CHAPTER
FOUR
CONTROL OF DISTRIBUTED PARAMETER

SYSTEMS

4.1 INTRODUCTION

Distributed parameter systems are distinguished by the fact that the states,
controls, and outputs may depend on spatial position. Thus the natural form
of the system model is the partial differential equation, integral equation, or
transcendental transfer function. One particularly important class of distributed
parameter systems consists of those having pure time delays. There exists a wide
range of industrially important distributed parameter control problems (see
[1-4] for a selection); however, we shall choose two simple example problems to
illustrate some of the fundamental concepts.

Example 4.1.1* Consider the problem of reheating a steel slab by thermal
radiation (for rolling) in a batch furnace as sketched in Fig. 4.1. For proper
rolling characteristics, it is necessary for the slab to have a specified
temperature distribution 7,(z). Thus our problem is to control the heat flux
to the surface of the slab in such a way as to approach this desired
temperature distribution in some optimal fashion.

* This example is taken from [5] and reprinted by permission of John Wiley and Sons, Inc.
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To be more precise, let us consider the modeling equations for the slab
aT(z, 1) _ 1 3[a(T)T(z 1)/dz] 0<z<L

& B(T) % PTETE
____3723’ 2 ' id) (4.12)
oT(L, t)

B el 0 (4.1.3)
T(z, 0) = To(2) (4.1.4)

which reflect the fact that negligible heat is lost at the sides and bottom of
the slab; by adjusting the flame, one can control the heat flux at the upper
surface between bounds

vy < 0(2) < 0* (4.1.5)

Note that the state variables T(z, f) are spatially dependent, but that the
control o(¢) is only time-dependent and is applied at the boundary. For
distributed parameter systems one often must consider control variables
appearing in the boundary conditions as well as those appearing in the
differential equations.

The set points in such a control problem are also spatially dependent.
For example, here one wishes to manipulate v(¢) so as to achieve a certain
set point T,(z). If one wished to apply optimal control to this example
problem, then the objective functional

o(r)] = fo ¥ fo 1T ) - TP dt &z (4.1.6)

if minimized, would cause 7(z, ¢) to be quickly driven toward the set point
T(z). This is an example of open-loop control applied at the boundary of a
distributed process.

Example 4.1.2 Let us consider the problem of controlling the temperature in
a stirred mixing tank such as that shown in Fig. 4.2. The temperature is
regulated by a feedback controller which adjusts the fraction of hot stream
A(?) which is fed to the tank. The tank level is controlled by an overflow
weir, and the total inlet flow is kept constant by a flow regulator even when
the ratio of hot- and cold-stream flow rates varies. Unfortunately, by poor




CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 13§

Hot stream
ATy,

e f— TC |——T,

Cold Transport delay
stream i I

.

(M * (VT =700 LZ
SRR 9.
T (1) 4

Transport delay

b emmmeepe T

Figure 4.2 Control of the temperature in a stirred mixing tank with transport delays in the inlet
piping.

design, the hot and cold streams are mixed some distance from the mixing
tank, so that there is a transport delay in the inlet feed line.
An energy balance on the tank (assuming no heat losses to the environ-
ment) yields
dr ‘
pC, V— = pC,(FI(f) — FT) (4.1.7)
where T/(7) represents the feed temperature at the mixing tank itself. It is
necessary to calculate 7/(¢) in terms of the cold-stream temperature T,
hot-stream temperature Ty, and fraction of hot-stream feed A(#). Also one
must account for the fact that a transport delay occurs due to fluid flowing
at flow rate F in a well-insulated pipe of length L and cross-sectional area
a,. An energy balance over this pipe [6] yields a model for the temperature
profile in the pipe, T,(z, /), v
L 0T(2,9) y F 9T,(z,1) .

pC,

. p p;c' Y 0 0<z<L (4.1.8)

The inlet to the pipe is

T,00,0) = A)Ty +[1 — M9 ] T¢ (4.1.9)
and the exit of the pipe is the inlet temperature to the mixing tank, given by
T()=T,(L,?¢) (4.1.10)

Equation (4.1.8) is a first-order hyperbolic equation which models a
pure transport delay. Fortunately it has a very simple solution,

T(L,1) = T(0, 1 — ) (4.1.11)
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where a = La,/F is the time required for the fluid to travel in the pipe.
Thus making use of Egs. (4.1.9) and (4.1.10), one obtains an expression for

T():

T(t) = Tc + (T4 — TNt — a) (4.1.12)
If this expression is used in Eq. (4.1.7), one obtains
9_‘% =[Te + (Ty — TONt — @) = T) (4.1.13)

where § = V/ F is the mean residence time in the tank. If one converts Eq.
(4.1.13) to the transform domain by first defining deviation variables about
some steady state

T=T, A=\

s

that is, .
y=T-T, u=A—A\
then
% - (Ty = TJult ~ ) ~5  plah= (4.1.14)
and transforming, one obtains
! (Ty — To)e™™ _
Flr) = =Bl — if(s) (4.1.15)

Note that except for the time delay, Eqgs. (4.1.14) and (4.1.15) would be
simple lumped parameter models. However, the presence of the time delay
causes both theoretical and practical complications in control system design.
Design procedures for this class of important problems shall be discussed in
Sec. 4.5.

In the next section we shall introduce some basic concepts which are important
in understanding the dynamics of distributed parameter systems. Then some
simple controller design strategies for linear systems will be considered. Follow-
ing this introductory material, the underlying theory and control system synthe-
sis for the optimal control of distributed parameter systems will be presented.
Finally, control system design procedures for nonlinear distributed parameter
systems and for systems having pure time delays are discussed.

4.2 FEEDBACK CONTROL OF LINEAR DISTRIBUTED
PARAMETER SYSTEMS

In carrying out the design of feedback controllers for distributed parameter
systems, one can call on the optimal linear-quadratic controllers of the previous
section as well as on a whole host of “suboptimal” design procedures similar to
those discussed for lumped parameter systems in Chap. 3. There is a significant
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division of philosophy in the approaches taken to distributed parameter systems
control. This is illustrated in Fig. 4.3. The easiest, most straightforward ap-
proach, termed early lumping, simply discretizes the distributed parameter sys-
tem at the earliest opportunity into an approximate model consisting of a set of
ordinary differential equations in time. Then the design methods of Chap. 3 are
applied directly to accomplish controller design without recourse to distributed
parameter systems theory at all. This approach has several disadvantages. First,
conditions for controllability, stabilizability, etc., which should depend only on
the placement of control actuators, can also depend on the method of lumping
and the location of discretization points if early lumping is used. Secord, one
quickly loses the physical features of the problem through early lumping, and
the ultimate controller design may be naive and fail to take advantage of natural
properties of the system.

The alternative approach, late lumping, takes full advantage of the available
distributed parameter control theory and analyzes the full PDE model for
controllability, stabilizability, best controller structure, etc. It is only at the last
stages, after the controller design has been made, that the resulting process and
control system equations are lumped for reasons of numerical integration in
implementation. Late lumping allows the designer to take advantage of all the
natural features of the problem and to understand the system structure much
more completely. However, this approach requires a greater knowledge of
distributed parameter systems control theory; hence this section shall be devoted
to illustrating how late lumping may be applied to systems of engineering
interest.

Because the properties of distributed parameter systems depend so strongly
on the type of equations (parabolic, hyperbolic, elliptic, etc.), we shall discuss
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Figure 43 Design procedures via early lumping and late lumping.
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those classes of equations that arise most often in process control and the
applications of distributed parameter control theory to each.

