CHAPTER

SIX
CONTROL SYSTEM DESIGN CASE STUDIES

6.1 INTRODUCTION

This chapter is devoted to a series of case studies showing applications of
modern control theory to chemical, petroleum, and metallurgical processes. For
each problem, one or more of the techniques discussed in earlier chapters is
used, and the performance of the resulting design is compared with more
conventional approaches. It is hoped that this set of example problems will
stimulate the reader to further applications in the real world of the process
industries.

6.2 CONTROL OF A MULTI-SIDESTREAM DISTILLATION
COLUMN*

The goal of this case study is to develop a control strategy for the multi-side-
stream distillation column shown in Fig. 6.1. The compositions of the overhead
and two sidestreams are the output variables y,, ,, ¥;, and the drawoff rates of
these streams constitute the manipulated variables u,, ,, u;. Although one could
formulate a very high-order time-domain model of the column involving con-
centrations and temperatures on every tray, this is not usually the best approach
for process control design. As noted in Sec. 3.2, it is often possible to fit a linear

* This case study was carried out by Lance Lauerhass, Paul Noble, Larry Biegler, and
Tunde Ogunnaike as a project in the graduate course in Advanced Process Control at the University
of Wisconsin.
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Figure 6.1 Distillation column schematic.

transfer function model to the observed sidestream composition dynamics
through step- or frequency-response experiments. We shall assume this has been
done in the present case, yielding the open-loop transfer function

y(s) = G(s)u(s) (6.2.1)
where
[ 07 |
1 + 9s 8 0
2.0 0.4
= .2.2
o 1+8s 1+6s (622)
2.3 29 39
_1+10s 1 + 8s l+7s_

Very often the experimentally determined transfer function G(s) includes pure
time delays in some of the elements; however, we shall assume these are so small
as to be negligible in the present case.

The present control scheme for the column consists of three single-loop
controllers as shown in Fig. 6.2. For each loop, the composition y, is measured
and used in a PI controller to adjust the flow rate »;. Experience has shown that
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Figure 6.2 Multiple single-loop control for the distillation column.
there are two major operating difficulties with this present control system:

1. The response to disturbances is poor, yielding steady-state offset and oscilla-
tions.

2. Changing the set point in any one variable causes the other variables to go off
specification and to oscillate.

To illustrate these problems, consider Fig. 6.3, which shows the response of three
single-loop proportional controllers to set-point changes

0.05
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Figure 6.3 Product compositions after a set-point change (proportional control with k., =5,
k., = 20, k., = 20).
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Figure 6.4 Product compositions after a set-point change (proportional plus integral control with
k, =2,1,=2).

while Fig. 6.4 illustrates the response with three proportional plus integral
controllers. With only proportional control (Fig. 6.3), both set-point changes and
disturbances cause large offsets. When integral action is added in an effort to
prevent offsets, the three controllers fight one another, causing persistent oscilla-
tions (Fig. 6.4). In this case study, two control strategies designed to eliminate
these difficulties shall be evaluated.

Set-Point Compensation

In some distillation towers with multiple products, the effect of disturbances is
minor and the principal difficulties arise due to frequent set-point changes. As
discussed in Chap. 3, the simple techniques of set-point compensation can
correct many of these types of difficulties. Recall from Sec. 3.2 that the addition
of set-point compensation modifies Fig. 6.2 to the control scheme shown in Fig.
6.5. The closed-loop transfer function becomes

¥y = (I + GG,)"'GG,S§, (3.2.94)

where the controller matrix is
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Figure 6.5 Set-point compensator added to multiple single-loop control.

and the set-point compensator

Sll SlZ S13
S - S21 S22 S23
S5 Sn Sy
is to be chosen to make
I+ GG,) 'GG,S =1 (6.2.4)

at steady state. Thus, if the single-loop controllers are proportional controllers
i = K i = 1,2, 3, then

[ 1.43
+ 1 0 0
Kcll
7.14 2.5
§=] = +1 0 6.2.5
K022 Kc22 ( )
6.26 _ 2.74 0.48 >
Kc33 Kc33 Kc'33 ]

satisfies Eq. (6.2.4). The performance of this compensator is discussed below.

Noninteracting Control

A second control strategy to be evaluated is multivariable noninteracting con-
trol, shown in Fig. 6.6. It may be implemented using single-loop controllers, but
the signals from these controllers must be sent to decoupling operators to
accomplish the noninteractive control. Recall from Chap. 3 that the closed-loop
transfer function for the structure in Fig. 6.6 is

¥ = (I + GG,G,) " 'GG,G ¥, (3.2.81)
and G, must be chosen to make
T = (I + GG,G,) " 'GG,G, (3.2.82)

a diagonal matrix.
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For the simple case of steady-state compensation, which eliminates steady-
state interactions, one could choose to let

G, = (G;")diag G,, (3.2.85)
where
07 0 O
G, =1limG(s) =|20 04 O
=33 23 23 21

However, in this example, we shall be even more demanding and require that
perfect steady-state compensation be accomplished; i.e., we must choose

143 0 0
Gl = (G—.])ss = —714 2.5 0
626 —2.74 048

Furthermore, we could pursue the even more ambitious goal of perfectly
compensating for dynamic interactions. For this example, such a “perfect”
dynamic compensator would take the form

1.43(1 + 95)
—7.14(1 + 9s)(1 + 65)
G,=G_‘= (1+8S)
7.82(1 + 9s)(1 + 65)(1 + 7s) —1.56(1 + 9s)(1 + 7s)
a+ 8s)2 1 + 10s
I . , .
2.50(1 + 65) 0

—2.74(1 + 6s)(1 + 7s)
1+ 8s

0.48(1 + 7s)

(6.2.6)
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This compensator may be implemented by noting that '
u = G,G (6.2.7)

determines the desired control action. If G, represents an actual set of three
controllers as shown in Fig. 6.6, then

Z; = 8u€ Z; = 816 Z3 = 83363 (6.2.8)
and
u=G,z (6.2.9)

is the operation which must be carried out to accomplish this dynamic decou-
pling. From Eq. (6.2.6), this operation requires that

u,(s) = 1.43(1 + 95)z,(s) (6.2.10)
) e 14(11++9§1(1 * 65) , (5) + 2.50(1 + 65)z5(s) (6.2.11)
7.82(1 + 9s)(1 + 6s)(1 + 7s)  1.56(1 + 9s)(1 + 7s)
uy(s) = zy(s)
1+ 8s)2 1+ 10s
L2l : frs;(s‘ 05+ BARGL - Ts) ) (6.2.12)
Transforming these expressions to the time domain, one obtains
dz,(1)
ul(t) =143\ z,(¢) + 9—— 3 (6.2.13)

d. —
uy(f) = —7.14[6.757:7‘ + 103z, - 0.0039f0’exp(— s ’)zl(f) df}
e
32, 5o[z2(t) r62 ] (6.2.14)
dz,
us() = 7.82[ 59151 + 1,01z, — (0.000488 + 0.00006107)
Xf exp(

&
—1.56 63——d—+ 0.97z, + ooo3f exp( - )z,(f) d"r]

)zl(f) o oooooslof exp( - T)Tz,(f) dr]

[ ds
—274/525222 4 9,69z, + 0.0022 f exp(—
L 0

= = T)zz(r) d'r]

dt

. d
+0.48| z3(1) + 7-—2—3] (6.2.15)
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This integration and differentiation of the signal z(#) can clearly be imple-
mented either with analog circuitry or by a real-time digital controller. For the
case of DDC, Eq. (6.2.8) would also be carried out by the digital computer.

