2 R_c}{\partial x^2} \right) + \gamma_d(r, r', z, z', t) \]

\[- \int_0^1 \int_0^1 \int_0^1 R_c(r, r, z, z, t) \delta(r - 1) g^T(\xi) \Gamma_u^{-1} \delta(\rho' - 1) g^T(\xi') \]

\[\times R_c(\rho', \rho', \xi', \xi', t) \rho' d\rho' \rho d\xi' d\xi \]

(6.4.27)

with boundary conditions being the adjoint of those given by Eqs. (6.4.14) to (6.4.17). Here \(\Gamma_u \) and \(\gamma_d \) are controller weighting parameters. The quantity \(R_c \) may be expanded in terms of the adjoint eigenfunctions to yield

\[R_c(r, r', z, z', t) = \sum_{n=1}^{N_R} \sum_{m=1}^{M_R} \sum_{k'=1}^{M_R} \sum_{p=1}^{M_R} r_{nk'mp}(t) \rho r \phi_n(r) \phi_k(r) \psi_m(z) \psi_p(z') \]

(6.4.28)

and \(r_{nk'mp}(t) \) is the solution of

\[\frac{dr_{nk'mp}(t)}{dt} = \gamma_{nk'mp} r_{nk'mp}(t) - \gamma_{nk'mp} \]

\[+ \sum_{n'=1}^{N_R} \sum_{m'=1}^{M_R} \sum_{k'=1}^{M_R} \sum_{p'=1}^{M_R} r_{nk'mp}(t) b_{n'm'} \Gamma_u^{-1} b_{kp'} r_{nk'mp}(t) \]

(6.4.29)

where

\[b_{nm} = \int_0^1 \int_0^1 \int_0^1 \phi_n(r) \psi_m(z) g(z) \delta(r - 1) \, dr \, dz \]

(6.4.30)

and

\[\gamma_{nk'mp}(t) = \int_0^1 \int_0^1 \int_0^1 \gamma_d(r, r', z, z', t) \phi_n(r) \phi_k(r') \psi_m(z) \psi_p(z') \, dr \, dr' \, dz \, dz' \]

(6.4.31)

Finally, the feedback control law, Eq. (6.4.26), may be put in the simpler form

\[v(t) = v^*(t) + \Gamma_u^{-1} \sum_{n=1}^{N_R} \sum_{k'=1}^{M_R} \sum_{m=1}^{M_R} \sum_{p=1}^{M_R} r_{nk'mp}(t) b_{nm} (a_{k'}(t) - \hat{\delta}_{k'}(t)) \]

(6.4.32)
where $a^d_{k,p}(t)$ is the eigencoefficient of the temperature set point $\theta_d(r', z', t)$ given by the orthogonality relation

$$a^d_{k,p}(t) = \int_0^1 \int_{r_0}^{r_1} \phi_k(r') \psi_p(z') \theta_d(r', z', t) \, dr' \, dz'$$ \hspace{1cm} (6.4.33)

and $\hat{a}_{k,p}(t)$ is the eigencoefficient of the state estimator determined previously. The Riccati equation (6.4.29) may be solved off-line, so that only the optimal feedback control law, Eq. (6.4.32), need be calculated in real time.

Case 1 As a first test of the state estimator alone, all eight ingot surface temperatures were provided to the estimator. These measurements were corrupted with Gaussian random errors having zero mean and $\sigma = 10^\circ C$ and taken from a random number generator. The initial conditions, seen in Fig. 6.25, show the estimated temperature distribution as uniform and some 10 to 20$^\circ C$ below the actual distribution. For this case two radial and five axial eigenfunctions were used, so that the off-line solution of the covariance equations (6.4.23) consisted of integrating 45 differential equations. By contrast, the on-line solution of the estimator equations (6.4.22) required solving only 10 differential equations in real time. The results after 120 s show the filter tracking the actual temperature distribution quite well (Fig. 6.26), and it continues to provide good estimates as the ingot is heated further (Fig. 6.27).

![Figure 6.25 Initial estimates and data, Case 1.](image-url)
Case 2 As a test of what might prove to be the final control system design, only a single ingot surface thermocouple $\theta(r_1, z_3, t)$ was provided for the state estimator (see Fig. 6.28). The state estimates were then compared with the set-point value and the error fed to an optimal feedback controller which adjusts the furnace heat inputs. As in Case 1, zero-mean Gaussian measurement errors with $\sigma = 10^\circ$C were added to the actual temperature measurement to simulate very noisy steel mill conditions. The performance
of the control scheme may be seen in Figs. 6.29 to 6.31. As shown in Fig. 6.29, the estimator initial condition is some 20 to 25°C below the actual ingot temperature distribution, and the temperature distribution set point is much different from the initial values. After 40 s (Fig. 6.30) the estimator is beginning to track the true temperature distribution, and by 320 s (Fig. 6.31) both the estimated and actual temperature distributions approximate the set point quite well.

![Diagram](image)

Figure 6.28 Estimator-controller for the soaking pit requiring only one surface temperature sensor.

![Graph](image)

Figure 6.29 Stochastic feedback controller with one sensor.
Evaluation

The performance of the combined estimator/controller system, shown in Fig. 6.28, seems outstanding, allowing good control system performance when only one noisy temperature sensor is provided to the control system. The on-line computational requirements were less than 25 percent of real time for this pilot plant soaking pit having a principal time constant of about 5 min. This means that for industrial-scale soaking pits with time constants of 5 h or more, these computational requirements amount to less than $\frac{1}{2}$ percent of real time.

Figure 6.30 Stochastic feedback controller with one sensor; system evolution at 40 s.

Figure 6.31 Stochastic feedback controller with one sensor; system evolution at 320 s.
suggests that a hundred or more soaking pits could be controlled by the same computer in an actual steel mill.

This case study provides an important philosophical lesson for the control system designer. One should not be disheartened by control system designs involving formidable partial differential equations in many space dimensions [such as Eqs. (6.4.12) to (6.4.17), (6.4.26), and (6.4.27)] because it is often possible, as was done here, to reduce these to manageable proportions through judicious use of engineering judgment and numerical analysis. The effort is usually worthwhile because the resulting control system performance can be quite impressive, as was the case here.

6.5 CONTROL OF METALLURGICAL CASTING OPERATIONS

Another type of steel mill unit operation of great importance is casting. This process is carried out both batchwise in molds and continuously in continuous casting machines. Often it is important to control these casting processes so as to prevent excessive thermal stresses which lead to crack formation, and to prevent "breakout" of molten steel in the continuous process. The goal of the present case study is to develop and test the feasibility of a control system for a continuous casting machine.