First-Order Hyperbolic Systems

Let us consider the class of systems described by
ax(z, 1)

Sa o Ala— + Agx(z, t) + Bu(z, 1) (4.2.1)
x(0, £) = Buy(?) (42.2)
y(z, 1) = fo 'C(z, r, OX(r, 1) dr (4.2.3)

Examples of this class of problems arise in the control of heat exchangers,
chemical reactors, and other tubular processes [7]. Recall that Example 4.1.2
illustrates a very simple hyperbolic system.

There are several ways in which one can proceed in analyzing these
processes. One approach is to use Laplace transforms in space,

(p, 1) = fo " ePx(z, 1) dz (4.2.4)

so that for A;, Ay, B, and B, constant, one obtains the transform equations in
space

‘ﬁ(d’;’ ) - PAX(p, 1) — A Bguy(?) + Agx(p, t) + Bii(p, 1)  (4.2.5)

or

E2. D) (pa, + AJR(p, 1) — ABo()) + BE(p, 1) (426)

In this manner the equations are reduced to ODEs in time. Now if one defines
some set point X,(z) and its transform

= o0
%,(p) = f e P'x(z) dz 42.7)
(i
then one possible feedback control law would be
u(p, 1) = —Kx(p, 1) (4.2.8)
u() = —KX(p, 1) (4.2.9)

so as to drive X(p, ) to X,(p).
A second approach, which is probably easier, is to make use of the Laplace
transform in time

oo
%(z,5) = f e~x(z, 1) dt (4.2.10)
(i}
Then Eq. (4.2.1) becomes

i = A7 (sI — AQX —[xo(2) + Bii(z, 5) ] } (4.2.11)

X(0, s) = Byiig(s) (4.2.12)
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This first-order ODE in the transformed variables then can be solved to yield
z
%(z, 5) = B(z, 5)B,lig(s) — ¥(z, 5) f @'(r, 5)[xo(r) + Bii(r, 5)] dr
0

(4.2.13)

where ®(z, s) is the fundamental matrix solution found from the solution
ﬁ’—?—(‘éﬁl = A7 (sI — Ag)®(z, 5) (4.2.14)
®(0,s) =1 ' (4.2.15)

Thus Eq. (4.2.13) is a linear input-output relation
X(z, s) = Gyly(s) + sz(z, r, s)a(r, s) dr + sz,-(z, r, $)Xq(r) dr
0 0

(4.2.16)
where
G, = ®(z, 5s)B,
G(z, r,5) = —®(z, s)® '(r, 5)B
Gz, r,5) = —®(z,5)®(r, 5) (4.2.17)

In the event that the control action is applied at a discrete number of points z; or
is independent of z, then Eq. (4.2.16) loses the integral signs and simple transfer
functions arise.

A third approach to first-order hyperbolic PDE systems is through the
method of characteristics. To illustrate this technique, let us assume that A, in Eq.
(4.2.1) has the simple form

A = —dl (4.2.18)
Thus Eq. (4.2.1) becomes '
ax(z, t) 0X _
o + a . Ayx + Bu (4.2.19)
x(0, 1) = Byuy(?) (42.2)
Then by defining lines given by
Z-a (4.2.20)
or
- -;lz-z = const (4.2.21)

one obtains the solution of Eq. (4.2.19) as
dx '
& ’ = A¢x + Bu (4.2.22)

where the notation |, denotes the fact that the solution is taken along a
characteristic line defined by Eq. (4.2.21). Therefore the repeated solution of
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Eq.(4.2.22) at different values of 7, will give the entire solution (see Fig.4.4). If A,is
not of the form of Eq. (4.2.18), there will be characteristic lines for each element
of x, but the procedure can still be used.

The method of characteristics allows one to see several things very clearly.
First, the initial conditions only have the domain of influence (shown in Fig. 4.4)
below the line # — z/a = 0. For times greater than this, only the inlet conditions
x(0, ) and the controls influence the solution. As a second point, note that
solving the equations along a characteristic line corresponds to following the
changes in an element of material moving from 0 to 1 with velocity a. Also note
that discontinuities in the state variables arise in first-order hyperbolic systems.
when step changes are made at the boundary z = 0.

We shall now present an example problem to illustrate the methods dis-

cussed.

Example 4.2.1 Let us consider the feedback control of the steam-jacketed
tubular heat exchanger shown in Fig. 4.5. Thermocouples measure the tube
fluid temperature at four points, 7(0.25, ¢), 7(0.5, ¢), T(0.75, t), and T(l, ?).
These are used to determine the adjustment in the steam-jacket temperature
T, (?) (through a steam inlet valve) in order to control the exchanger.
The mathematical model for the process takes the form
oT aT

—hA
31 + v 32 7’,—(7' == Tw) T(O, I) = Tf (4.2.23)

Now if we define the deviation variables
x=T—T,2) u=T,-T, x=T,-T,

and parameters
hA

ay = — a=-v
0 PCP 1
where T,(z) is the desired temperature profile, T,, is the steady-state
steam-jacket temperature required to keep 7T = T(z), and T is the nominal
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Figure 4.5 Control of a tubular heat exchanger with steam-jacket temperature control.
heat exchanger inlet temperature, then 7,,, T, and T} satisfy
0T, —hA

v¥ - R:’(Td = de) Td(O) - 7}‘ (4224)
and the heat exchanger model is

& X s ta X0, = x() (4.2.25)

For this system, we wish to design a feedback controller which measures the
temperatures at four points, 7(0.25, ¢), 7(0.5, ¢), 7(0.75, ¢), and T(1, ¢), and
adjusts the steam-jacket temperature 7, (7) to control the outlet temperature
T(1, ¢). The measured output variables are given by

y(t) = fo 'C(r, x(r, 1) dr (4.2.26)

x(0.25, 1)
x(0.5, ¢)
x(0.75, 1)
x(1, 1)

(4.2.27)

and

8(r — 0.25)
8(r — 0.5)
8(r — 0.75)
8(r — 1.0)

C(r, 1) = (4.2.28)
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Here 8(x) is the Dirac delta function. Let us now apply the Laplace
transform in time to Eq. (4.2.25) to yield

s%(z, 8) — xo(2) — a, dff;’ . = —ayx(z, s) + ayu(s)

or, applying Eq. (4.2.16),
%(z, 5) = G(z, s)i(s) + fo "Gz, r, s)xo(r) dr + Gz, 5)%((s)

(4.2.29)
where
+
GO(Z’ S) = exp u?_i]
1
(s+ap)z [ = — (s + ag)r a,
G(z,s) = —exp = fo exp s dr y
_a £ (s + ap)z
Sy 1 — exp ———al ” (4.2.30)

G(z,r,5) = — —El:exp[( Ik )(z e r)]

a,

Thus one has a transfer function representation, and we may now use the
design procedures of Chap. 3. Generally speaking, our control law should
have the form

u(s) = G (s)e(s) (4.2.31)

relating control action to our measured output variables. For a proportional
controller this would take the form

u(s) =K(y —yn) (4.2.32)

where the designer must choose the individual components of K. Such a
controller structure is sketched in Fig. 4.6 for the case where x(r) = 0 and

K= (Kl/o K/ K30 K,) (4.2.33)

Let us note a few things about the transfer function for the heat
exchanger. Assuming x; = 0, xo(z) = 0, let us look at the response of x(1, )
to steam-jacket temperature

x(1,s) = G(1, s)ia(s) (4.2.34)
where the transfer function is
= L) _ pao/a,+s/a,
. G(1, ) E PN (1 — e/ %e ) (4.2.35)

Here there is a pure time delay* of magnitude —1/a, = 1/v appearing in
* Recall that g, = — v.
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Figure 4.6 kProportionnl feedback control scheme for a tubular heat exchanger.

the transfer function. We shall discuss such delay problems further in Sec.
45.