Control System Performance Testing

In order to test the performance of these two control schemes when imple-
mented on the process control digital computer, the distillation column was
simulated on the analog computer and the control algorithms programmed to
respond in real time on the digital computer. The information flow is shown in
Fig. 6.7, and the analog circuit diagram representing the column is presented in
Fig. 6.8. '

Before proceeding further to test these algorithms, it is useful to investigate
the controllability of the column. The transfer function model [Eq. (6.2.1)] may
be easily put into the time domain to yield equations of the form

dx
— =Ax+Bu (6.2.16)
y =Cx (6.2.17)
where
x,
X2
X = i
Xe
[ —o0.111 0 0 0 0 0
0 —0.125 0 0 0 0
A= 0 0 -0.167 0 0 0
0 0 0 ~0.1 0 0
0 0 0 0 — Q.25 0
0 0 0 0 0 —0.143
1 0 0
(1) ‘1) 8 1 0000 0
B= C=[0 1 1 0 0 O (6.2.18)
1.0 6 000 1 1 1
01 0
0 0 1

The output controllability matrix, which is
L, =[CBiCAB; ... ;CASB] (6.2.19)
clearly has rank 3 because

1 0 0
110 (6.2.20)
11

is nonsingular; thus the column is completely controllable.

CB =
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Figure 6.7 Digital computer control of the simulated process.
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Figure 6.8 Analog circuit diagram.
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The set-point compensation algorithm shown in Fig. 6.5 was applied for the
same conditions as for Fig. 6.3 [i.e., with three proportional controllers and a
set-point change given by Eq. (6.2.3)]. The dynamic response of the column,
shown in Fig. 6.9, is much improved over the uncompensated case, showing
rapid attainment of steady state, with very little offset and no oscillations.
Further experiments confirmed that good performance for set-point changes
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Figure 6.9 Product compositions after a set-point change (set-point compensator used with propor-
tional controllers, same conditions as for Fig. 6.3).
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Figure 6.10 Product compositions after a set-point change (steady-state decoupling together with
proportional plus integral controllers, k., = 2.0, 7, = 2.0).
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Figure 6.11 Product compositions after a set-point change (dynamic decoupling together with
proportional plus integral controllers, k, = 0.25, 7, = 0.5).

should be expected with this control scheme. Unfortunately, the set-point
compensator does not help in the case of disturbances because it is not
contained in the feedback loop.

To improve the control system performance in the face of disturbances,
both steady-state and dynamic noninteracting control schemes were tested.
Figure 6.10 shows the effect of adding steady-state compensation for the condi-
tions of Fig. 6.4. Notice that even though there are still some oscillations, they
are smaller in amplitude and settle faster than the response shown in Fig. 6.4. By
adding dynamic compensation, the response is improved even more dramatically, -
as shown in Fig. 6.11. The settling time without any compensation (Fig. 6.4) is
on the order of 50 to 60 min, while for steady-state decoupling (Fig. 6.10) this
drops to ~ 25 min. What is even more impressive is that the dynamic decou-
pling controller produces a settling time of only about 6 min—an order-of-mag-
nitude improvement over multiple single-loop control.

Evaluation

Although all the new control schemes worked better than the multiple single-
loop controllers, the dynamic noninteracting controller performed best and
handled both disturbances and set-point changes. The set-point compensation
algorithm is much simpler to implement and gives good response to set-point
changes, but cannot respond to disturbances. Thus if one does not wish to
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Figure 6.12 The pilot plant multiple-effect evaporator showing conventional single-loop controls.
(Reproduced from Proceedings 4th IFAC / IFIP Conference on Digital Computer Applications to Process
Control, 1974, p. 154, by permission of Springer-Verlag.)

implement the complicated dynamic noninteracting controller, then the steady-
state noninteracting control scheme is preferred because it eliminates steady-
state interactions for both set-point changes and disturbances.

6.3 THE CONTROL OF A MULTIPLE-EFFECT EVAPORATOR

As our second case study, we shall consider the computer control of the pilot
plant multiple-effect evaporator shown in Fig. 6.12. A whole series of these case
studies were carried out at the University of Alberta, Edmonton, Alberta,
Canada by Professors Fisher and Seborg and their students through links to an
IBM 1800 process control computer. In our discussion here we shall treat only a
small part of their work and refer to their monograph [1] for the whole story.
The goal of the present discussion is to illustrate the performance of several
advanced process control algorithms when applied to this pilot plant process.

Modeling

The first step in this control study was to develop a simple yet reliable
mathematical model of the process. The relevant variables and their steady-state
values are given in Table 6.1. From Fig. 6.12 it is seen that the solution to be
concentrated enters the first effect at feed rate F, solute concentration C;, and
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Table 6.1 Evaporator variables and steady-state values [1]

First Second

Variable Feed Effect Effect
B,, B,—bottoms flow rate (1b/min) — 33 1.7
C;, C,, C;—solute concentration (wt %) 32 4.85 9.64
F—feed flow rate (1b/min) 5.0 — —

hy, h;—liquid enthalpy (Btu/1b) 162 - 194 -
S,—steam flow rate (1b/min) 1.9 — —
W,, Wy—solute holdup (1b) — 30 35
0,, O,—overhead vapor flow (1b/min) — 1.7 1.6
T, T,, T,—temperature (°F) 190 225 160
P,, P,—pressure (psia) — <25 746

temperature 7. For the present study the feed solution was triethylene glycol in
water. Steam at rate S; is injected into the first effect to vaporize the water,
producing vapor stream O,. The first-effect liquid effluent B, at concentration
C, goes to the tube side of the second effect and is vaporized further under
reduced pressure by condensation of the first-effect vapor stream on the shell
side. The concentrated liquid B, from the second effect is the product at
concentration C,. The quantities W, and W, are the liquid holdups in each
effect. A fifth-order nonlinear model of the evaporator was developed [1] under
the following assumptions:

1. The heat capacitances of the steam chests, tube walls, etc., are all sufficiently
small that they may be neglected.

2. The pressure controller on the second effect (see Fig. 6.12) is sufficiently
powerful to hold the temperature in the second effect T, at steady state with
negligible dynamic variations.

3. The solute concentration in the vapor leaving each effect of the evaporator is
negligibly small compared with the amount of solute leaving in the liquid.

Under these conditions, total material, solute, and heat balances on the first
effect may be written

aw
i ~F-B-0 (63.1)
dc

Wi = F(G = C) + 0,C, (63.2)
dh

W]_d’tl = F(hf = hl) - Ol(Hlu — hl) + Ql = Ll (6.3.3)

Similarly material balances on the second effect give

=B, —B,— 0, , (6.3.4)

Wy—2 = By(C, — C) + 0,6, (6.3.5)
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while a steady-state heat balance on the second effect yields

ah ah
Oz(qu - h BC ) O, ~ Ly+ Byl — hy) += B #Gy =€)

(6.3.6)

Here Q, and Q, are the heat inputs to each effect, given by
0, = uA(T, - T)) = \S; (6.3.7)
0, = AT, - T)) (6.3.8)

The quantities L, and L, are the environmental heat losses from each effect; 4,
h,, and h, are liquid enthalpies; H,, and H,, are the vapor enthalpies; and A,
represents the heat of vaporization of the input steam at temperature 7.

This set of equations constitutes a fifth-order nonlinear model of the process.
By linearization of these equations around the steady state shown in Table 6.1, a
fifth-order linear model may be obtained in the form

x = Ax + Bu + I'd (6.3.9)
y = Cx (6.3.10)

where the state vector x, control vector u, disturbance vector d, and output
vector y are

Wl
lof s, F W,
x=| h u=| B, a=| G y=| W, (6.3.11)
W, B, hy G
| & |
while =
0 -000156 —0.1711 0 0O
0 —0.1419 01711 0 0
A=|0 -000875 —1102 0 O
0 -—000128 —0.1489 0  0.00013
|0 0.0605 0.1489 0 —0.0591
[0 —-0.143
0 0
B=|0392 0
0 0.108 —00592
L0 —0.0486 0
(1 0 0 0 O
C={0 0 0 1 0
0 0 0 0 1
[ 02174 0 0
—-0.074 0.1434 0
r=|-003 0 0.1814 (6.3.12)
0 0 0
0 0 0
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Figure 6.14 Comparison of fifth-order linear and nonlinear models with experimental data for the
case of a 20% increase in stream feed rate. (Reproduced with permission from I & EC Process Design
Development 11, 216 (1972). Copyright by American Chemical Society.)
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The feedback relationship between controls u and outputs y under the conven-
tional control scheme is shown in Fig. 6.13.