The continuous casting of steel is an increasingly important part of modern steelmaking because it is a much more efficient route to steel slabs and billets than the conventional ingot casting-reheating-slab rolling operation. The process, sketched in Fig. 6.32, involves pouring molten steel at the top of a water-cooled mold and continuously drawing out a thin-walled steel slab or billet at the bottom. If the solid steel crust is too thin when it leaves the mold, either because of some process upset or because the withdrawal rates are too high, the molten steel core will "break out" and the casting machine must be shut down. By employing a distributed parameter filter to estimate the steel shell thickness in real time, one could operate at high average withdrawal rates while detecting potential breakouts before they occur and taking appropriate control action.

Although a very detailed model for this process has been developed [5, 6], the following simple model has been found to be adequate for the mold region. This idealized picture, illustrated in Fig. 6.33, approximates the two-phase "mushy" zone shown in Fig. 6.32 by an interface.

Assume that:

1. The solid at temperature $T_s(r', z', t')$ is moving downward at speed u_e while the liquid region is well mixed.
2. The physical properties are constant.
3. There is heat transfer to the mold wall with heat transfer coefficient h.
Figure 6.32 The continuous casting process.

Figure 6.33 The mold region of a continuous casting operation.
4. There is heat transfer from the molten liquid to the solid at \(r' = b' \) with heat transfer coefficient \(h \) and latent heat of solidification, \(L \).

5. The solid-liquid interface is at the solidus temperature, \(T_{\text{sol}} \).

Then the modeling equations take the form

\[
\frac{\partial T_S(r', z', t')}{\partial t'} + u_c \frac{\partial T_S(r', z', t')}{\partial z'} = \alpha_S \frac{\partial^2 T_S(r', z', t')}{\partial r'^2} \tag{6.5.1}
\]

with boundary conditions

\[
z' = 0 \quad T_S(r', 0, t) = T_i(t') \tag{6.5.2}
\]

\[
r' = 0 \quad k_S \frac{\partial T_S}{\partial r'} = h \left[T_S(0, z', t') - T_w \right] \tag{6.5.3}
\]

\[
r' = b'(z', t') \quad T_S = T_{\text{sol}} \tag{6.5.4}
\]

and moving boundary condition

\[
\frac{\partial b'(z', t')}{\partial t'} = \frac{k_S}{L \rho_S} \frac{\partial T_S}{\partial r'} \bigg|_{r' = b'(z', t')} + \frac{h_i}{L \rho_i} \left[T_S(b', z', t) - T_i(t') \right] \tag{6.5.5}
\]

Equation (6.5.5) represents a heat balance over the moving interface and states that the net heat flux at \(r' = b' \) is balanced by solidification.

It is possible to eliminate the variable \(z' \) from the model by noting that the vertical flow in the mold is along the characteristic lines

\[
\frac{dz'}{dt'} = u_c \quad z'(0) = z'_0 \tag{6.5.6}
\]

Thus the solution along these characteristic lines may be determined from

\[
\frac{\partial T_S(r', t')}{\partial t'} = \alpha_S \frac{\partial^2 T_S(r', t')}{\partial r'^2} \quad 0 < r' < b'(t') \tag{6.5.7}
\]

\[
r' = 0 \quad k_S \frac{\partial T_S}{\partial r'} = h \left[T_S(0, t') - T_w \right] \tag{6.5.8}
\]

\[
r' = b'(t') \quad T_S = T_{\text{sol}} \tag{6.5.9}
\]

\[
T_S(r', 0) = T_i(t') \tag{6.5.10}
\]

\[
\frac{db'(t')}{dt'} = \frac{k_S}{L \rho_S} \frac{\partial T_S}{\partial r'} \bigg|_{r' = b'(t')} + \frac{h_i}{L \rho_i} \left[T_S(b', t') - T_i(t') \right] \tag{6.5.11}
\]

These equations are nonlinear due to the moving boundary; thus we shall make some transformations which will convert the equations to a fixed-boundary
problem. Let us define the variables

\[\theta_S = \frac{T_S - T_{sol}}{T_{sol}} \quad r = \frac{r'}{b'(t')} \quad b(t') = \frac{b'(t')}{D} \]

\[\theta_w = \frac{T_w - T_{sol}}{T_{sol}} \quad H = \frac{hD}{k_S} \quad \eta = \frac{k_S T_{sol}}{\rho_S c S \alpha_S} \]

\[\theta_l = \frac{T_l - T_{sol}}{T_{sol}} \quad K = \frac{h_l D}{\alpha_S c S \rho_l} T_{sol} \quad t = \int_0^t \frac{\alpha_s}{b'(t'')} dt'' \]

(6.5.12)

By substituting Eq. (6.5.12) into Eqs. (6.5.7) to (6.5.11) and making the boundary conditions homogeneous through the use of a Dirac delta function, the model becomes

\[\frac{\partial \theta_S(r, t)}{\partial t} = \frac{\partial^2 \theta_S(r, t)}{\partial r^2} + r \frac{d \ln b(t)}{dt} \frac{\partial \theta_S(r, t)}{\partial r} - b(t) H(\theta_S(0, t) - \theta_w) \delta(r) \quad 0 < r < 1 \]

(6.5.13)

\[\frac{d \ln b(t)}{dt} = \eta \frac{\partial \theta_S}{\partial r} \bigg|_{r=1} - K b(t) \theta_l(t) \]

(6.5.14)

\[r = 0 \quad \frac{\partial \theta_S}{\partial r} = 0 \]

(6.5.15)

\[r = 1 \quad \theta_S = 0 \]

(6.5.16)

In dimensionless form, the solid surface temperature measurements (obtained from thermocouples placed in the mold surface) take the form

\[y(t) = \theta_S(0, t) + \epsilon(t) \]

(6.5.17)

where \(\epsilon(t) \) is a random measurement error.