Let us now consider the conditions for controllability and stabilizability for
first-order hyperbolic partial differential equations. This question is much more
complicated than for lumped parameter systems [8, 9], and complete results are
not yet available. However, the basic requirement for controllability of first-
order hyperbolic equations is that a control actuator intersect each characteristic
line (see Fig. 4.4) and that a controllability condition along these characteristics
be satisfied. ‘

Second-Order Partial Differential Equations

Linear second-order PDEs can be classified according to values of the
coefficients of the highest derivatives.* The linear scalar second-order PDE in
variables ¢, z takes the form

ayx, + 2a,x,, + ayx,, = F(x, x,, x, t, z) (4.2.36)

where the g;; may be functions of ¢, z. One may form a characteristic equation by
replacing all z derivatives on the left-hand side by (—A). Then one obtains

a;, —2aA + a,A? =0 (4.2.37)
which has roots
+1/g2 —
Ay A, =212 T V02 ~ dudn (4.2.38)
axn

* A particularly readable description of this may be found in [7, 10].
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Table 4.1
A Type Characteristics
A<O Elliptic Complex
A=0 Parabolic A; = A,, real

A>0 Hyperbolic A; 7= Ay, real

Now depending on the nature of the roots, the PDE will be hyperbolic, parabolic,
or elliptic. If we recall that the nature of the roots is determined by the sign of
the discriminant
A=a2 - a,ay : (4.2.39)
‘we are let to the classifications in Table 4.1.
These classifications also apply to first-order PDEs such as

ax, + a;x, = F(X, t, z) (4.2.40)
which has the characteristic equation
a, —aA=0 (4.2.41)

yielding a unique, real value for A. Thus all first-order equations are hyperbolic.
In addition, all systems of first-order equations are hyperbolic,* and all second-
order hyperbolic equations can be reduced to systems of first-order equations. We
have seen examples of first-order hyperbolic equations in the previous section.

Second-order hyperbolic equations arise in wave propagation problems. For
example, the propagation of sound is modeled by

3% _ 9%

— =i —= 4242

o2 az2 ( )
where v, is the speed of sound and { is the sound amplitude. The characteristics
of Eq. (4.2.42) are found from

B0 S (4.2.43)

o

Thus there are two sets of characteristic lines in the ¢, z space for Eq. (4.2.42),
one with slope 1/v, and another with slope —1/v,. These lines, shown in Fig.
‘4.7, represent the motion of sound waves being reflected from the boundaries.
By making the substitution

3
=
X =00 (4.2.44)

* The only exception is if a,/a, is the same in each equation, in which case the roots of the
characteristic equation (4.2.41) are identical, and the system becomes parabolic.

PSR R
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- Figure 4.7 Characteristic lines for the sound
0 z 1 propagation equation.

we can convert Eq. (4.2.42) to the first-order system

ox, ox,
&ty =0
oL S NN (4.2.45)

at * 0z
Thus any higher-order hyperbolic equations can be converted to a system of
first-order equations and handled by the techniques of the last section.
Parabolic equations arise in processes with diffusion or heat conduction. For
example, heat conduction in a one-dimensional solid is governed by the equa-
tion

T T
pcpw - k—a—z—; (4246)
This has the characteristic equation
A=0=)\,=2,=0 (4.2.47)

We shall discuss the treatment of parabolic equations in more detail in a later
section. e

Elliptic equations occur in multidimensional diffusion or heat transport
problems such as steady-state conduction in a two-dimensional slab:

2 2
k(a—Z + L4 0 (4.2.48)
z2  ?

This problem has two space variables, so it does not fit our model, Eq. (4.2.36),
exactly. However, the characteristic equation is

A2+1=0 (4.2.49)
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and A is definitely complex. In practice, elliptic equations involving time and a
spatial variable rarely occur because physical systems seldom (if ever) have these
modeling equations.

Classifications of second-order equations involving more than two indepen-
dent variables are slightly more involved [10], but can be found by straightfor-
ward tests of the coefficients of the highest derivatives.

As in the case of first-order equations, the thrust of the analysis for
second-order systems is to use an exact reduction of a distributed system to a
lumped one and to take advantage of all the theory for lumped parameter
systems. There are several means of doing this.

1. The Laplace transform in time can be used for second-order processes just as

for first-order ones. These result in transfer functions involving spatial
variables, often in infinite series form. In principle the lumped parameter
design techniques can be applied to these transfer functions, although in
practice there are difficulties. We shall discuss these points below. ,

2. The method of characteristics can be used with all hyperbolic equations and
with some parabolic equations which have nonzero characteristics.* All these
systems reduce to first-order equations and can be treated by the methods of
the previous section.

3. Modal analysis is a very attractive method of treating PDEs which have a
real, discrete spectrum of eigenvalues and which can be made self-adjoint. It
is the natural reduction technique and works well with only a few modes if
the eigenvalues are not bunched together.

Let us now discuss in more detail some of these exact lumping techniques.

Laplace Transform Methods

We have discussed the Laplace transform technique applied to first-order
equations. Let us now show the form that this representation takes for parabolic
equations. To illustrate this, let us consider the heat equation in a slab.

* Parabolic equations with nonzero characteristics are really degenerate casa of hyperbolic
problems. For example, the parabolic system

3%, By - 0%

—a-ﬁ— vﬁ =0 322 =F (4.2.50)
can be reduced to
axy xy
T =
ax ax.
—a—} + 0-5—23 = £, (4.2.51)

by defining x, appropriately. These equations could represent a tubular reactor in plug flow. For
example, if f; = x,, then the substitution
. 9x, ax,

‘2"5:‘*"3:

(4.2.52)
leads to Eq. (4.2.50).
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Figure 4.8 A one-dimensional heated rod.

Example 4.2.2 Let us consider the one-dimensional rod shown in Fig. 4.8.
Heat is added from a steam chest at z = 0, and the z = 1 end is perfectly
insulated. Let us define variables

x(z,t) =T - T,
u(lt)=T,- T,
which represent deviations from the set-point values. In this case the model
takes the form
0x(z, 1) & 9%x(z, 1)

e i (42.53)
z=0 %f- = B(x — u) (4.2.54)
v :
0x
zm1 =0 (4.2.55)

If one takes the Laplace transform with respect to time and assumes
x(z, 0) = 0, then

sx(z,8) = — | (4.2.56)

dzZ
- L o pz-9) (4.2.57)
z= ;- u 2.
dx
z=1 o - 0 (4.2.58)
Equation (4.2.56) has the general solution
%(z,5) = A sinhVs z + B coshVs z (4.2.59)
and the boundary condition of Eq. (4.2.58) yields
A+ BtanhVs =0 (4.2.60)
and Eq. (4.2.57) yields
Vs A =B[B - i(s)] (4.2.61)
or
v_ -
LR/ e} 4.2.62)

~ (B/Vs )+tanhVs
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Thus the solution is

x(z,5) = o (—tanh Vs sinh Vs z + cosh Vs z)
1+ (Vs /ﬁ)tanh\/'

(4.2.63)

Now as an example let us consider the control of the left-hand-side end
temperature x(0, #) by the steam-chest temperature u(z). The system transfer
function takes the form

(0. 5) = u(s)
%(0, s) T+ (Vs /BYamhVs (4.2.64)

and in principle, standard lumped parameter system controller design tech-
niques may be used. However, there is no simple inversion of this complex

transfer function. In fact, Eq. (4.2.64) can be expanded in an infinite series
to yield

(4.2.65)

i=17%

where the A, are an infinite series of elgenvalues arising from the roots of the
denominator of Eq. (4.2.64). The coefficients g; are given by

g 28V, cosh?V/A, _ 28\,
: VA, + sinh VA, cosh VA, AN—B(B+1)

Thus we see that for parabolic PDEs one obtains transcendental transfer
functions which in general must be expanded into an infinite series of exponen-
tials. However, if this series can be approximated by the first few terms, then
normal lumped parameter transfer function design techniques may be directly
applied.