Figure 6.14 presents a typical comparison of both the nonlinear (SNL) and
linear (5L) models with an experimental run under conventional control of W,,
W, for the case of a 20 percent increase in inlet steam flow-rate disturbance.
Note that both models compare reasonably well with the experimental data
except when predicting the temperature dynamics in the first effect. The model
responds much more strongly than the experimental equipment, indicating that
the thermal capacitance of the equipment itself should perhaps be included in
Eq. (6.3.3).

Multivariable Control

Having developed a reliable linear model, we can now design multivariable
control algorithms and compare these with the performance of the conventional
single-loop control shown in Fig. 6.13. A large number of algorithms have been
tested [1], but we shall only discuss the application of optimal multivariable
feedback control algorithms here (see Chap. 3 to review the theory).

The standard optimal linear-quadratic multivariable controller design was
modified to allow integral control action on the output variables. By defining a

composite state vector X = [ ’z‘ ], where
X = Ax + Bu + I'd (6.3.13)
I=y-y, (6.3.14)
y =Cx (6.3.15)

and y, is the set point of the output variables, one obtains the optimal feedback
control law in the form (see Sec. 3.3)

u(r) = —Ki = —K;x — Kz = —K;x — Kzf'(y —y)dt (63.16)
0

thus yielding proportional and integral control. Recall that K;, K, must be
computed off-line from the solution of a Riccati equation. This controller, whose
block diagram may be seen in Fig. 6.15, was implemented on the evaporator for
the case where all five states were measured and optimal constant gains were
used (corresponding to the infinite-time optimal control problem). Simulation
results shown in Fig. 6.16 illustrate the superior performance of the optimal
multivariable controller for both proportional and proportional plus integral
action. An experimental comparison is seen in Fig. 6.17 and illustrates even
more effectively the advantages of the optimal multivariable feedback control
scheme over conventional control. Note that in both instances the conventional
controller allowed significant upsets in the process dynamics, while the dis-
turbances had almost no effect on the system under optimal multivariable
control.
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State Estimation and Stochastic Feedback Control

Fisher and Seborg [1] also carried out experimental evaluations of state-estima-
tion and stochastic feedback control algorithms for the case when only W), W,,
and C, were available as outputs. A Luenberger observer and a Kalman filter
(see Chap. 5) were implemented to estimate the state variables. Both of these
were found to work well and give reliable estimates when properly tuned. These
estimators were then coupled to the optimal multivariable feedback controller to
form the stochastic feedback control system shown in Fig. 6.18.

When the observer was coupled to an optimal multivariable state feedback
control scheme, the control system behavior may be seen in Fig. 6.19. These

+
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Figure 6.18 Stochastic optimal multivariable feedback control scheme utilizing an on-line state

estimator.
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Figure 6.19 Optimal stochastic control system response with observer state estimates; disturbances:
(a) single “unknown” 20% feed-rate decrease; (b) single “known” 30% decrease in feed solute
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Figure 6.20 Optimal stochastic control system response with Kalman filter state estimates; dis-
turbances: two 20% changes in feed rate at times denoted by v; (a) “known” disturbance, (b)
“unknown” disturbance. (Reproduced from Proceedings 4th IFAC/IFIP Conference on Digital
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almost “bumpless” responses to rather large input disturbances are very impres-
sive; however, the observer behavior was seen to deteriorate rapidly if the noise
level of the data increased.

The Kalman filter, on the other hand, was found to be more robust in the
face of noisy data. Some typical responses to feed-rate disturbances are shown
in Fig. 6.20. Note that while the stochastic control system responds better to
measured “known” disturbances, it also responds well to large “unknown”
upsets.

Evaluation

The studies of Fisher and Seborg and their students [1] in applying advanced
process algorithms to this pilot plant evaporator serve as a fine demonstration of
computer control applied easily and profitably to an important chemical en-
gineering process. Both the deterministic and stochastic multivariable feedback
controllers performed well and proved to be a great improvement over the
conventional control system.

6.4 A STRATEGY FOR STEEL MILL SOAKING PIT CONTROL

The soaking pit furnace is a major unit operation in the traditional steel mill.
Large steel ingots which have been cast into molds and allowed to cool must be
reheated in soaking pits to achieve a proper temperature distribution for rolling.
Figure 6.21 shows the interior of a typical soaking pit. The ingots are placed in
the furnace in a batchwise fashion, and some 6 to 12 h later they are removed
for rolling in a rolling mill.

Unfortunately, the initial temperature distribution of the ingots is unknown,
and the temperature distribution cannot be measured directly. Only furnace wall
temperatures are routinely recorded, and these are augmented by sporadic
optical pyrometric ingot surface temperature measurements. Thus it is difficult
to determine how to control the furnace gas firing rate and to know when the
ingots should be removed from the furnace. Too high a furnace firing rate will
accelerate corrosion of the ingot surface (and can even cause surface melting),
resulting in yield loss, while very low firing rates require excessive residence time
in the furnace. Determining when the desired temperature distribution has been
achieved (so that the ingots can be removed from the furnace) is even more of a
problem. Removing ingots too soon results in poor rolling performance and
requires the return of the ingot to the soaking pit for further heating. On the
other hand, conservative, overlong heating cuts down the productivity of the
process and increases production costs. In current steel mill practice, the furnace
firing rate and ingot withdrawal time are based on certain “rules of thumb” and
visual observations of an experienced operator, but steel industry figures indi-
cate that this control scheme is not very reliable or effective.
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Figure 6.21 Ingots in a soaking pit furnace. (Reproduced from “A Visit to STELCO” by permission of
Steel Co. of Canada.)

The present case study, described in more detail elsewhere [2-4], is devoted
to testing the feasibility of an advanced process control scheme capable of
solving these practical problems. Specifically, the control scheme must:

1. Estimate in real time the temperature distribution in the ingots residing in the
soaking pit.

2. Provide a feedback control law for furnace firing rate.

3. Determine precisely when the ingots have achieved the desired temperature
distribution and should be removed from the furnace.

Clearly specifications (1) and (3) call for on-line state estimation, while (2)
requires feedback controller design based on these estimates. Because the ingots
are distributed in nature, having a nearly cylindrical shape with both axial and
radial temperature variations, our control strategy must involve distributed
parameter state estimation and control algorithms such as those discussed in
Chaps. 4 and 5. The equations to be solved for such algorithms are multidimen-
sional partial differential equations, and the real-time computations could be
substantial. Therefore, the principal aim of the feasibility study is to investigate
the control system performance on a pilot plant process and to determine if the
required computations can be readily performed in real time.
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The pilot plant ingot and furnace, shown in Fig. 6.22, consists of a stainless
steel cylindrical ingot in a three-zone electrical furnace. A hole was drilled
through the center of the ingot, through which cooling water could be passed.
This allowed rapid cooling of the ingot after a test so that a new run could
begin. Although only ingot surface temperatures were made available to the
control algorithm (to emulate optical pyrometry measurements in an actual
soaking pit), the actual ingot temperature distribution was measured by 32
thermocouples placed at 8 axial positions z, i = 1, 2, 3,..., 8, and 4 radial
positions 7 j =1,2,3, and 4, as shown in Fig. 6.23.