In order to test the validity of the model, simulations were carried out for the conditions shown in Table 6.2 and compared with experimental data for the

Table 6.2

<table>
<thead>
<tr>
<th>Property values used in the computation [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{sol}) = 1495°C</td>
</tr>
<tr>
<td>(T_{liq}) = 1523°C</td>
</tr>
<tr>
<td>(C_p_s) = C_p_r = 0.16 cal/(g°C)</td>
</tr>
<tr>
<td>(k_S) = k_r = 7.02 × 10⁻³ cal/(cm·s·°C)</td>
</tr>
<tr>
<td>(T_r) = 1525°C</td>
</tr>
<tr>
<td>(h) = 0.01355 cal/(cm²·s·°C)</td>
</tr>
<tr>
<td>(\alpha_c) = 2.34 cm/s</td>
</tr>
<tr>
<td>(T_c) = 21°C</td>
</tr>
<tr>
<td>**(h = 0.044 \left(\frac{1 - 0.98z'}{100} \right)) cal/(cm²·s·°C) (z' is cm)</td>
</tr>
<tr>
<td>(\rho_S = \rho_r) = 7.4 g/cm³</td>
</tr>
<tr>
<td>(D = 7) cm</td>
</tr>
</tbody>
</table>
same operating conditions. The model predictions for solid crust thickness versus time (or axial position), shown in Fig. 6.34, are in excellent agreement with the data; thus it appears that the model is representative of actual experimental operations, and we may proceed in confidence with the state estimation study.

State Estimation

The crux of the control scheme for the continuous caster is a state estimation algorithm which receives temperature data from thermocouples in the mold wall [Eq. (6.5.17)] and provides estimates of the solid crust thickness \(b(t) \) as well as the solid temperature distribution \(\theta_S(r, t) \). The optimal least squares state estimation equations [5, 6] take the form

\[
\frac{\partial \hat{\theta}_S}{\partial t} = \frac{\partial^2 \hat{\theta}_S}{\partial r^2} + r \frac{d \ln \hat{b}(t)}{dt} \frac{\partial \hat{\theta}_S}{\partial r} - b(t) H(\hat{\theta}_S(0, t) - \theta_w) \delta(r) \\
+ P_u(t, 0, t) Q(t)(y - \hat{\theta}_S(0, t))
\]

(6.5.18)

\[
\frac{d\hat{b}(t)}{dt} = \eta_b \frac{\partial \theta_S}{\partial r} |_{r=1} - K\hat{b} \hat{\theta}_i(t) \\
+ P_u(t, 0, t) Q(t)(y - \hat{\theta}_S(0, t))
\]

(6.5.19)

\[
\hat{\theta}_S(1, t) = 0
\]

(6.5.20)

\[
\frac{\partial \hat{\theta}_S(0, t)}{\partial r} = 0
\]

(6.5.21)
where $P_{uu}(r, s, t)$, $P_{ub}(r, t)$, and $P_{bb}(t)$ are the relevant differential sensitivities (i.e., nonlinear "covariances"), determined by

\[
P_i^{uu}(r, s, t) = P_{rr}^{uu} + P_{ss}^{uu} - P_{bu}(s, t) \frac{r}{b^2} \frac{d}{dt} \frac{d\hat{\theta}_s}{dr} + H(\hat{\theta}_s(0, t) - \theta_s) \delta(s)
\]

\[
- P_{ub}(r, t) \frac{s}{b^2} \frac{d\hat{\theta}_s}{ds} + H(\hat{\theta}_s(0, t) - \theta_s) \delta(s)
\]

\[
- P_{uu}(r, 0, t) Q(t) P_{uu}(0, s, t)
\]

\[
+ P_{ss}^{uu}(r, s, t) s \frac{d\hat{\theta}}{dt}
\]

\[
+ P_{rr}^{uu}(r, s, t) \frac{r}{b^2} \frac{d\hat{\theta}}{dt} + R^+(r, s, t)
\]

(6.5.22)

\[
P_i^{ub}(r, t) = \left[\eta \frac{d\hat{\theta}_r}{dr} \big|_{r=1} - 2 \hat{\theta}_r(t) K \right] P_{ub}(r, t)
\]

\[
- P_{bb}(t) \left[\frac{r}{b^2} \frac{d\hat{\theta}_s}{dt} + H(\hat{\theta}_s(0, t) - \theta_s) \delta(r) \right]
\]

\[
+ P_{rr}^{ub}(r, t) + P_{ss}^{ub}(r, 1, t) \hat{\theta}(t)
\]

\[
+ P_{rr}^{ub}(r, t) \frac{r}{b} \frac{d\hat{\theta}}{dt} - P_{uu}(r, 0, t) Q(t) P_{ub}(0, t)
\]

(6.5.23)

\[
\frac{dP_{bb}}{dt} = 2 \left[\eta \frac{d\hat{\theta}_r}{dr} \big|_{r=1} - 2 \hat{\theta}_r(t) K \right] P_{bb}(t)
\]

\[
+ \eta \hat{\theta}(t) P_{rr}^{ub}(1, t) - P_{uu}(0, t) Q(t) P_{ub}(0, t)
\]

\[
+ \eta \hat{\theta}(t) P_{ss}^{bu}(1, t) + R^{-1}(t)
\]

(6.5.24)

with the symmetry condition

\[
P_{ub}(r, t) = P_{bu}(r, t)
\]

(6.5.25)

The boundary conditions are

\[
P_{ss}^{uu}(r, s, t) + R_0^{-1}(t) \delta(r) = 0 \quad s = 0
\]

\[
P_{ss}^{bu}(s, t) = 0
\]

\[
P_{rr}^{uu}(r, s, t) + R_0^{-1}(t) \delta(s) = 0 \quad r = 0
\]

\[
P_{rr}^{ub}(r, t) = 0
\]

\[
P_{uu}(r, s, t) = 0
\]

\[
P_{uu}(s, t) = 0
\]

\[
P_{uu}(r, s, t) = 0 \quad s = 1
\]

\[
P_{uu}(r, s, t) = 0
\]

\[
P_{bb}(r, t) = 0
\]

(6.5.26)
where \(R(r, s, t), R(t), Q(t), R_0(t) \) are positive weighting factors.

These equations may appear intimidating, but it is possible to solve them through an eigenfunction expansion technique of the form

\[
\hat{u}(r, t) = \sum_{n=1}^{\infty} A_n(t) \phi_n(r) \tag{6.5.30}
\]

\[
P^{ws}(r, s, t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{nm}(t) \phi_n(r) \phi_m(s) \tag{6.5.31}
\]

\[
P^{wb}(r, t) = \sum_{n=1}^{\infty} B_n(t) \phi_n(r) \tag{6.5.32}
\]

where the \(\phi_n(r) \) are the eigenfunctions associated with the linear part of Eq. (6.5.18) and are the solution of

\[
\ddot{\phi}(r) + \lambda_n^2 \phi_n(r) = 0 \quad 0 < r < 1 \tag{6.5.33}
\]

\[
\dot{\phi}_n(0) = 0 \quad n = 1, 2, \ldots \tag{6.5.34}
\]

\[
\phi_n(1) = 0 \quad n = 1, 2, \ldots \tag{6.5.35}
\]

which yields

\[
\phi_n(r) = \sqrt{2} \cos \lambda_n r \quad n = 1, 2, \ldots \tag{6.5.35}
\]

\[
\lambda_n = (2n - 1) \frac{\pi}{2}
\]