(4.2.66)

Modal Analysis

A convenient and useful form of analysis of second-order equations is through
modal decomposition. This form of analysis is possible when the second-order
equation

?)’:‘ Ax + Bu (4.2.67)

has a spatial operator A which can be made self-adjoint and which has a real,
discrete spectrum of eigenvalues. For example in one dimension the operator

Ax(z,1) = Az(z) + A,(z) + Ay(z)x (4.2.68)

would lead to a parabolic set of equatxons. It is also possible to extend these
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ideas to two space dimensions. For exémple
Ax(z,r, 1) = Az(z) + A (z)——- + Ag(2)x + Dz(r) + Dl(r) 3
(4.2.69)

would be one possible two-dimensional operator amenable to modal analysis. A
wider discussion of these techniques may be found in Refs. [11-16].

Perhaps the best means of discussing the modal reduction of distributed
systems is by considering a series of example problems. Let us begin by studying
the control of the temperature distribution in a long, thin rod being heated in a
multizone furnace, and shown in Fig. 4.9. The heating rate is defined as g(z’, '),
and the modeling equation becomes

T _ , 3T r>0
PG Gt W) gL i
If one assumes negligible heat flux at the ends of the rod, the boundary
conditions become

oT R
Fr =0 z2’=0,1/

By putting the variables in dimensionless form,

r'k q(z, 1)1 T(z, 1)
R, RS A A z t = —_—
PCPIZ kT, i T,

z=27 u(z, t) =

where T, is some reference initial temperature, such as 7(0, 0), one obtains the
equation

dxfz, ) - 3%z, 1) £>0
L = +
o ¥ u(z, t) B ni d (4.2.70)
- ox
2=0 =0 4.2.71)
ox
z=1 ol
% 0 (4.2.72)
x(z, 0) = x,(2) (4.2.73)

T en) TP

L1 1 11 1;”"”1 lfltltJ

Figure 49 A long thin rod being heated in a multizone furnace.
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Note that Eq. (4.2.70) is separable and can be treated by the technique of
separation of variables. Thus we assume a solution of the form
) ©

x(z, 1) = X a,(t)¢,(2) (4.2.74)

n=0
where a,(f), ¢,(2) are a set of functions to be determined. We also assume that
u(z, t) can be represented in a separable fashion with the same functions ¢,(z).

u(z, t) = 20 b,(1)e,(z) (4.2.75)

This will always be possible if ¢,(z),n =0, 1, ... , represent a complete set of

basis functions.
Substituting Egs. (4.2.74) and (4.2.75) into Egs. (4.2.70) to (4.2.72) yields

¢,(2) 2 d(’) 0 "’"( D b b)) n=012... (4276)
- ‘fi";" -0 (42.77)
y o ‘2‘:" -0 (4.2.78)

Dividing Eq. (4.2.76) by a,(t)$,(z) produces
| da, 1 d%, b,(1)

a, dt ¢, dz*  a,(t)

which may be separated into only functions of ¢ and only functions of z as
follows:

o = —A, (4.2.79)
1 d*
== — 4.2.80
¢, di? M ( )
where A, is a constant. Let us now rewrite these as

—" +Na,=b,() n=012... (4.2.81)
¢"+A,, =0 n=20,1,2 (4.2.82)

d 2 ¢n y Ly L9 o o o o

Clearly, Eq. (4.2.81) allows us to calculate a,(¢) if b,(f) and A, are known.
Equation (4.2.82) is a self-adjoint differential equation. Let us now take a short
excursion and discuss some basic concepts of differential equations.

The second-order differential operator defined over 0 < z < 1

L) = 6@ L 4 0,:) %) + ay(2)0) (4.2.83)
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has an adjoint operator L*(-) defined [16, 17] so that for any two functions y(z),
w(z), the relation

{ YLw2) dz = [ 'L (z)) de (4.2.84)
0 0

holds. For the differential operator, Eq. (4.2.83), the adjoint operator so defined
is ‘

d*(ay(2)(-)) _ d(a\(2)())
i - = + ag(z)(-) (4.2.85)
Now an operator which is identical to its adjoint is termed self-adjoint. Self-
adjoint operators have some very nice properties, as we shall see shortly; thus,
very often it is useful to put equations into self-adjoint form. For Eq. (4.2.83),
this amounts to a change of variable [17]. If we define

A exp[ f ai(a, - dz} (4.2.86)
2

L) =

and change variables as
&, =, r(z) (4.2.87)
then the operator L<i>(z) in Eq. (4.2.83) will become self-adjoint.

Having established these concepts, let us now continue with the rod heat
conduction problem. Recall that Eq. (4.2.82) is already self-adjoint and, together
with the boundary condition, Eq. (4.2.77), yields the solution

¢,(2z) = A, cosVA, z (4.2.88)

Application of the boundary condition, Eq. (4.2.77), yields the condition
VA, sinVA, =0 (4.2.89)
The only possible solutions to this are
VA, =nr  n=0=%1,%2,...
or
A, =nr* n=012... (4.2.90)

Here the A, are the eigenvalues of the system and the ¢, are the eigenfunctions or
modes of the system. Because Eq. (4.2.82) is a homogeneous self-adjoint differen-
tial equation with homogeneous boundary conditions, the eigenfunctions are
orthogonal. That is,

fo Sl W . S (4.2.91)

It is useful to choose the constant 4, in Eq. (4.2.88) to make the eigenfunctions
orthonormal, i.e.,

fo S (4.2.92)
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To do this we simply substitute Eq. (4.2.88) into Eq. (4.2.91) to obtain
-1
A} = [fl(cos VA, 2)2 dz]
0

or
1 n=0
A = . 4293
" { V2 n=12... i
Now due to the orthogonality of the eigenfunctions, one can immediately
write down the following relationships:

[6u@x(z 0 s = S a0 [ '8.)00(2) s
0 0

n=0
=a,(1) (4.2.94)

Thus, given any temperature distribution x(z, ), it is possible to im-
mediately determine the eigencoefficient a,(¢). In particular, we can immediately
represent the. initial conditions x,(z) in the form of Eq. (4.2.74) by determining
the coefficients

a,(0) = fo '6.(2)x,(2) dz (4.2.95)

By similar equations the coefficients b,(¢) for the series representation of
u(z, t) in Eq. (4.2.75) are given by

b)) = [ ', (2)u(z, 1) dz (4.2.96)
0

Thus the temperature distribution x(z, ¢) resulting from some heat flux distribu-
tion u(x, ¢) is given by the expression

N g

x(z, 1) = ay(t) +V2 Y a,(t)cos nuz

n=]
Here a,(?) is determined from the solution of

da
- —n*n’a, + b(1)
where a,(0) is given by Eq. (4.2.95) and b,(¢) by Eq. (4.2.96). The quantity N is
the actual number of terms in the eigenfunction expansion necessary to provide
a good approximation to the exact solution.
It is possible to use this modal representation in several ways.

1. Simulation The modal representation is a very efficient means of simulating
the process when there is time-varying control action. Because the eigenval-
ues A, = n’r? increase rapidly with increasing n, only a few eigenfunctions N
are required for representing the the system behavior.