The ingot was modeled assuming angular symmetry, negligible heat losses at
each end, and constant physical parameters. Under these conditions, the ingot
model takes the form

T a%*r .1 aT . #'r

— =q| — +— —_— % 7%

ot (ar/2 roor * 82’2) 0-—2 _L

ro<r<R

>0 - (64.1)

where a = k/pC, is the thermal diffusivity and the boundary conditions are
given as

aT

5-2‘; =0 atz’ =0 (642)

oT ,

5‘2'7 =0 atz’ = L (643)
B ng -WEF—T) s (6.4.4)
keb=g(z,r)  atr =R (6.4.5)

Figure 6.22 The experimental ingot and furnace system.
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Here k is the thermal conductivity, 4 is the experimentally determined overall
heat transfer coefficient, 7,, is the mean water temperature, and ¢'(z’, t) is the
heat flux from the heaters at the outer surface into the cylinder. Let us define the
following dimensionless quantities:

0—T_Tw yui r=—, r=ﬂl’-
T ! X 7%
’ 2
- o R g _ MR
R? o k
'(z/, )R
als, 1) = LEDR _ gy (646)

where g;(z) is the spatial distribution of heat flux and v,(#) the heater power for
the ith zone of the furnace. Then by inserting the heater input into the partial
-differential equations, in order to make the boundary conditions homogeneous,
we obtain

3 0% 1030 0%

39 _3% 1230 3% S
Rl Rid e Sl b i (6.4.7)
29

B~ Mamy - - el (6.48)
0

Fraal I el (6.4.9)
3

i e (6.4.10)

The temperature measurements are given by

Yu() =0(r, 2, ) + (r) i=1,23,4

6.4.11
k=1,2.4.,8 ( )

where 7, represents the measurement error.

State Estimation

The first step in the control system synthesis is to develop the state estimation

equations. By extending the linear distributed parameter state estimation results
of Chap. 5 to two space dimensions, one obtains

(r,z, 1)  3%(r,z,t) 1 03(r,z,1) ,0%(r, z, 1) &

a1 = ™ L E + a o2 + 8(r — g (2)v(2)

Z

N’ N’ MI MI

* 2 2 2 2 Pr, 1 25 5 t)ijkl(t) X [yjl(t) = é(’p Zp t)]

i=1j=1k=11=1
(6.4.12)
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which when solved with the boundary conditions of Egs. (6.4.8) to (6.4.10) gives
the estimated ingot temperature distribution, 0(r, z, ¢).
The estimate covariance P(r, s, z, u, t) is the solution of

oP(r,s,z,u,t) _ 32P(r, s, z, u, 1) & 1 OP(r; 5,2, 4, ¢)

ot or? r or
9%P(r, s, z, u, t) 10P(r,s, 2, u, t) & 02P(r, s, z, u, t)
as? s 0s 922
N, N, M, M,
9°P " 2 £ s
o LEBE0D S S S S P52 000
du i=1j=1k=11I=
XP(rj,s,z,,u,t)+R*(r,s,z,u,t) rySir-£ 1
0=sz4£1
0<r<i (64.13)

with the boundary conditions

LR Y] Sérz’ i BiP(r, s, z,u, t) + Ry ()8(s —ry)) =0  atr=r,
(6.4.14)

LG sa’rz’ il R (0)é(s-1) =0 atr =1
' (6.4.15)

eas si;zz’ ol + a'R,'(1)8(u) =0 atz=0
' (6.4.16)

LaGE T 1) = ) _ WR7(u~1)=0 atz=1
(6.4.17)

A similar set of boundary conditions holds for s = 7g, s =1 and ¥ = 0, u = 1.
Because the system is linear, both the filter and covariance equations may
be solved by a modal decomposition of the form

o(r,z, 1) = 2 2 o (£)9n( r)th(Z) (6.4.18)

n;cl m]:l =
P(r,s, z,u, 1) = 21 kzl 21 2 Puiemp(Dba(P)bic(S)im(2) ¥ ()
n= =1 m=1p=1

(6.4.19)

where N, M and N,, M, represent the number of terms in the eigenfunction
expansion necessary for an adequate representation of the filter and covariance,
respectively. Here the ¢,(r), ,,(z) are eigenfunctions of the system [1-3] given
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by

A, Jo(Vi, r) - AN . ()\l/%) a) (6.4.20)

¢a(r) =

m=1

1
¥m(2) = [ V2 cos(m — )mz m > 1 el

The quantities A4, p, may be determined from the solution to certain transcen-
dental equations [2-4]. The time-dependent coefficients d,,,(f) and p,.,,,(?) are
the solutions of

. N. M, N, N, M, M,
Ll - tn)+ 3 3 3 P (1)
K=1p=1i=1j=1k=11I=1
N M
X S (r) ¥, (2) Quaa(D| vt — 21 '2=ldn’m'(t)¢n’(rj)\[/m’(zl) + Hle)
(6.4.22)
APk mp N. M. M. N, N, M, M,
TiQ o pturm?- 3 5 5 5555
n=1l'=slm=1p'=1i=1j=1k=1I/=
X pnl’mp'( t)¢1'(")4’ (24) Qijkl(’)¢n'('}')“’m'(zl)Pn'k'm7;(’)
+ Femp (1) + 2 (6.4.23)
where
A = 1, + &[(m — D]’ (6.4.24)
i) = [0 (W) (6.4.25)

The covariance equations (6.4.23) may be solved off-line, so that only the
state estimator equations (6.4.22) must be solved in real time. The experimental
testing of this state estimator and subsequent controller designs was accom-
plished using the communications and computing scheme shown in Fig. 6.24.
Temperature measurements were transmitted to the computer, which carried out
the estimation and control calculations necessary to determine adjustments to be
made in the heater power to the three zones of the furnace.

Optimal Stochastic Feedback Control

In order to control the furnace heat input, a distributed linear-quadratic optimal
stochastic feedback controller was developed and tested.* For this problem, the

* See Chaps. 4 and 5 to review the necessary theory.
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control law takes the form [2-4]

1,1l opl
v(t) = v*(¢) + ! Rilr ¥, 2,5 1
@ =v+ T2 [T f [ R )

% [o,,(r', 2,0 - 6(r, 2, t)]g(z)b‘(r — 1) drdr' dz dz’ (6.4.26)
where 8, is the desired temperature distribution set point, v*(¢) is the furnace
heat flux which holds 8 at §,, and R, is found from the solution of

R, 3°R, 9 (1 %R, 93 (1
e taleR) - et R
( 0’R, 9°R.
-« +

) + Yl Vs & 2550)

az2 9272
=L Rr 0.2, 5 08060 — DETOT 86 ~ De(€)
XR.(p,r, &, 2, t) dp dp’ dt d¥ (6.4.27)

with boundary conditions being the adjoint of those given by Egs. (6.4.14) to
(6.4.17). Here T, and y, are controller weighting parameters. The quantity R,
may be expanded in terms of the adjoint eigenfunctions to yield

Nr Mp Np Mg,

R(rnr,z,z,)= 2 2 2 2 niemp(Drr dp(Née(r)m(2)4,(2)

n=1m=1k'=1p=1

(6.4.28)
and r,.,,,(?) is the solution of
ary.
dt"v == Ynk’nprnck’nqp(t) - Yndk'mp
Ne Np Mg Mg
+ 2 3 S S (O by i (1) (6429)
n=1m=110U=1p=1
where
1
b, =f flr¢n(r)x[/m(z)g(z)8(r —1)drdz (6.4.30)
0 Yry
and
1,101 1
Viero®) = [ [ [ v, 7 2, 2, 08,V Won(2)4,(') dir i dz
rovYro
(6.4.31)

Finally, the feedback control law, Eq. (6.4.26), may be put in the simpler form
Ng Ng My Mg

VO =v )+ T3 3 3 3 raemp(Ob,a(ad,(1) = d,(0))

n=1k'=1 m=1p=1

(6.4.32)
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where a,f,'p(t) is the eigencoefficient of the temperature set point 8,7, z’, t) given
by the orthogonality relation

ad (1) = fo : [ (), (28,7, 2, 1) d dz’ (6.4.33)

and g,,(?) is the eigencoefficient of the state estimator determined previously.
The Riccati equation (6.4.29) may be solved off-line, so that only the optimal
feedback control law, Eq. (6.4.32), need be calculated in real time.