Applying Galerkin orthogonality conditions to the equations for \(\dot{\theta}_s, P^{ws} \), and \(P^{wb} \) yields the eigenfunction equations

\[
\dot{A}_n(t) = -\lambda_n^2 A_n(t) + c_n(t) \tag{6.5.36}
\]

\[
\dot{a}_{nm}(t) = -\lambda_{nm}^2 a_{nm}(t) + D_{nm}(t) \tag{6.5.37}
\]

\[
\dot{B}_n(t) = -\lambda_n^2 B_n(t) + E_n(t) \tag{6.5.38}
\]

where \(\lambda_{nm} = \sqrt{\lambda_n^2 + \lambda_m^2} \) and \(c_n, D_{nm}, \) and \(E_n \) are given by

\[
c_n(t) = -\sqrt{2} \, H \hat{b} (\hat{\theta}_s(0, t) - \theta_w) - 2 \frac{d}{dt} \ln \frac{\dot{b}}{b} \sum_{m=1}^{N} A_m(t) \lambda_m I_{nm}
\]

\[
+ \sqrt{2} \, Q(t) (y - \hat{\theta}(0, t)) \sum_{m=1}^{N} a_{nm} \tag{6.5.39}
\]
\[D_{nm}(t) = B_n \left[-2\sqrt{2} H(\hat{\theta}_S(0, t) - \theta_w) + \frac{2}{\hat{b}^2} \frac{db}{dt} \left(\sum_{j=1}^{N_c} \lambda_j A_j I_{jm} \right) \right] + B_m \left[-2\sqrt{2} H(\hat{\theta}_S(0, t) - \theta_w) + \frac{2}{\hat{b}^2} \frac{db}{dt} \left(\sum_{k=1}^{N_c} \lambda_k A_k I_{kn} \right) \right] - 2 \frac{d\ln \hat{b}}{dt} \left(\sum_{k=1}^{N_c} a_{kn} \lambda_k I_{nk} + \sum_{j=1}^{N_c} a_{nj} \lambda_j I_{nj} \right) - 2 Q(t) \sum_{k=1}^{N_c} a_{nk} \sum_{j=1}^{N_c} a_{jm} + \frac{2R^+(-1)^{n+1}(-1)^{m+1}}{\lambda_n \lambda_m} + R_0^{-1} \left(\frac{(-1)^{n+1}}{\lambda_n} + \frac{(-1)^{m+1}}{\lambda_m} \right) \]

\[E_n(t) = \frac{2}{\hat{b}^2} P^{bb}(t) \frac{d\hat{b}}{dt} \sum_{j=1}^{N_c} A_j \lambda_j I_{jn} - \sqrt{2} P^{bb} H(\hat{\theta}_S(0, t) - \theta_w) \]

\[- 2 \frac{d\ln \hat{b}}{dt} \sum_{k=1}^{N_c} \lambda_k B_k I_{kn} - \left(\sqrt{2} \eta \sum_{m=1}^{N} \lambda_m A_m (-1)^{m+1} + 2\hat{b} \theta_l K \right) B_n - 2 Q(t) \sum_{k=1}^{N_c} B_k \sum_{m=1}^{N_c} a_{nm} \]

The variables \(\hat{b}(t) \) and \(P^{bb}(t) \) may be determined from

\[\frac{db}{dt} = -\eta \hat{b} \sqrt{2} \sum_{m=1}^{N} (-1)^{m+1} \lambda_m A_m(t) \]

\[- \hat{b}^2 K \theta_l + \sqrt{2} \left(\sum_{k=1}^{N_c} B_k \right) Q(t) \left(y - \hat{\theta}_S(0, t) \right) \]

\[\frac{dP^{bb}}{dt} = -2 P^{bb} \left[\eta \sqrt{2} \sum_{m=1}^{N} (-1)^{m+1} \lambda_m A_m(t) + 2\hat{b} \theta_l K \right] + 2 \sqrt{2} \eta \hat{b} \sum_{k=1}^{N_c} (-1)^{k+1} \lambda_k B_k(t) \]

\[\left(\sum_{i=1}^{N_c} B_i(t) \right) Q(t) \left(\sum_{j=1}^{N_c} B_j(t) \right) + R^{-1}(t) \]

Here \(N \) is the number of eigenfunctions required for the filter estimates, while \(N_c \) is the number of eigenfunctions used to represent the differential sensitivities. The state estimation algorithm then consists of solving \(N + 1 \) ordinary differential equations for the filter [Eqs. (6.5.36) and (6.5.42)] and
1 + N_c + (N_c^2 + N_e)/2 ordinary differential equations for the differential sensitivities [Eqs. (6.5.37), (6.5.38), and (6.5.43)]. Although it would be possible to solve both the filter and sensitivity equations in real time, in practice it is more practical to solve the sensitivity equations in an approximate way off-line for a nominal state trajectory so that only the N + 1 filter equations need be integrated in real time. In this way the state estimator is easily implemented in real time on presently available process control computers. In the present study, it was found (after some adjustments in the computational procedure [6]) that N = 4 was sufficient to provide a good solution to the filter equations and N_e = 3 sufficed for adequate filter performance. Thus the filter required the solution of five ordinary differential equations in real time. In order to provide an initial test of the filter in the face of large measurement errors, a number of simulations were performed. The steel surface temperature measurement “data” were provided by a simulation of the model in which the resulting surface temperatures θ_s(0, t) were corrupted by adding zero-mean white Gaussian noise from a random number generator having a specified standard deviation σ.

A selection of results may be seen in Figs. 6.35 to 6.38 for the filter parameters given in Table 6.3. As can be seen, this nonlinear filter performs well, converging from extremely poor initial guesses in a very short time even in the face of 100°C standard deviation measurement error.

Evaluation

Although the state estimation algorithm developed here has been tested only through simulation, these tests show that minimal real-time computations are required for implementation and indicate that the solid steel crust thickness can be adequately tracked by the estimator. Further experimental testing of the estimator and evaluation of feedback controllers for casting operations is reported elsewhere [6, 7].
Figure 6.36 Filter estimates and process behavior for the temperature profile in the solid crust, $\sigma = 20^\circ$C.