For simulation, only N ordinary differential equations of the form of Eq.
(4.2.81) must be solved sequentially (not simultaneously) for a,(¢). In practice,
N =2 or 3 is often found to suffice, so that there is very little computational




CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 153

effort involved in simulation. As an example of the form of this solution, in
the case where the heating rate u(z, t) is constant in time (but possibly
spatially varying), the problem in Egs. (4.2.70) to (4.2.73) may be solved

analytically to yield
& el ... N

a,(t) = e

and

e~"") |cos nmz

N

x(z,1) = ap(0) +V2 3 |e™" by =

n=1 2'17’

2. Control A second valuable use of modal decomposition is in the design of

control structures. These applications have been discussed by Gilles [11],

Gould [12], Wang [13], and Ajinkya et al. [15]. Let us consider the controller
structure in Fig. 4.10, where we assume state variable outputs.

The control u(z, ¢) is applied to the plant, yielding the state x(z, ¢). The
actual state x(z, ) and the desired state x,(z, ) are compared and the error
fed to a modal analyzer consisting of Eq. (4.2.94). The resulting coefficients of
the error signal

e, =a,—a, n=01...,N

are fed to an N + 1 lumped parameter variable feedback control scheme. The
outputs of this are the controller coefficients b,(f). These are then fed to a
modal synthesizer consisting of Eq. (4.2.75). This produces the control signal
u(z, t) which is fed to the plant. Notice that the multivariable controller for
this linear problem consists of N + 1 single-loop controllers. This is because
there are no interactions in the modal formulation for linear problems, i.e., the

coefficient b, only influences coefficient a,,.

In principle, this control scheme requires that the complete state x(z, #) must
be available as an output. In practice, of course, this is impossible. However, one
can provide this information in several ways.

1. One can measure x(z;,?), i =1,2,.../, at a large number of points and

simply smooth these data to get x(z, ?).
2. One can measure x(z;, ) at only a few points (possibly only one) and use a

€0 by £

€, b,
Modal »{ N+1 4 Modal w(z, t) x(z, t)
analyzer ) loop o synthesizer = Process U
(4.2.94) : controller : 4.2.74)

[ ] [ ]

Y by

e

Figure 4.10 A distributed parameter modal feedback controller for distributed control u(z, ¢).
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state estimator to provide estimates of x(z, 7) (see Chap. 5 for a discussion of
state estimation).

. One can use a technique suggested by Gould [12] and replace Eq. (4.2.94) in

the modal analyzer by the scheme described below.

First, measure x(z;, ) at N + 1 spatial positions; then

N
x(zi’ t) - 2 an(’)¢n(zl) ’ el 1’ 2’ v eey N =+ 1 (4-2.97)
n=0
If we define
(igl’ 3 do(z1)  do(22) ... o(Zner)
’ o o(z)) oz ... i(zney)
x o  J Q | P A S e g GRSy
i X(Zye1s t) ; ¢n(z) .- e On(zyy)
F i
a,
a =
- aN
then Eq. (4.2.97) becomes
x = Bda (4.2.98)
and if the sampling locations are well chosen, ® will not be singular and
a=0 'x (4.2.99)

This relation may be used in place of Eq. (4.2.94) in the modal analyzer. If
measurements at more than N + 1 spatial positions are available, then one
could use a least squares fit for a using

a=(®"®) '9o’x
in place of Eq. (4.2.99).
Schemes 1 and 2 have been tested experimentally and found to work well,
but no experimental testing of scheme 3 seems to have been performed.

Example 4.2.3 Let us illustrate the application of modal feedback control by

applying a proportional plus integral modal controller to the rod-heating
problem. This means that in Eq. (4.2.81) the control law

1
b,,(t)=-K,,(e,,+T—l~fe,,dt) n=012...,N

would be applied to the Fourier coefficients, where

€, =a,, — a, n=012...,N
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o
&
2
2
2
]
o
[
20
0 1 1 1 L
=
g
-] Figure 4.11 Experimental results
T of modal feedback PI control of a
heated billet in a multizone fur-
nace [18]. (Reproduced by permis-
& e o e o e sion of Oldenbourg Verlag,
Length, z ————p» G.M.B.H.)

Maider [18] has applied this control law experimentally to such a problem
using the controller structure shown in Fig. 4.10. Some of his experimental
results are shown in Fig. 4.11, where the modal PI controller takes the metal
temperature from x(z) at ¢ = 0 to the desired profile w(z) very quickly. He
found that six eigenfunctions ¢,(z) were sufficient to provide a good
representation of both the state and control variables.

Sometimes the control appearing in the differential equation will depend
only on time, i.e., u(¢). In this case, the modal feedback control scheme shown in
Fig. 4.10 must be modified to the form shown in Fig. 4.12, where a single
controller of the form

u(?) = gleg €5 - - - » &) (4.2.100)

must be determined. There are many different ways of determining this control
law; however, one simple way is to drive the instantaneous integral squared

deviation

e(r) = fol[xd(z) - x(z, t)]i dz (4.2.101)

toward zero. Expanding Eq. (4.2.101) in the modal expansion, one obtains

A 2
e(f) = fo ( goe,,(z)qb,,(z)) dz (4.2.102)
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€90
€, .
Modal Single-loop |, (1) x(z,1)
analyzer . controller -  Process =
(4.2.94) : (4.2.100)
L]
€N

Figure 4.12 A distributed parameter modal feedback controller for time dependent control (7).

or by orthogonality,
N

() = S (1) (4.2.103)

n=0

Hence a possible design would be a PI controller of the form
u(t) = K[ e(r) + —l-fe(t) dt} (4.2.104)
O

Thus making &(#) as small as possible will cause x(z, f) to approach x,(z) with
minimal error in the least squares sense.

Let us now consider another example problem in which the differential
operator is non-self-adjoint and the control is applied at the boundary. We shall
discuss the control of a cylindrical ingot being heated in a furnace as shown in
Fig. 4.13. We shall assume the top and bottom of the ingot receive negligible
heating and the heating rate at the surface is uniform and may be controlled as a
function of time. In addition, axial variations in temperature are neglected, and
the problem is described by the one-dimensional, cylindrical heat equation

oT k o0 ( ,0T 0<r <R
P ,W=7W(r W) A (4.2.105)
with boundary conditions
" aT
r=0: 5’7 =0 (4.2.106)
T
r = R: ki)—,- = gq(¢) (4.2.107)
or
Y <t Sy
yiol g
— P .
i q(t’)
—_— r s
2 i Figure 4.13 A cylindrical ingot being heated in
S ? a furnace.
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The control problem is to adjust g(¢) so that the ingot achieves the desired
temperature distribution 7(7, ¢’). Note, however, two complications: (1) the
operator in r is non-self-adjoint, and (2) the control is applied at the boundary.