T(0)

Case 1 As a first test of the state estimator alone, all eight ingot surface
temperatures were provided to the estimator. These measurements were
corrupted with Gaussian random errors having zero mean and o = 10°C
and taken from a random number generator. The initial conditions, seen in
Fig. 6.25, show the estimated temperature distribution as uniform and some
10 to 20°C below the actual distribution. For this case two radial and five
axial eigenfunctions were used, so that the off-/ine solution of the covariance
equations (6.4.23) consisted of integrating 45 differential equations. By
contrast, the on-line solution of the estimator equations (6.4.22) required
solving only 10 differential equations in real time. The results after 120 s
show the filter tracking the actual temperature distribution quite well (Fig.
6.26), and it continues to provide good estimates as the ingot is heated
further (Fig. 6.27).

T L T LL LLS L L] 1
Data = Estimates
O Position r,
80 - A Position r, e
N O  Position r, A
X Position r,
60 | -
L ;
[
e A
40 e 4
14 g ol o § 14
o a g o
- Q x X X X X 1
X x
20 | =
o t=0s -
ol 1 o [ TR 1 1
0 0.2 0.4 0.6 0.8 1.0

z

Figure 6.25 Initial estimates and data, Case 1.
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Data Estimates
O Position 7,

80" A Position

)

0O Position r, -
X Position r,

T(CO

20 =
t=120s
O i ! IS A vy Ve AL A A
0 0.2 0.4 0.6 0.8 1.0 Figure 6.26 Filter estimates and
z data after 120 s, Case 1.
T T T w LLJ T L] Ll
Data
O Position r, O Position 7,

80 k- A Position 7, X Position 7, k!

T(¢O

0 0.2 0.4 0.6 0.8 1.0 Figure 6.27 Filter estimates and
z data after 320 s, Case 1.

Case 2 As a test of what might prove to be the final control system design,
only a single ingot surface thermocouple 8(r,, z,, f) was provided for the
state estimator (see Fig. 6.28). The state estimates were then compared with
the set-point value and the error fed to an optimal feedback controller
which adjusts the furnace heat inputs. As in Case 1, zero-mean Gaussian
measurement errors with 6 = 10°C were added to the actual temperature
measurement to simulate very noisy steel mill conditions. The performance
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of the control scheme may be seen in Figs. 6.29 to 6.31. As shown in Fig.
6.29, the estimator initial condition is some 20 to 25°C below the actual
ingot temperature distribution, and the temperature distribution set point is
much different from the initial values. After 40 s (Fig. 6.30) the estimator is
beginning to track the true temperature distribution, and by 320 s (Fig. 6.31)
both the estimated and actual temperature distributions approximate the set

point quite well.

R (rriz.z't)

{

vy (1)
> Single-surface
0y (rzt) elrzt) | Optimal vy (1) Ingot- 60,231 sensor
e - feedback ${ furnace @ S
_ controller vy (1) system
Furnace
heater
inputs
Ingot State -
Temperature 8 (r.z.0) estimator
distribution
P(.r.zz.n

Figure 6.28 Estimator-controller for the soaking pit requiring only one surface temperature sensor.
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sensor.
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Figure 630 Stochastic feed-
back controller with one
sensor; system- evolution at
40 s.

Figure 6.31 Stochastic feed-
back controller with one
sensor; system evolution at
320 s.

The performance of the combined estimator/controller system, shown in Fig.
6.28, seems outstanding, allowing good control system performance when only
one noisy temperature sensor is provided to the control system. The on-line
computational requirements were less than 25 percent of real time for this pilot
plant soaking pit having a principal time constant of about 5 min. This means
that for industrial-scale soaking pits with time constants of 5 h or more, these
computational requirements amount to less than j percent of real time. This
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suggests that a hundred or more soaking pits could be controlled by the same
computer in an actual steel mill.

This case study provides an important philosophical lesson for the control
system designer. One should not be disheartened by control system designs
involving formidable partial differential equations in many space dimensions
[such as Egs. (6.4.12) to (6.4.17), (6.4.26), and (6.4.27)] because it is often
possible, as was done here, to reduce these to manageable proportions through
judicious use of engineering judgment and numerical analysis. The effort is
usually worthwhile because the resulting control system performance can be
quite impressive, as was the case here.

6.5 CONTROL OF METALLURGICAL CASTING OPERATIONS

Another type of steel mill unit operation of great importance is casting. This
process is carried out both batchwise in molds and continuously in continuous
casting machines. Often it is important to control these casting processes so as to
prevent excessive thermal stresses which lead to crack formation, and to prevent
“breakout” of molten steel in the continuous process. The goal of the present
case study is to develop and test the feasibility of a control system for a
continuous casting machine.

The continuous casting of steel is an increasingly important part of modern
steelmaking because it is a much more efficient route to steel slabs and billets
than the conventional ingot casting-reheating-slab rolling operation. The pro-
cess, sketched in Fig. 6.32, involves pouring molten steel at the top of a
water-cooled mold and continuously drawing out a thin-walled steel slab or
billet at the bottom. If the solid steel crust is too thin when it leaves the mold,
either because of some process upset or because the withdrawal rates are too
high, the molten steel core will “break out” and the casting machine must be
shut down. By employing a distributed parameter filter to estimate the steel shell
thickness in real time, one could operate at high average withdrawal rates while
detecting potential breakouts before they occur and taking appropriate control
action.

Although a very detailed model for this process has been developed [5, 6],
the following simple model has been found to be adequate for the mold region.
This idealized picture, illustrated in Fig. 6.33, approximates the two-phase
“mushy” zone shown in Fig. 6.32 by an interface.

Assume that:

1. The solid at temperature Tg(7, 2/, t') is moving downward at speed », while
the liquid region is well mixed.

2. The physical properties are constant.

3. There is heat transfer to the mold wall with heat transfer coefficient 4.
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4. There is heat transfer from the molten liquid to the solid at 7/ = b’ with heat
transfer coefficient 4, and latent heat of solidification, £.
5. The solid-liquid interface is at the solidus temperature, T

Then the modeling equations take the form

0Ts(r, 2/, 1) P 3Tlr, 2, 1) o ¥VTdy. 5. 1)

37 g % 2 i (6.5.1)
with boundary conditions
/=0 Ts(r, 0, 1) = T(r) (6.5.2)
r=0 k,aTT;,S- = h[Ts(0,2,¢) — T,] (6.5.3)
r=>b(z,t) Tg = Ty, (6.5.4)
and moving boundary condition
B e i e+ L[ T, 2,0 = T(N] (659)

Equation (6.5.5) represents a heat balance over the moving interface and states
that the net heat flux at » = &’ is balanced by solidification.