Figure 6.37 Filter estimates and process behavior for the solid crust thickness, $\sigma = 100^\circ$C.
Table 6.3 Filter parameters

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Temperature (°C)</th>
<th>$Q(t)$</th>
<th>$p^{ib}(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.35–6.36</td>
<td>20°C</td>
<td>1.96</td>
<td>0.001</td>
</tr>
<tr>
<td>6.37–6.38</td>
<td>100°C</td>
<td>0.0784</td>
<td>0.007</td>
</tr>
</tbody>
</table>

For all runs: $b(0) = 0.05$, $R_0^{-1} = R_0^{-1} = R^+ = 0$, $B_0(0) = 0$, $D_{ran}(0) = 1.02/\lambda_m \lambda_m$.

6.6 FURTHER CASE STUDIES

A number of other case studies which have appeared in the literature recently illustrate the application of modern process control to industrial scale or pilot plant processes. These include studies on distillation column control, chemical reactor control, paper mill control, steel mill control, and a wide range of other process control problems [8–12]. The reader is urged to consult these references and the current journal literature for further examples.

REFERENCES

APPENDIX

SOME COMPUTER-AIDED DESIGN PROGRAMS

A number of educational and research institutions have developed computer-aided design programs for interactive computer-aided control system design [1]. Some of the more comprehensive design packages are listed in the table below. These computer programs are usually available for a fee. Further information may be obtained directly from the sources given.

<table>
<thead>
<tr>
<th>Program</th>
<th>Capabilities</th>
<th>Source</th>
</tr>
</thead>
</table>

REFERENCE

AUTHOR INDEX

Aidarous, S. E., 164, 190, 241, 302, 316
Albrekt, E. G., 288, 315
Alevisakis, G., 211, 217, 242
Amouroux, M., 164, 190, 241, 302, 316
Amundson, N. R., 42, 57, 127
Andrew, W. G., 36
Aoki, M., 288, 289, 315
Aström, K. J., 246, 249, 250, 256, 261, 288, 289, 315
Athans, M., 48, 127

Babary, J. P., 164, 190, 241, 302, 316
Balchen, J. G., 291, 315
Bankoff, D. G., 95, 128
Bensoussan, A., 312, 314, 316
Berry, M. W., 224-226, 242
Bhat, K. P. M., 297, 315
Bhattacharya, S. P., 270, 315
Bird, R. B., 135, 240
Bosarge, E., 181, 203, 241
Box, G. E. P., 5, 9
Bristol, E. H., 66, 127
Brockett, R. W., 56, 127

Brogan, W. L., 48, 127, 182, 241
Bryson, A. E., 56, 86, 106, 107, 127, 246, 249, 250, 256, 261, 288, 289, 315
Buckley, P. S., 212, 242
Bucy, R. S., 250, 261, 315
Butkovsky, A. G., 133, 161, 182, 240, 241

Caravoni, P., 302, 316
Chadha, K. J., 84, 127
Chen, W. H., 302, 316
Considine, D. M., 36
Coughanowr, D. R., 188, 241
Courant, R., 151, 157, 241
Crandall, S. H., 201, 205, 241

Davison, E. J., 84, 127
Denn, M. M., 166, 188, 241, 361, 362
Dennemeyer, R., 143, 146, 157, 240
DeVries, G., 201, 203, 241
DiPillo, G., 164, 190, 241, 302, 316
Dolecki, S., 299, 315
Dorf, R. C., 127, 128
Douglas, J. M., 113, 128
Dreyfus, S. E., 91, 128
Dwight, H. B., 205, 242

Egorov, A. I., 182, 241
Erzberger, H., 157, 241
Ewing, G. W., 36
Eykhoff, P., 5, 9

Falb, P. L., 48, 127
Finkel, J., 36
Finlayson, B. A., 201-203, 207, 241
Fjeld, M., 291, 315
Foss, A. S., 361, 362
Fossard, A. J., 48, 73, 127
Fox, L., 99, 128
Friedly, J. C., 138, 143, 240
Fuller, A. T., 1, 8

Gal'perin, Y. A., 288, 315
Gelb, A., 246, 249, 250, 256, 261, 268, 270, 315
Gevers, M. R., 164, 190, 241, 302, 316
Gilbert, E. G., 71, 127
Gilles, E. D., 149, 153, 197, 241
Goodson, R. E., 293, 299, 301, 315
Greiss, F. K., 351, 359, 362
Grippo, L., 164, 190, 241, 302, 316
Gueguen, C., 73, 127

Harrison, T. J., 37
Hicks, G. A., 102, 103, 124, 128
Hilbert, D., 151, 157, 241
Ho, Y. C., 56, 86, 106, 107, 127, 246, 249, 250, 256, 261, 288, 289, 315
Holman, J. P., 37
Hostetter, G. H., 270, 315
Hwang, M., 275, 315

Ince, E. L., 149, 151, 157, 241
Installe, M. I., 164, 190, 241, 302, 316

Jacobson, D. H., 95, 128
Jazwinski, A. H., 246, 249, 250, 256, 261, 274, 278, 283, 287, 288, 315
Jenkins, G. M., 5, 9
Johnson, C. D., 106, 114, 128
Johnson, T. L., 143, 240
Jones, D. O., 37

Kalman, R. E., 250, 252, 261, 315
Keller, H. B., 99, 128
Kestenbaum, A., 270, 315
Kim, M., 157, 241
Klein, R. E., 293, 299, 301, 315
Köhne, M., 149, 153, 241, 306, 309, 311, 312, 314, 316
Koivo, A. J., 191, 211, 229, 235, 241, 242, 296, 315
Koivo, H. N., 211, 229, 235, 242, 296, 297, 315
Koppel, L., 188, 241
Korn, J. A., 37
Krasovskii, N. N., 288, 315
Krishnaswamy, P. R., 211, 242
Kruh, P., 191, 241
Kumar, K. S. P., 191, 241
Kuo, B. J., 127, 128
Kushner, H. J., 288, 289, 315

Lainiotis, D., 5, 9, 133, 181, 240, 361, 362
Lapidus, L., 5, 9
Lasdon, L. S., 95, 128
Lausterer, G. K., 339, 343, 344, 346, 361
Lee, E. S., 99, 128
Leitman, G., 91, 128
Lemke, H., 361, 362
Leondes, C. T., 270, 315
Lightfoot, E. N., 135, 240
Lions, J. L., 133, 182, 240
Luenberger, D. G., 268, 315
Lurie, K. A., 182, 241
Lynn, L. L., 181, 203, 241