First let us discuss how to treat non-self-adjoint systems. In general, one may
invoke a change of variable, such as in Eq. (4.2.86). However, for equations of
the form

] &
L(-) ~

such as arise in cylindrical and spherical diffusion and heat conduction prob-
lems, it is possible to use Sturm-Liouville theory [16, 17]. This theory allows one
to state that the system

[p(Z)-‘%—}] +4q(z2)() 0<z<1 (42.108)

Lx = Ax (4.2.109)

[where L is defined in Eq. (4.2.108)] coupled with homogeneous boundary
conditions, will have a discrete spectrum of eigenvalues A, and a corresponding
set of eigenfunctions ¢,(z) which are orthogonal with respect to p(z), i.e.,

fo '0(2)6,(2)8,(2)dz =0 n#Em (4.2.110)

Now let us discuss the situation when the control is applied at the boundary,
as in Eq. (4.2.107). This causes the boundary conditions to become nonhomoge-
neous and could lead to great theoretical complications. However, it is possible
to make some transformations to eliminate this problem. Generally speaking,
one may introduce the boundary control into the differential equation through
the use of a Dirac delta function. For a general discussion of this, see [19-21].
To illustrate this approach, let us now proceed with our cylindrical ingot heating
problem. Let us put the problem in more convenient form by defining
T o t'k ¥ q(Y)R

X =— r=— u() = Tok

=— 4.2.111
T, pC,R? R ( )

where T, is some reference initial temperature [for example, T, = T(R, 0), the
initial surface temperature]. With these dimensionless variables the problem
takes the form

a"(a’t’ . %%(r——ax(a’r’ ’)) ‘t)§ e 1 (42.112)
with boundary conditions
- %’;‘ -0 (4.2.113)
" L i (42.114)
or e
t=0 x = xo(r) (4.2.115)

Now it is possible to construct the solution to this problem in terms of the
Green’s function [10, 16, 17] and to show that there is an equivalent problem to
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Egs. (4.2.112) to (4.2.115) with u(#) appearing on the right-hand side of the
differential equation (see Olivei [21] for an example). Let us now show a less
rigorous shortcut to that equivalent problem. Let us add u(f) to Eq. (4.2.112)
with a Dirac delta function 8(» — 1) so that

L %‘%( 3"‘a’r ‘)) # 8 = Dkl (4.2.116)

with boundary conditions

dx

r=0 ==0 (42.113)

i i 8 = _, (42.117)
or

t=0 ¥ - ) (4.2.115)

Now we can prove that this change is rigorous by integrating Eq. (4.2.116)
across the infinitesimal interval 1~ <r < 1*:

fi’/%y : ar( 2;)0' +f r8(r— Du(?) dr (4.2.118)

ax 1
‘EJ +u(f) (4.2.119)

-
but invoking Eq. (4.2.117), we see that Eq. (4.2.119) yields
ox
=" u(t)

at r = 17, so the formulations are equivalent.
Let us now proceed to use separation of variables to solve Egs. (4.2.113) and
(4.2.115) to (4.2.117). If one assumes a solution of the form

x(r,t) = i a,(t)e,(r) (4.2.120)
8(r — Du(r) = 20 b,()e,(r) (4.2.121)

and substitutes into Egs. (4.2.113), and (4.2.115) to (4.2.117), the equations
become

da, a,(t) 3 ( 3¢, i
8. 2 =__r—ar( 2 )+b(z)¢,,(r) w0 1,2...
(42.122)

with boundary conditions
dé,

r=0 =0 (4.2.123)
d

- %0 (4.2.124)

dr

A S AR s
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By separation of variables we are led to the eigenvalue problem (where we
choose the separation constant —A, for convenience)

E L (4.2.125)
lJd—(rd‘b")+}\.,, =0 n=20,1 (4.2.126)
rdr\ dr n S ATPIERES i

Now Eq. (4.2.126) is non-self-adjoint; however, it is in the Sturm-Liouville form
[Eq. (4.2.108)], and Sturm-Liouville theory tells us that :

fo lr<1»,,(r)¢,,,(r) dar=0 n#m (4.2.127)

so that ¢F = r¢,(r) are the eigenfunctions of the adjoint equation to Eq.
(4.2.126), that is, of

d’er 1 do}
15 (TH"‘) (4.2.128)

because in general the eigenfunctions of the operator and its adjoint operator are
orthogonal,

[o o2 (r)dr =0 nAm (4.2.129)

With this as background, let us proceed to solve Eq. (4.2.126) with the boundary
conditions of Egs. (4.2.123) and (4.2.124). Equation (4.2.126) can be put in the
form of Bessel’s equation [22],

2 d 2¢n ¢n

2 =
pE + r—= pa r’\,¢, =0 (4.2.130)
which has the general solution
¢, = A Jo( VA, 1) + B, Yo( VA, 1) (4.2.131)

where J,(y) is a Bessel function of the first kind and of nth order and Y,(y) is a
Bessel function of the second kind and nth order. If we apply the boundary
condition of Eq. (4.2.123), we obtain

0
r=0 ‘3’:" = -4, VA, 18 - B, VA, Y,(0)=0 (4.2.132)

which requires B, = 0 because Y,(0) # 0. Applying the boundary condition of
Eq. (4.2.124) yields

d
o g ;" = — 4,V J(VR,) =0 (4.2.133)
which leads to a definition of the constant A
J(VA, ) =0 ’ (4.2.134)

This has roots Ay = 0, VA, = 3.83, VA, =7.01, VA; =10.17, VA, = 13.33,
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etc. Thus one can calculate A, for n as large as desired from Eq. (4.2.134). We
can now choose 4, so that the eigenfunctions are orthonormal, i.e.,

=i

A2= [f'rjo(\/x“n r)’ dr} n=0,1,2... (4.2.135)
0

or using Bessel function identities (as in [22]),

2 —1/2
I(VM)
Thus
V2 Jo( VA
¢n(r)=—°(\/——"r) n=012,... (4.2.137)

J(VA)

Hence the solution to Eq. (4.2.112) takes the form of Eq. (4.2.120), where ¢,(r) is
given by Eq. (4.2.137) and Eq. (4.2.125) must be solved for the a,(¢).

Because of the orthogonality relationships, Eq. (4.2.127), one obtains inver-
sion relations

a(f) = fo "6 (D) x(r, 1) dr = fo ', (r)x(r, 1) dr (4.2.138)

and in particular, the initial conditions are

a,(0) = f lrq)"(r)xo(r) dr (4.2.139)
0
Also, the coefficients b,(¢) can be found from
b(t) = [ ' 8(r — Doy (Pu(e) dr = ¢,(1)u(d) (4.2.140)
0
b() =V2u(t) n=01,2... (4.2.141)

Thus the boundary control u(¢) affects all the modes in the same way, and Eq.

(4.2.125) becomes

‘Z” +N,a, =V2u(r) (4.2.142)

The modal control scheme for this problem will have the same form as Fig. 4.12,
and the feedback control law is

u(?) = gleg, €, &, - - - , e(2)) (4.2.143)
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This means that some weighting of the ¢ is necessary in the feedback control
law, and some of the methods of Chap. 3 would be useful in that regard.

More detailed applications of these modal approaches are presented in
Chap. 6.

Controllability and Stabilizability

As in the case of first-order hyperbolic PDE systems, controllability and
stabilizability results are complex and depend strongly on the exact definition of
what is meant by controllability or stabilizability [2, p. 138; 9; 23; 24]. For
example, exact controllability requires the exact achievement of some final
distributed state x,(z) from any initial distributed state x,(z), and the require-
ments for exact controllability are quite stringent [9]. By contrast, approximate
controllability only requires that the null initial state x,(z) = 0 be taken to within
an arbitrarily small neighborhood of the final desired state x,(z). For essentially
all practical process control problems of interest, approximate controllability is
sufficient for the adequate design of a controller. Thus we shall be concerned
here with approximate controllability conditions.

Another difference between distributed parameter systems and lumped
parameter systems is in controllability conditions when the control is applied at
the boundary of a distributed parameter system. However, detailed considera-
tion of the various controllability conditions is beyond the purpose of this book,
and we shall simply illustrate the fundamental concepts through several exam-
ples. The approach we shall use is to develop approximate controllability and
approximate stabilizability results by lumping the system through N-eigenfunc-
tion decomposition and then applying lumped parameter controllability and
stabilizability theorems to the N ODEs in the eigencoefficients. This N-mode
controllability can usually be extended to approximate controllability by letting
N — oo. This approach is best discussed in terms of specific example systems.
Thus let us consider the control of the axial temperature distribution in the long,
thin rod with modeling equations given by Egs. (4.2.70) to (4.2.72).