It is possible to eliminate the variable z’ from the model by noting that the
vertical flow in the mold is along the characteristic lines

dz’

—‘F = U, Z'(O) = z(’) (656)

Thus the solution along these characteristic lines may be determined from

ATs(r, 1) O’ Ts(r', ')

= & 0<r <b(r) (6.5.7)
aT.
r=0 ks_ar_'s = W[ Ts(0, 1) — T,] (6.5.8)
r=b(r) R A (6.5.9)
‘=0 Ts(r', 0) = T(v) (6.5.10)
db'(r) _ ks Ts hy

&~ Bpg v |70 g [Ts(Bh )~ T()]  (65.11)

These equations are nonlinear due to the moving boundary; thus we shall
make some transformations which will convert the equations to a fixed-boundary

FESTRRR N

e R s
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problem. Let us define the variables

Ts — Ty r b'(¢)
= ———— = b t/ =

05 Tsol ! b’(tv,) ( ) D
Tw . Tsol hD - ks TSO‘

b= Ty e ks g psLag
T, = I h,D 4

=" k=—oT, =["Zoa (6512

Tsol aSEpI 0 bl(t”)2

By substituting Eq. (6.5.12) into Egs. (6.5.7) to (6.5.11) and making the boundary
conditions homogeneous through the use of a Dirac delta function, the model
becomes

s(r, 1) _ 3%s(r, 1) + ,41n b(x) 3s(r, 1)
at § arz dt ar

—b()H(85(0, 1) — 8,)8(r) 0<r<1 (65.13)
dlnb(r) _ 36

7 15, lr=1 = Kb(1)8(2) (6.5.14)

30
dat 5 - (6.5.15)
rom 1y fs =0 (6.5.16)

In dimensionless form, the solid surface temperature measurements (ob-
tained from thermocouples placed in the mold surface) take the form

y(1) = 65(0, 1) + (1) (6.5.17)

where €(?) is a random measurement error.
In order to test the validity of the model, simulations were carried out for
the conditions shown in Table 6.2 and compared with experimental data for the

Table 6.2

Property values used in the computation [4]

T, = 1495°C

T“q = 1523°C

Cps = C,=0.16 cal/(g)(°C)

kg ="k; = 7.02 X 1073 cal/(cm)(s)(°C)
T, = 1525°C

hy = 0.01355 cal/(cm?)(s)(°C)

u, =234 cm/s

T, = 21°C

G 0.044( 1 - 0982

— )cal/(cmz)(s)("C) (' is cm)

ps = p =74 g/cm’
D=T7cm

[
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Figure 6.34 A comparison of the model predictions with experimental data.

same operating conditions. The model predictions for solid crust thickness
versus time (or axial position), shown in Fig. 6.34, are in excellent agreement
with the data; thus it appears that the model is representative of actual
experimental operations, and we may proceed in confidence with the state
estimation study.

State Estimation

The crux of the control scheme for the continuous caster is a state estimation
algorithm which receives temperature data from thermocouples in the mold wall
[Eq. (6.5.17)] and provides estimates of the solid crust thickness b(#) as well as
the solid temperature distribution fy(r, £). The optimal least squares state
estimation equations [5, 6] take the form

s 9% 5(¢) 9, .
S _ S 4 rdln b(¢) s b(t)H(as(O, £ — 0w)8(r)

ETR ar? dt or
+ P“(r, 0, )Q(1)(y — 65(0, 1)) (6.5.18)
2 .90 o
%(tt) = TIbE,‘Iml — Kb 01(’)
+ P(0, 1) Q(1)(y — 65(0, 1)) (6.5.19)
6s(1,1) =0 (6.5.20)
9050.1) _ o (6.5.21)

or
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where P““(r, s, t), P*¥(r, t), and P’(¢) are the relevant differential sensitivities
(i.e., nonlinear “covariances”), determined by

) 36 .
Fr, 8, 1) = P38 B P4 Z% %’—55 + H(05(0, 1) — 6,)8(r)
. s db % -
— P(r, t )_.2_ 5 —-5;- + H(05(0, 1) — 6,)8(s)
— P“(r, 0, 1) Q(t) P*(O0, s, t)
s db
+ P*(r, s, t)— = <
+ P(r, s, £) L ’2 % i S (6.5.22)

— ] 8 :
P(r,t) = [n-ﬁh_‘ — 2b6,(t)K | P*(r, 1)

_ powp)| 2 4B s j -
P (z)[l;2 = 3 + H(05(0, 1) - 6,)8(r)

+P%(r, 1) + P™(r, 1, )nb(2)

+ PN, t) A 55’- — P"“(r, 0, 1)Q(1) P**(0, 1) (6.5.23)
dZ:b - 2[113:3,_, = 21;‘0,(:)1(]1»%(:)
+0b(2)P(1, 1) — P*™(0, 1)Q(£)P“(0, t)
+nb()PP(1, ) + R™\(¢) (6.5.24)
with the symmetry condition
P(r, 1) = P™(r, 1) (6.5.25)

The boundary conditions are
Py, s, t) + Ry N(0)8(r) =

s=0 6.5.26
PXs, )= 0 ( )
P*(r; st + R Y(D8(s) =0
(7,5, 8) + Ry (0)8(x) r=0 (6.5.27)
P(r,t) =0
P“(r,5,1) =0
=40 ] (6.5.28)
P™(s,8) =0
P"(r,s,t) =0
Vs powl (6.5.29)

PYr,t)=0
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where R(r, s, 1), R(?), Q(?), Ry(?) are positive weighting factors.
These equations may appear intimidating, but it is possible to solve them
through an eigenfunction expansion technique of the form

a(r, f) = i A, ()é,(r) (6.5.30)

PUr s )= 3 S apm(D6u(r)on(s) (6.531)

n=1 m=1
P(r, 1) = i B,()é,(r) (6.5.32)

where the ¢,(r) are the eigenfunctions associated with the linear part of Eq.
(6.5.18) and are the solution of

o(r) + N2, (r)=0 0<r<]1 (6.5.33)
$,(0) =0
n=12, ... (6.5.34)
$,(1) =0

which yields

,(r) =V2 cos A,r
B =12 (6.5.35)
Ao=@n-17

Applying Galerkin orthogonality conditions to the equations for és, P%;
and P* yields the eigencoefficient equations

A, (D) = =N24,(1) + ¢c,(1) (6.5.36)
dp(t) = —=A2,a,,.(1) + D, (2) (6.5.37)
B,(1) = —A2B,(1) + E (1) (6.5.38)

where A, =\/&3 + A} andc,, D,,, and E, are given by

dinb &
= 2 Ao,

m=1

(1) = —V2 Hb(6,(0,7) — 8,) — 2

Nt
+V2 Q()(y - 60,1) X a,, (6.5.39)
m=1
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2 dbif &
Do) = B,| ~2V2 (30,0~ 0,) + = dt( zlxjAjzjm)
.
s 2o
-2V2 H(65(0,¢) — 6,) + EE(E, )\kAka,,)}
-2 dg; b( 2 BN L + 2 a ,>\j1,,j)
N 2R+(_l)m+1(_1)n+l
-2
Q(’) 2 nkjgl Jm )\mAn
gyl _1yntl1
) +Ro“(( ;\1 + ( ;3” ) (6.5.40)

E(1) = P"”(t) 2 ANI, —V2 P®H(65(0, 1) - 6,)

JrT=n

dlnb
dt

1, kn

- (m S M (— 1) + 269K )B ~ 200 2 e

m=1 m=1
(6.5.41)
The variables 5(7) and P*(¢) may be determined from
db =
B VI S (~)" N
m=1
A, N" ~
— k8, + V2 ( 3 Bk)Q(t)( y — 65(0, 1)) (6.5.42)
k=1
deb bb & m+1 2
o mhad V2 D (=)™, 4,,(2) + 268,K
m=1

N,
+2V2 nb 2 (—1D)** '\ B(1)

N,

( 2 B(t))Q(t)( 2 B(t)) + R7Y(2) (6.5.43)

Here N is the number of eigenfunctions required for the filter estimates,
while N, is the number of eigenfunctions used to represent the differential
sensitivities. The state estimation algorithm then consists of solving N + 1
ordinary differential equations for the filter [Eqs. (6.5.36) and (6.5.42)] and
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1+ N, + (N2 + N,)/2 ordinary differential equations for the differential sensi-
tivities [Egs. (6.5.37), (6.5.38), and (6.5.43)]. Although it would be possible to
solve both the filter and sensitivity equations in real time, in practice it is more
practical to solve the sensitivity equations in an approximate way off-line for a
nominal state trajectory so that only the N + 1 filter equations need be in-
tegrated in real time. In this way the state estimator is easily implemented in real
time on presently available process control computers. In the present study, it
was found (after some adjustments in the computational procedure [6]) that
N = 4 was sufficient to provide a good solution to the filter equations and
N, = 3 sufficed for adequate filter performance. Thus the filter required the
solution of five ordinary differential equations in real time. In order to provide
an initial test of the filter in the face of large measurement errors, a number of
simulations were performed. The steel surface temperature measurement “data”
were provided by a simulation of the model in which the resulting surface
temperatures 6g(0, ) were corrupted by adding zero-mean white Gaussian noise
from a random number generator having a specified standard deviation o.