McCausland, I., 203, 242
MacFarlane, A. G. J., 71, 80, 84, 127
McGarty, T. P., 246, 249, 250, 252, 256, 261, 288, 315
McKnight, R. S., 203, 241
Mäder, M. F., 149, 153, 155, 241, 305, 306, 309, 312, 314, 316
Malandrakis, C., 302, 316
Markus, L., 43, 56, 58, 59, 61, 87, 91, 94, 127
Martens, H. R., 339, 343, 344, 346, 361
Mayr, O., 1, 8
Meditch, J. S., 246, 249, 250, 252, 256, 261, 270, 288, 289, 315
Mehra, R. K., 5, 9
Melsa, J. L., 5, 9, 246, 249, 250, 256, 261, 288, 289, 315
Meyer, C., 224, 242
Mitter, S. K., 95, 128
Moore, C. F., 212, 242
Murrill, P. W., 212, 242

Newell, R. B., 114, 128
Newman, C. P., 203, 241
Norrie, D. H., 201, 203, 241
Norton, H. P., 37

Ogunnaikke, B. A., 208, 212, 213, 215, 216, 242
Ogunye, A. F., 177, 181, 241
Olivei, A., 157, 158, 241
Olsen, T. O., 291, 315

Padmanabhan, L., 95, 128, 279, 315
Pagurek, B., 95, 128

Paraskevopoulos, P. N., 212, 242
Park, P. D., 157, 241
Parzen, E., 288, 289, 315
Perkins, W. R., 293, 295, 315
Perone, S. P., 37
Pivnichny, J. R., 71, 127
Pontryagin, L. S., 91, 128
Prabhu, S. S., 203, 242
Prasad, C. C., 211, 242

Robinson, A. C., 182, 241
Rosenbrock, H. H., 84, 127
Russel, D. L., 143, 161, 240, 299, 315

Sage, A. P., 5, 9, 124, 128, 166, 181, 241, 246, 249, 250, 256, 281, 288, 289, 315
Sakawa, Y., 149, 161, 241, 299, 315
Seborg, D. E., 84, 127, 211, 217, 224, 242, 330, 331, 334, 336, 338, 343, 361
Seidman, T. I., 299, 316
Seinfeld, J. H., 5, 9, 191, 211, 241, 242, 250, 252, 275, 290, 293, 295, 296, 302, 304, 315
Sen, A., 203, 241
Shah, S. L., 224, 242
Shih, Y.-P., 188, 241
Smith, C. L., 212, 242
Smith, O. J. M., 211, 212, 217, 242
Soliman, M. A., 229, 231–235, 238, 240, 242
Sørensen, J. P., 5, 9, 201–203, 241
Stewart, W. E., 5, 9, 135, 201–203, 240, 241
Szekely, J., 4, 5, 9, 84, 94, 102, 128, 133, 166, 240
AUTHOR INDEX

Thau, F. E., 270, 315
Theis, D. J., 13, 37
Thowsen, A., 293, 295, 315
Triggiani, R., 299, 315
Tzafestas, S. G., 212, 242

Wonham, W. M., 288–290, 315
Wood, R. K., 224–226, 242
Woodside, C. M., 95, 128
Wylie, C. R., 159, 160, 241

Van Nauta, R., 361, 362
Verbruggen, H. B., 361, 362
Villadsen, J., 201, 203, 241

Yocum, J. P., 270, 315
Yu, T. K., 211, 242, 250, 252, 293, 295, 296, 302, 304, 315

Wang, P. K. C., 149, 153, 161, 241
Waren, A. D., 95, 128

Zahradnik, R. L., 181, 203, 241
Zeitz, M., 197, 241
Actuators for data acquisition, 25, 27
Adaptive control, 3
Applications:
 batch reactor: adiabatic, observability of, 275-278
 optimal temperature control policy of, 95-97
 casting, continuous, 351-361
 model, 351-355
 state estimation, 355-361
 continuous stirred tank reactor:
 controllability of, 59, 120-121
 feedback control parameterization of, 125
 modal control: linear, 81-84
 nonlinear, 121-124
 models: linear, 59-52, 58, 60, 81
 nonlinear, 7, 103, 119-121, 283
 observability of, 252-255, 283-285
 optimal control of, 103-104, 109-112, 116-118, 231-234
 stabilizability of, 60
 state estimation of, 261-263, 266-267, 271-274, 283-287
 stochastic control of, 290-291
 with time delays, 219-224, 231-234
 distillation column, 62-65, 69, 319-330
 control of, with time delays, 207-208, 224-229
Applications, distillation column:
 noninteracting controllers:
 dynamic compensator, 74-75, 325-329
 steady-state decoupling, 73-74, 324, 328
 set-point compensation, 77-78, 322-323, 328-330
 evaporator, multiple-effect, 330-338
 model, 330-334
 optimal linear-quadratic multi-variable control of, 334-335
 stochastic feedback control of, 336-338
 gas storage tank, control of pressure in, 32-34
 heat exchanger, steam-jacketed tubular: estimation of temperature profile, 298
 feedback control of, 140-143, 187-188, 238-240
 observability of, 295-296
 ingot, steel, 34-36, 156-163, 338-351
 mixing tank, 39-40, 43-46, 65-66, 70-71
 model, 43-46
 stochastic control of, 292-293
 temperature control in, 134-136, 213-214
 packed bed reactor, 197-201
Applications, packed bed reactor:
optimal inlet temperature of, with
catalyst decay, 177–181
reactors (see batch reactor, above;
continuous stirred tank reactor,
above; packed bed reactor,
above; tubular reactor, below)
rod heating: with discrete actuators,
188–190
in a multizone furnace, 147–152,
154–155, 161–162, 164–166,
185–187, 203–206
observability with discrete
measurements, 299–301
soaking pit furnace, 338–351
ingot model, 340–342
optimal stochastic feedback
control of, 344–347, 348–351
state estimation of ingot tem-
perature distribution, 342–344,
347–348
steel slab, 91–94, 99–101, 133–134,
175–176, 302–315
tubular reactor, 8, 192–196

Bristol array, 66–71

Casting, continuous, 351–361
Compensators:
noninteraction, 71–72, 323–326
set-point, 76–78, 322–323
steady-state, 73
time-delay, 211–229
general multidelay compensator,
214–229
Smith predictor, 212–214
Computational techniques:
control vector iteration, 94–97,
176–181
control vector parameterization,
101–104, 181
direct or indirect substitution,
97–105
feedback controller parameteriza-
tion, 124–125
when linear in the control, 105–106

Computational techniques:
linear-quadratic problem, 107–114
integral control, 113–114
Riccati transformation, 107
linearization, 119–121
pseudo-modal method(s), 201–207
collocation, 203
Galerkin's, 202–207
of subdomains (integral method),
202–203
of weighted residuals, 201–207
Computer-aided design programs, 47,
363
Computers (see Microcomputers;
Minicomputers)
Control (see Adaptive control;
Feedback control systems design;
Optimal control; Stochastic
feedback control)