Ix(z, 1) _ 3%(z,1)

5 e + u(z, 1) (4.2.70)
z=0 L. G (4.2.71)
az o .. .
dx
=1. _—= le
z — =0 (42.72)

The modal decomposition using N eigenfunctions produces the solution

N

x(z,0) = 3 a,()e,(2) (4.2.74)

n=0
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where

1 n=20
= 4.2.144
#(2) {\/f cos nmz n=12...,N ( )

and

a,(t) = —n’n’a, + b,(1) n=012...,N (4.2.145)

Now define the state variables

[0 0 | bo

% — 2 b,
a, 4

wWa=| A= —4x V= bz

a " .

" o — N | | by
(4.2.146)
B=1I
" Then we can put Eq. (4.2.145) in the form
W=Aw+vV

and applying the lumped parameter controllability criterion, we get the control-
lability matrix

L, =[LAi... A] (4.2.147)

which must have rank N + 1 for approximate controllability. However, the
(N + 1) X (N + 1) identity matrix I has rank N + 1, so this system is approxi-
mately controllable for any number of eigenfunctions. :

Now let us consider the cylindrical ingot heating problem with control on
the boundary considered earlier. The modeling equations are .

ax(r,e) _ 193 ( 3x 0<r<l1
oo ar(r ar) s (42.112)
with boundary conditions

dax
r=0 =0 (42.113)

dax
r=1 =" u(t) (4.2.1149)
The solution is '

N
x(r,t) = X a,()é,(r) (4.2.74)

n=0
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where

V2 Jo(\/A_" r)

$u(r) = ———— (4.2.137)
J(VA)
and a,(f) comes from the solution to
d, = —ANa,+V2u(t) n=0,12,... (4.2.148)
If as before we define ‘

a o 0 V2
a? A V2
W o= . A= —>\2 b= \/’2'
‘;N .
L . | | V2 |
then
w = Aw + bu (4.2.149)
and the (N + 1) X (N + 1) controllability matrix is
V2 0 0 ] 0
V2 —-V2A V2A L. VI
L= (4.2.150)
V2 —=V2A, V2AR ... V2Z(=A)Y

and the system is approximately controllable so long as the eigenvalues are
simple. Simple eigenvalues are a consequence of the Sturm-Liouville character
of this example problem. This result is somewhat surprising when one thinks
about achieving any given temperature profile with only surface heat flux
control. However, having simple eigenvalues means that each mode is excited at
a different rate by u(?), and by suitable adjustment of u(¢), each g,(¢) can be
taken to the set-point value.

Feedback Control with Discrete Control Actuators

In all the discussions so far we have considered controls which acted either at
boundaries or continuous in space. However, in a number of practical problems,
control actuators can only be placed at a finite number of discrete points or
zones along the length of the distributed system. As examples, consider the
problem of heating a rod in a furnace with a small number of local heaters or
the control of a packed-bed chemical reactor through interstage cooling. In such
problems, the performance of the control system is strongly influenced by the
location of these control actuators. In fact, it is possible to choose locations for
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which the system is uncontrollable, or, alternatively, locations which are optimal
in some sense [25-29]. Let us illustrate these points through an example

problem.

Example 4.24 Let us consider the rod heating problem modeled by Eq.
(4.2.70) and shown in Fig. 4.9. Here let us assume that the heating control
takes the form ’

M i
u(z,t) = kgl 8.(2)u,(2) (4.2.151) !
where the choice
8(z) = 8(z — z¢) (4.2.152)

corresponds to pointwise control at positions z¥, z$, ..., z%. Note that
other functional forms g,(z) will lead to other forms of local control, for
example,
&(2) = H(z — z¢) — H(z - z¢,,) (4.2.153)
[where H(z) is the Heaviside step function] would produce M zones of
piecewise uniform heating in the interval z} <z < z?,,. These cases are
illustrated in Fig. 4.14.
If we apply the controller [Eq. (4.2.151)], then the model equations

become
aX(Z, t) 62X(Z, I) M
w3 sl (4.2.154)
d 0z P’
ox
et S ol 1 (4.2.155)
u, (1) ) uy (1) u,(t)

o
~
-
~
-~
~
3
—

A 4

(a) Pointwise heating

u(t)  uy(r) u,(t)

l
TS M
L 1 1 1 | |
2 'z; Z; Z: z;l z;.vl
0 ' e 1

Figure 4.14 Examples of dis-
(b) Piecewise uniform heating crete control actuators.
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Now let us illustrate how the selection of the location of the actuators
influences the controllability of the system. Equations (4.2.154) and (4.2.155)
may be reduced to the set of eigencoefficient equations

a(t)=—n*r’a,+b() n=01,...,N (42145

where b,(?) is the eigencoefficient of the control
M

1
b)) = 3 ue) [ 6u(2)8i(2) dz (4.2.156)
k=1 o
For the case where discrete pointwise actuators, Eq. (4.2.152), are used, then
M
b,(¢) = kzl dn(28)u(0) (4.2.157)
By defining w, A from Eq. (4.2.146) and
do(zt)  do(z2) ... olzh)
e ol
on(z?) on(ziy)
one obtains
w = Aw + Bu (4.2.159)

as an N-eigenfunction representation of the system. The (N + )M X
(N + 1) controllability matrix for this system is

1 s 1 0 s 0
. oi(zt) ... eu(zR) —’¢(2}) e —2¢\(2}
on(z?) ... on(zl) —NWoy(z}) ... —N¥ou(zR)

(4.2.160)

and must have the rank N + 1 for controllability. Now if the z¢ are chosen
badly, one of the rows of L. might vanish identically and the system would
be uncontrollable. For example, if N = 2, M = 2, then

1 1o 8. 0
L, =] ¢:1(z}) 1(22) .E - m2(z}) —m¥py(23) 1 mei(z) 7*p1(z3)
0x(z})  #2(23) 1 —dmPey(z}) —4mPey(23) i 16m%py(2])  1670y(23)
(4.2.161)

must have rank 3. Here ¢, and ¢, are given by
¢, =V2 cos nz
¢, =V 2 cos 27z (4.2.162)
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Now if one chooses z§ =1, z§ =3, then
oy(2F) = ¢y(23) =0 (4.2.163)

and L, has only rank 2. Thus this choice of heater positions causes the
system, Egs. (4.2.154) and (4.2.155), to be uncontrollable. This example
illustrates the rough rule of thumb that for controllability one should avoid
placing the control actuators at the zeros of the system eigenfunctions. More
will be said about optimal actuator placement in the next section.

4.3 OPTIMAL CONTROL THEORY AND PRACTICE*

One particularly important class of distributed parameter control system design
procedures is optimal control. As in the case of lumped parameter systems, we
shall begin our discussion of the optimal control of distributed parameter
systems with the consideration of open-loop optimal control strategies. A very
general class of such problems can be modeled by the partial differential
equations "
ax (x, g_’z‘ %u) 0<r<t 0<z<L  (43.)
where x(t, z) is an n vector of state variables, u(z, z) is a m vector of control
variables, and A is an n X n matrix. To prevent matters from becoming too
complex, we shall restrict ourselves to two independent variables, 0 < ¢ < ¢, and
0 <z <L, although the analysis could be extended to more independent
variables in a straightforward way [30, 31].

Equation 4.3.1 is the general representation of a very large number of
practical problems. The drying of porous materials, the behavior of chemical
reactor systems, and heat transfer problems like those described in the last
section are only a few examples of problems having this form.