A selection of results may be seen in Figs. 6.35 to 6.38 for the filter
parameters given in Table 6.3. As can be seen, this nonlinear filter performs
well, converging from extremely poor initial guesses in a very short time even in
the face of 100°C standard deviation measurement error.

Evaluation

Although the state estimation algorithm developed here has been tested only
through simulation, these tests show that minimal real-time computations are
required for implementation and indicate that the solid steel crust thickness can
be adequately tracked by the estimator. Further experimental testing of the
estimator and evaluation of feedback controllers for casting operations is re-
ported elsewhere [6, 7].

.
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Figure 6.38 Filter estimates and process behavior
for the temperature profile in the solid crust,
o = 100°C.

Figure no. o () P(0)
6.35-6.36 20°C 1.96 0.001
6.37-6.38 100°C 0.0784 0.007

For all runs: b(0) =005, R-' = Ry! = R* =0,

B,(0) = 0, D,,,(0) = 1.02/A\A,,.

6.6 FURTHER CASE STUDIES

A number of other case studies which have appeared in the literature recently
illustrate the application of modern process control to industrial scale or pilot
plant processes. These include studies on distillation column control, chemical
reactor control, paper mill control, steel mill control, and a wide range of other
process control problems [8—12]. The reader is urged to consult these references
and the current journal literature for further examples.
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APPENDIX

SOME COMPUTER-AIDED DESIGN PROGRAMS

A number of educational and research institutions have devoloped computer-
aided design programs for interactive computer-aided control system design [1].
Some of the more comprehensive design packages are listed in the table below.
These computer programs are usually available for a fee. Further information

may be obtained directly from the sources given.

Program Capabilities Source

1. CYPROS, DAREK For linear and nonlinear Division of Engineering
lumped parameter systems: Cybernetics
1. Optimal and suboptimal Technical University of
multivariable feedback Norway
control Trondheim, Norway

2. UMIST
COMPUTER-AIDED
CONTROL-SYSTEM
DESIGN SUITE

2. Process identification
3. State estimation
4. Simulation

For linear lumped parameter
systems:

1. Optimal and suboptimal
multivariable feedback
control

2. State estimation

3. Simulation

Control Systems Centre
University of Manchester
Institute of Science

and Technology
Manchester, England

3. CAMBRIDGE For linear lumped parameter Control Engineering Dept.
LINEAR ANALYSIS systems: Cambridge University
DESIGN PROGRAMS 1. Multivariable feedback Cambridge, England
control
2. Simulation
4. GEMSCOPE For linear lumped parameter Data Acquisition
systems: and Control System
1. Optimal and suboptimal Center
feedback control Dept. of Chemical Eng.
2. State estimation University of Alberta
3. Simulation Edmonton, Alberta
Canada
REFERENCE

1. Lemmens, W. J. M,, and A. J. W. Van den Boom: Automatica, 15:113 (1979).
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Actuators for data acquisition, 25, 27
Adaptive control, 3
Applications:
batch reactor: adiabatic, observa-
bility of, 275-278
optimal temperature control
policy of, 95-97
casting, continuous, 351-361
model, 351-355
state estimation, 355-361
continuous stirred tank reactor:
controllability of, 59, 120-121
feedback control parameterization
of, 125
modal control: linear, 81-84
nonlinear, 121-124
models: linear, 50-52, 58, 60, 81
nonlinear, 7, 103, 119-121, 283
observability of, 252-255,
283-285
optimal control of, 103-104,
109-112, 116-118, 231-234
stabilizability of, 60
state estimation of, 261-263,
266-267, 271-274, 283-287
stochastic control of, 290-291
with time delays, 219-224,
231-234
distillation column, 62-65, 69,
319-330
control of, with time delays,
207-208, 224-229

Abpplications, distillation column:

noninteracting controllers:
dynamic compensator, 74-75,
325-329
steady-state decoupling, 73-74,
324, 328
set-point compensation, 77-78,
322-323, 328-330
evaporator, multiple-effect,
330-338
model, 330-334
optimal linear-quadratic multi-
variable control of, 334-335
stochastic feedback control of,
336-338
gas storage tank, control of
pressure in, 32-34
heat exchanger, steam-jacketed
tubular: estimation of tem-
perature profile, 298
feedback control of, 140-143,
187-188, 238-240
observability of, 295-296
ingot, steel, 34-36, 156-163,
338-351
mixing tank, 39-40, 43-46, 65-66,
70-71
model, 43-46
stochastic control of, 292-293
temperature control in, 134-136,
213-214
packed bed reactor, 197-201
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Applications, packed bed reactor:

optimal inlet temperature of, with

catalyst decay, 177-181

reactors (see batch reactor, above;
continuous stirred tank reactor,

above; packed bed reactor,

above; tubular reactor, below)
rod heating: with discrete actuators,

188-190

in a multizone furnace, 147-152,

154-155, 161-162, 164-166,
185-187, 203-206
observability with discrete
measurements, 299-301
soaking pit furnace, 338-351
ingot model, 340-342
optimal stochastic feedback
control of, 344-347, 348-351
state estimation of ingot tem-

perature distribution, 342-344,

347-348

steel slab, 91-94, 99-101, 133-134,

175-176, 302-315
tubular reactor, 8, 192-196

Bristol array, 66-71

Casting, continuous, 351-361
Compensators:
noninteraction, 71-72, 323-326
set-point, 76-78, 322-323
steady-state, 73
time-delay, 211-229
general multidelay compensator,
214-229
Smith predictor, 212-214
Computational techniques:
control vector iteration, 94-97,
176-181
control vector parameterization,
101-104, 181
direct or indirect substitution,
97-105
feedback controller parameteriza-
tion, 124-125

when linear in the control, 105-106

Computational techniques:

linear-quadratic problem, 107-114

integral control, 113-114

Riccati transformation, 107
linearization, 119-121
pseudo-modal method(s), 201-207

collocation, 203

Galerkin’s, 202-207

of subdomains (integral method),

202-203
of weighted residuals, 201-207

Computer-aided design programs, 47,

363

Computers (see Microcomputers;

Minicomputers)

Control (see Adaptive control;

Feedback control systems design;
Optimal control; Stochastic
feedback control)

Controllability:

of linear distributed parameter
systems: first-order, 143
second-order, 161-166
of linear lumped parameter systems,
56-61
of nonlinear lumped parameter
systems, 120-121

Data acquisition, 22-23

actuators for, 25, 27
microcomputers for, 22-24
networks for, 22-24
signal conditioning in, 28-30
filtering, 28
high-pass, 28, 30
low-pass, 28, 30
notch, 28, 30
multiplexing and amplification,
28-29
noise suppression, 28, 30
transmission, 28-29
transducers for, 25-27

Data acquisition and control

networks, 22-24

Decoupling control:

dynamic, 71-76, 323-326



Decoupling control:
steady-state, 73, 229, 324-326

Direct digital control, 31-32

Discrete time systems, 126-127

Distillation column (see Applications,
distillation column)

Distributed parameter systems (see
Linear distributed parameter
systems; Nonlinear distributed
parameter systems; Stochastic
feedback control, for distributed
parameter systems; Time delays,
systems with) :

Estimation (see State estimation
techniques)
Evaporator, multiple-effect, 330-338