Controllability:
of linear distributed parameter
systems: first-order, 143
second-order, 161–166
of linear lumped parameter systems,
56–61
of nonlinear lumped parameter
systems, 120–121

Data acquisition, 22–23
actuators for, 25, 27
microcomputers for, 22–24
networks for, 22–24
signal conditioning in, 28–30
filtering, 28
high-pass, 28, 30
low-pass, 28, 30
notch, 28, 30
multiplexing and amplification,
28–29
noise suppression, 28, 30
transmission, 28–29
transducers for, 25–27
Data acquisition and control
networks, 22–24
Decoupling control:
dynamic, 71–76, 323–326
Decoupling control:
steady-state, 73, 229, 324–326
Direct digital control, 31–32
Discrete time systems, 126–127
Distillation column (see Applications, distillation column)
Distributed parameter systems (see Linear distributed parameter systems; Nonlinear distributed parameter systems; Stochastic feedback control, for distributed parameter systems; Time delays, systems with)

Estimation (see State estimation techniques)
Evaporator, multiple-effect, 330–338

Feedback control systems design:
computer-aided, 47, 363
modal (see Modal control)
noninteracting, 71–76, 323–326
parameterization, 124–125, 191
stochastic (see Stochastic feedback control)
time-delay compensation, 211–229
Filtering estimates, 258, 260, 264, 279–283
for distributed parameter systems, 293–309, 344–351, 355–361
for linear ordinary differential equation systems, 249–267, 336–338
with discrete time data, 263–267
for nonlinear ordinary differential equation systems, 274–288
with discrete time data, 287–288
extended Kalman filter, 283, 285
Fundamental matrix solution, 43

Gas storage tank, control of pressure in, 32–34
Heat exchanger, steam-jacketed tubular (see Applications, heat exchanger, steam-jacketed tubular)
Hereditary systems (see Time delays, systems with)

Ingot, steel, 34–36, 156–163, 338–351
Instrumentation, process control, 10–36
Interaction, multivariable feedback controllers, 61–71

Linear distributed parameter systems, 136–190
hyperbolic systems, first-order, 138–143
controllability, 143
Laplace transform in space, 138
Laplace transform in time, 138–139, 142
method of characteristics, 139–140
optimal control of (see Optimal control, of distributed parameter systems)
second-order partial differential equations, 143–166
controllability, 161–166
with discrete actuators, 163–166
N-mode controllability, 161–163
elliptic systems, 145–146
hyperbolic systems, second-order, 144–145
Laplace transform methods, 146–148
modal decomposition, 146, 148–161
parabolic systems, 145
Linear lumped parameter multivariable systems, 40–84, 107–114
control design techniques: modal feedback control, 78–84
Linear lumped parameter multivariable systems, control design techniques:
 - noninteracting control, 71–76, 323–326
 - dynamic, 71–76, 323–326
 - steady-state decoupling, 73, 324–326
optimal control (see Optimal control of lumped parameter systems)
set-point compensation, 76–78, 322–323
controllability, 56–61
 - of linear nonautonomous systems, 58
output, 57
interaction problem, 61–71
 - Bristol array, 66–71
mathematical models, 5–7, 40–43, 46–47
 - autonomous system, 42
 - nonautonomous system, 43
 - fundamental matrix solution, 43
time domain vs. transfer domain, 46–53
 - minimal realization, 47–50, 51–53
multivariable controllers, 55–56
 - single-loop, 55
normality, 61
normality matrix, 61
stabilizability, 59–60
Lumped-parameter systems (see Discrete time systems; Linear lumped parameter multivariable systems; Nonlinear lumped parameter multivariable systems)

Maximum principle, 84–91, 166–175, 229–231
Measurements, data acquisition and control, 25–32
Microcomputers, 22–24
Minicomputers, 11–22
Minicomputers:
 - central processing unit (CPU), 12–14
 - communications peripherals, 21–22
 - input devices, 22
 - output devices, 21–22
 - hardware floating-point processor, 13–14
input/output interfaces, 18–21
 - analog-to-digital (A/D)
 - conversion, 18–20
 - resolution, 18–20
 - signal conditioning, 20
digital, 18–19
 - parallel transmission, 18
 - serial transmission, 18
digital-to-analog (D/A)
 - conversion, 18, 20
mass storage, 15–16
memory, 14–15
real-time clock, 16–18
Mixing tank (see Applications, mixing tank)

Noninteracting control, 71–76, 323–326
Nonlinear distributed parameter systems, 191–207
feedback controller parameterization, 191
linearization, 191–201
linearized linear-quadratic feedback control, 191
lumping of distributed systems, 191, 201–207
pseudo-modal method(s), 201–207
collocation, 203
Galerkin's, 202–207
of moments, 203
of subdomains (integral method), 202–203
Nonlinear lumped parameter multivariable systems, 114–125
Nonlinear lumped parameter multi-variable systems:
- controllability, 120–121
- feedback controller parameterization, 124–125
- linearization, 119–121
- modal feedback controller, 121–124
- optimal linear-quadratic feedback control, 114–118

Optimal control, of lumped parameter systems, computational techniques:
- two-point boundary-value problems:
 - control vector parameterization, 101–104
- direct or indirect substitution methods, 97–105
- conditions for optimality, 87–94
- strong maximum principle, 91
- weak maximum principle, 90–91
- when linear in the control, 105–106
- bang-bang control, 105–106
- singular control, 106
- linear-quadratic problem, 107–118
- integral control, 113–114
- Riccati equation, 108
- Riccati transformation, 107
- open-loop policies, 84–86, 106
- of time-delay systems, 229–240

Observability:
- of first-order hyperbolic partial differential equation systems, 293–296
- of linear ordinary differential equation systems, 250–255
- of nonlinear ordinary differential equation systems, 275–278
- of second-order partial differential equation systems, 299–302

Observers:
- distributed parameter systems, 309–311
- lumped parameter systems, 267–274, 288

Optimal control, 84–118, 166–190
- of distributed parameter systems, 166–190, 344–351
- computational techniques, 176–182
- control vector iteration, 176–181
- control vector parameterization, 181
- linear-quadratic problem, 182–190
- necessary conditions for optimality, 167–176
- weak maximum principle, 173–174
- feedback controller parameterization, 124–125
- of lumped parameter systems, 84–118
- computational techniques, 94–105
- control vector iteration, 94–97
- two-point boundary-value problems: boundary-condition iteration, 99–101

Prediction estimates, 260, 264, 283

Reactors (see under Applications)
Rod heating (see Applications, rod heating)

Sensors, data acquisition, 25–32
Separation principle, 289, 314
Set-point compensation, 76–78, 322–323, 328–330
Signal conditioning in data acquisition, 28–30
Simulation using modal representation, 152–153
Singular control, 105–106
Smith predictor, 212–214
Smoothed estimates, 258–260, 264, 278–279
Soaking pit furnace (see Applications, soaking pit furnace)
State estimation techniques, 3, 245–288, 293–311
conditional probability distribution, 248
Linear lumped parameter multivariable systems, control design techniques:
noninteracting control, 71–76, 323–326
dynamic, 71–76, 323–326
steady-state decoupling, 73, 324–326
optimal control (see Optimal control, of lumped parameter systems)
set-point compensation, 76–78, 322–323
controllability, 56–61
of linear nonautonomous systems, 58
output, 57
interaction problem, 61–71
Bristol array, 66–71
mathematical models, 5–7, 40–43, 46–47
autonomous system, 42
nonautonomous system, 43
fundamental matrix solution, 43
time domain vs. transfer domain, 46–53
minimal realization, 47–50, 51–53
multivariable controllers, 55–56
single-loop, 55
normality, 61
normality matrix, 61
stabilizability, 59–60
Lumped-parameter systems (see Discrete time systems; Linear lumped parameter multivariable systems; Nonlinear lumped parameter multivariable systems)

Maximum principle, 84–91, 166–175, 229–231
Measurements, data acquisition and control, 25–32
Microcomputers, 22–24
Minicomputers, 11–22

Minicomputers:
central processing unit (CPU), 12–14
communications peripherals, 21–22
input devices, 22
output devices, 21–22
hardware floating-point processor, 13–14
input/output interfaces, 18–21
analog-to-digital (A/D) conversion, 18–20
resolution, 18–20
signal conditioning, 20
digital, 18–19
parallel transmission, 18
serial transmission, 18
digital-to-analog (D/A) conversion, 18, 20
mass storage, 15–16
memory, 14–15
real-time clock, 16–18
Mixing tank (see Applications, mixing tank)

Noninteracting control, 71–76, 323–326
Nonlinear distributed parameter systems, 191–207
feedback controller parameterization, 191
linearization, 191–201
linearized linear-quadratic feedback control, 191
lumping of distributed systems, 191, 201–207
pseudo-modal method(s), 201–207
collocation, 203
Galerkin’s, 202–207
of moments, 203
of subdomains (integral method), 202–203
Nonlinear lumped parameter multivariable systems, 114–125
Nonlinear lumped parameter multi-variable systems:
controllability, 120–121
feedback controller parameterization, 124–125
linearization, 119–121
modal feedback controller, 121–124
optimal linear-quadratic feedback control, 114–118

Optimal control, of lumped parameter systems, computational techniques:
two-point boundary-value problems:
control vector parameterization, 101–104
direct or indirect substitution methods, 97–105
conditions for optimality, 87–94
strong maximum principle, 91
weak maximum principle, 90–91
when linear in the control, 105–106
bang-bang control, 105–106
singular control, 106
linear-quadratic problem, 107–118
integral control, 113–114
Riccati equation, 108
Riccati transformation, 107
open-loop policies, 84–86, 106
of time-delay systems, 229–240

Observability:
of first-order hyperbolic partial differential equation systems, 293–296
of linear ordinary differential equation systems, 250–255
of nonlinear ordinary differential equation systems, 275–278
of second-order partial differential equation systems, 299–302

Observers:
distributed parameter systems, 309–311
lumped parameter systems, 267–274, 288

Optimal control, 84–118, 166–190
of distributed parameter systems, 166–190, 344–351
computational techniques, 176–182
control vector iteration, 176–181
control vector parameterization, 181
linear-quadratic problem, 182–190
necessary conditions for optimality, 167–176
weak maximum principle, 173–174
feedback controller parameterization, 124–125
of lumped parameter systems, 84–118
computational techniques, 94–105
control vector iteration, 94–97
two-point boundary-value problems: boundary-condition iteration, 99–101

Prediction estimates, 260, 264, 283

Reactors (see under Applications)
Rod heating (see Applications, rod heating)

Sensors, data acquisition, 25–32
Separation principle, 289, 314
Set-point compensation, 76–78, 322–323, 328–330
Signal conditioning in data acquisition, 28–30
Simulation using modal representation, 152–153
Singular control, 105–106
Smith predictor, 212–214
Smoothed estimates, 258–260, 264, 278–279
Soaking pit furnace (see Applications, soaking pit furnace)
State estimation techniques, 3,
245–288, 293–311
conditional probability distribution, 248
State estimation techniques:
for first-order hyperbolic partial differential equation systems, 293–298
observability, conditions for, 293–296
sequential state estimation algorithm, 296–298
for linear ordinary differential equation systems, 249–274
detectability, 252
with discrete time data, 263–267
observability, conditions for, 250–255
observers, 267–274
optimal state estimation, 255–267
error in estimates, 258–259
filtering estimates, 258, 260, 264
prediction estimates, 260, 264
smoothed estimates, 258–260, 264
maximum likelihood estimate, 248
minimum least squares, 248, 255–256, 278
for nonlinear ordinary differential equation systems, 274–288
with discrete time data, 287–288
observability, 275–278
observers, 288
optimal state estimation, 278–287
filtering, 279–283
prediction, 283
smoothing, 278–279
for second-order partial differential equation systems, 298–311
nonlinear state estimation, 302–309
continuous time data, 303–304
discrete time data, 304–305
State estimation techniques, for second-order partial differential equation systems:
observability, 299–302
sensor location, 301–302
observers, 309–311
Steel slab (see Applications, steel slab)
Stochastic feedback control, 249, 288–293, 312–315, 336–338, 344–351
for distributed parameter systems, 312–315
separation theorem, 314
suboptimal controller, 314–315
for ordinary differential equation systems, 289–293
linear-quadratic problem, 289–293
optimal proportional plus integral control, 291–293
separation (certainty-equivalence) principle, 289
Supervisory control, 31–32

Time delays, systems with, 207–240
compensation methods, 211–229
general multidelays compensator, 214–229
Smith predictor, single delay, 212–214
general formulation, 209–211
with constant delays, 210
with time-varying delays, 210–211
optimal control of, 229–240
linear-quadratic feedback control, 234–240
maximum principle for constant delays, 230–232