Feedback control systems design:
computer-aided, 47, 363
' modal (see Modal control)
noninteracting, 71-76, 323-326
optimal, 84-118, 182-191, 229-240,
334-335, 344-351
parameterization, 124-125, 191
stochastic (see Stochastic feedback
control)
time-delay compensation, 211-229
Filtering estimates, 258, 260, 264,
279-283
for distributed parameter systems,
293-309, 344-351, 355-361
for linear ordinary differential
equation systems, 249-267,
336-338
with discrete time data, 263-267
for nonlinear ordinary differential
equation systems, 274-288
with discrete time data, 287-288
extended Kalman filter, 283, 285
Fundamental matrix solution, 43

Gas storage tank, control of pressure
in, 32-34
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Heat exchanger, steam-jacketed
tubular (see Applications, heat
exchanger, steam-jacketed
tubular)

Hereditary systems (see Time delays,
systems with)

Ingot, steel, 34-36, 156-163, 338-351

Instrumentation, process control,
10-36

Interaction, multivariable feedback
controllers, 61-71

Linear distributed parameter systems,
136-190
hyperbolic systems, first-order,
138-143
controllability, 143
- Laplace transform in space, 138
Laplace transform in time,
138-139, 142
method of characteristics,
139-140
optimal control of (see Optimal
control, of distributed param-
eter systems)
second-order partial differential
equations, 143-166
controllability, 161-166
with discrete actuators,
163-166
N-mode controllability,
161-163
elliptic systems, 145-146
hyperbolic systems, second-order,
144-145
Laplace transform methods,
146-148
modal decomposition, 146,
148-161
parabolic systems, 145
Linear lumped parameter multivariable
systems, 40-84, 107-114
control design techniques: modal
feedback control, 78-84
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Linear lumped parameter multivariable Minicomputers:

systems, control design
techniques:
noninteracting control, 71-76,
323-326
dynamic, 71-76, 323-326
steady-state decoupling, 73,
324-326
optimal control (see Optimal
control, of lumped parameter
systems)
set-point compensation, 76-78,
322-323
controllability, 56-61
of linear nonautonomous systems,
58
output, 57
interaction problem, 61-71
Bristol array, 66-71
mathematical models, 5-7, 40-43,
46-47
autonomous system, 42
nonautonomous system, 43
fundamental matrix solution,
43
time domain vs. transfer domain,
46-53
minimal realization, 47-50,
51-53
multivariable controllers, 55-56
single-loop, 55
normality, 61
normality matrix, 61
stabilizability, 59-60
Lumped-parameter systems (see
Discrete time systems; Linear
lumped parameter multivariable
systems; Nonlinear lumped
parameter multivariable
systems)

Maximum principle, 84-91, 166-175,
229-231

Measurements, data acquisition and
control, 25-32

Microcomputers, 22-24

Minicomputers, 11-22

central processing unit (CPU),
12-14
communications peripherals, 21-22
input devices, 22
output devices, 21-22
hardware floating-point processor,
13-14
input/output interfaces, 18-21
analog-to-digital (A/D)
conversion, 18-20
resolution, 18-20
signal conditioning, 20
digital, 18-19
-parallel transmission, 18
serial transmission, 18
digital-to-analog (D/A)
conversion, 18, 20
mass storage, 15-16
memory, 14-15
real-time clock, 16-18
Mixing tank (see Applications, mixing
tank)
Modal control, 78-84, 121-124,
153-161, 312-315, 343-351
Multivariable control, 39-127,
319-330, 334-335

Noninteracting control, 71-76,
323-326
Nonlinear distributed parameter
systems, 191-207
feedback controller parameteriza-
tion, 191
linearization, 191-201
linearized linear-quadratic feedback
control, 191
lumping of distributed systems, 191,
201-207
pseudo-modal method(s), 201-207
collocation, 203
Galerkin’s, 202-207
of moments, 203
of subdomains (integral
method), 202-203
Nonlinear lumped parameter multi-
variable systems, 114-125



Nonlinear lumped parameter multi-
variable systems:

controllability, 120-121

feedback controller parameteriza-
tion, 124-125

linearization, 119-121

modal feedback controller, 121-124

optimal linear-quadratic feedback
control, 114-118

Observability:
of first-order hyperbolic partial
differential equation systems,
293-296
of linear ordinary differential
equation systems, 250-255
of nonlinear ordinary differential
equation systems, 275-278
of second-order partial differential
equation systems, 299-302
Observers: '
distributed parameter systems,
309-311
lumped parameter systems, 267-274,
288
Optimal control, 84-118, 166-190
of distributed parameter systems,
166-190, 344-351
computational techniques,
176-182
control vector iteration,
176-181
control vector parameterization,
181
linear-quadratic problem, 182-190
necessary conditions for optimal-
ity, 167-176
weak maximum principle,
173-174
feedback controller parameteriza-
tion, 124-125
of lumped parameter systems,
84-118
computational techniques, 94-105
control vector iteration, 94-97
two-point boundary-value
problems: boundary-
condition iteration, 99-101

SUBJECT INDEX 375

Optimal control, of lumped
parameter systems, com-
putational techniques:
two-point boundary-value
problems:
control vector parameteriza-
tion, 101-104
direct or indirect substitution
methods, 97-105
conditions for optimality, 87-94
strong maximum principle, 91
weak maximum principle, 90-91
when linear in the control,
105-106
bang-bang control, 105-106
singular control, 106
linear-quadratic problem, 107-118
integral control, 113-114
Riccati equation, 108
Riccati transformation, 107
open-loop policies, 84-86, 106
of time-delay systems, 229-240

Prediction estimates, 260, 264, 283

Reactors (see under Applications)
Rod heating (see Applications, rod
heating)

Sensors, data acquisition, 25-32

Separation principle, 289, 314

Set-point compensation, 76-78,
322-323, 328-330

Signal conditioning in data acqui-
sition, 28-30

Simulation using modal representa-
tion, 152-153

Singular control, 105-106

Smith predictor, 212-214

Smoothed estimates, 258-260, 264,
278-279

Soaking pit furnace (see Applications,
soaking pit furnace)

State estimation techniques, 3,
245-288, 293-311

conditional probability distribution,
248
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State estimation techniques: l
for first-order hyperbolic partial
differential equation systems,
293-298
observability, conditions for,
293-296
sequential state estimation
algorithm, 296-298
for linear ordinary differential
equation systems, 249-274
detectability, 252
with discrete time data, 263-267
observability, conditions for,
250-255
observers, 267-274
optimal state estimation, 255-267
error in estimates, 258-259
filtering estimates, 258, 260,
264
prediction estimates, 260, 264
smoothed estimates, 258-260,
264
maximum likelihood estimate, 248
minimum least squares, 248,
255-256, 278
for nonlinear ordinary differential
equation systems, 274-288
with discrete time data, 287-288
observability, 275-278
observers, 288
optimal state estimation, 278-287
filtering, 279-283
prediction, 283
smoothing, 278-279
for second-order partial differential
equation systems, 298-311
nonlinear state estimation,
302-309
continuous time data, 303-304
discrete time data, 304-305

State estimation techniques, for second-
order partial differential
equation systems:

observability, 299-302
sensor location, 301-302
observers, 309-311
Steel slab (see Applications, steel slab)
Stochastic feedback control, 249,
288-293, 312-315, 336-338,
344-351 v
for distributed parameter systems,
312-315
separation theorem, 314
suboptimal controller, 314-315
for ordinary differential equation
systems, 289-293
linear-quadratic problem, 289-293
optimal proportional plus integral
control, 291-293
separation (certainty-equivalence)
principle, 289
Supervisory control, 31-32

Time delays, systems with, 207-240
compensation methods, 211-229
general multidelay compensator,
214-229
Smith predictor, single delay,
212-214
general formulation, 209-211
with constant delays, 210
with time-varying delays, 210-211
optimal control of, 229-240
linear-quadratic feedback control,
234-240
maximum principle for constant
delays, 230-232