The boundary conditions associated with Eq. (4.3.1) depend on the particu-
lar problem being considered; however, normally there is an initial state

x(z, 0) = w(z2) (4.3.2)
which may be available as a control variable. For example, the initial tempera-
ture distribution in the slab of the previous section might be subject to control

by preheat. The system boundary conditions are usually split (for obvious
physical reasons) and can take a variety of forms. We shall consider three

separate cases of boundary conditions here.

Case 1 Some state variables x, may have boundary conditions of the form

d

= g(x V(1) atz=0 (433a)
ox,

== h,(x, y()) atz =L (4.3.4a)

* Parts of this section are adapted from [5] with permission of John Wiley and Sons, Inc.
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as, for example, when there is convective or radiant heat transfer at the
surface.

Case 2 Other state variables x, may have boundary conditions of the form

x,(0, t) = const (4.3.3b)
x,(L, t) = const (4.3.4b)

Case 3 Still others x, may take the form
%0, =u() (4.3.3¢)
%,(L, 1) = y, (1) (4.3.4¢)
which allows the surface conditions to be controlled in an optimal fashion.

Here v(¢) is a control operating at z = 0, and y(¢) is a control operating at
z = L. It can be seen that the boundary conditions given by Egs. (4.1.2) and
(4.1.3) are just special cases of this general form.

The optimal control problem for this system can be stated, in the most
general way, as the desire to maximize the functional

u(z, 1), v(2), y(1), w(z)] = fo “Gy(x(tp 2), W(2)) dz

> f G, (x(L, ), x(0, 1), y, v) dt
§ i

(gl 0 3 O
+ fo fo G(x,u, i azz)dtdz (4.3.5)

by choosing the controls u(z, ?), v(¢), y(#), w(z).

Necessary Conditions for Optimality

For the optimal control problem given by Egs. (4.3.1) to (4.3.5), we shall now
develop an informal derivation of the necessary conditions for optimality. As in
the case of the maximum principle for ordinary differential equations, let us
assume that we have a nominal set of optimal control trajectories (z, ¢), ¥(¢),
¥(2), W(z), and let us consider the effect of variations u, 8v, 8y, 6w about these
nominal trajectories. We shall begin by expanding Eq. (4.3.1) about the nominal
trajectories to yield the perturbation equations

s (%) o5+ ) o+ (%)) 8(%) + (;;f%) 8(%)

(4.3.6)
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where ( ) signifies that the quantity is evaluated along the nominal trajectory. In
addition,
ox, 9%
MR SRR .
V=% e 9z2
and we use the convention that a repeated subscript denotes a sum over that
index; for example, :

o; S/ 9, o; o;
3%, Ox, = 2 e fa;:8x1+—a};8x2+ +8x,, ox,

Equation (4.3.6) can be rewritten as

a(8x,) 3f, f, af, ] 3(sx) af, | 9%(sx)
A at-’--(a;)'ka+(a )Suk [a(x,)]_ L +[a(x',)}. azzj

(4.3.7)
Expanding the objective [Eq. (4.3.5)] in the same way yields

oI = f {[ (e, tj‘)] 8x,(z, 1) +[ uls )] 8wj(z)}
G,
[ ox, (L, t)
&, (1) + 9 v
ayj(t) g ) o (t)} _,-(1) dt

fof{( 52) o+ (32) o0
[ | 22+ [y |

Now let us use a distributed Lagrange multiplier (called an adjoint variable)
Az, ?) to form the quantity

e () - ()

_[ o, }3(&9) [ 8 ]23%x)
(%)) 9 [a(f,) ] 8z

ox, (L, t) + [ %] 8x,(0, 1)

} dz dt (4.3.8)

]) dzdt=0 (439)
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which can be subtracted from Eq. (4.3.8) to yield

oI = f {[axk(L t)J dx (L, t) + e } 8x,(0, 1)
3G, 3G,
[a ol ()+[ )]80(:)}
7 G, 9G
L[ oo [wis] o) «

+./(;’fj(;l‘{(_g_i_i). ox, + (881:) 8u, + [a( )] a(::)

aH | 9%(8x) 3(8x;)
+ —— = \|A4;——— | } dz dt 4.3.10
where the quantity H (known as the Hamiltonian) is defined as
H=G+\f (4.3.11)

If we integrate the last three terms by parts so that

e[ 8%) | cufom . ¢ rLa (oH g
fofo[ax, 5 dzdz—fo ai,-sx’o foaz %, ) o5 4|

(43.12)
IR s . gz ar = [* 32 - SRR, (P
o Jo | (%) az2 o |d(x) oz 2 az\ax; ) 7 0 ﬂ

i

9%(dH /d :

+f ’“-(—/x—)a dz}dt (4.3.13) |
0 922

_/(')’/j(;l‘xi[ 18( )]ddz f {J\,A 8x]% — L’IM(sx.dt]dz

ot 4

(4.3.14)
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then Eq. (4.3.10) becomes
yro([(3H\ 03@QH/3%) . 3*dH/3%,) LA |
o= 14 (3m) -2 |

3%, ) 3 a2 o1
(%g) au,] dz dt +f ({[V,?(GLZ—()_] + (%g:) —iw—Ha/z—af-'f)—} 8x(L, 1)
(52) ono ] w0+ [s5 [,
‘ﬁ](—-) H5) o)
+)\,A,,‘} 8w,‘(z)) dz

9G,
+f ({ [ axk(tf, z)
(4.3.15)

we(z)
To remove the explicit dependence of 67 on 8x(z, ), let us define the adjoint
variables A,(z, f) by

O Au) _ _[( 8H ) _ J0H/3%,),  3*3H/d%,)
ot

0x, /. az 3z2

+

+

) b0+

+

A,A.-k] Sislan ) + {

] k=12 ...,n

(4.3.16)

which causes the first term in Eq. (4.3.15) to vanish.
Now let us consider the three separate cases that can arise from the
boundary conditions [Egs. (4.3.3) and (4.3.4)].

Case 1 For those state variables having boundary conditions Egs. (4.3.3q)
and (4.3.4a), the boundary condition variations become

3(8x,(0, ag; v
( xa(z 1) - {[ axj(g’ t)} 8x,(0, 1) +[ = (t)] Bu(t)} (4.3.17)

a(s::,;zL, 9) _ “ ax,?}’: t)] 8x(L, 1) +[ s ()] sy,(t)} (43.18)

Case 2 For those state variables with boundary conditions of the form of
Eqgs. (4.3.3b) and (4.3.4b), the variations

3(8x,) ]L
0

0z
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are free and the variations
: 8x,0,1)  8x(L,1)

vanish.
Case 3 For those state variables with boundary conditions Egs. (4.3.3¢) and
(4.3.4¢), the variations

9(8x;) 1~
9z

0

are free and .
0x,(0, 1) = dv,(2), Ox(L,t) = 8y,(¢) (4.3.19)

If we denote the state variables in Case 1 by index s, those in Case 2 by
index r, and those in Case 3 by index p, we can rewrite Eq. (4.3.15) as

81=ff(gf)8udzdt+f ({[s_a_(‘_;'_t_) i
0 Jo \ 0%/ xi(2, %) |
+ {[%f-(—)} +>\,A,k} awk(z)) dz +f"(( aH’) v (1) + (2—11-) dy,

[ a”(,,‘g ) } 8,0, 1)
) } dx,(L, t)) dt

) } 8x,(0, )

AIAik} 8x,(z, 1))

s

ax,(0,0) |

{
+{[ax<L ,)] |5 t)]. a(

Sl =em]-(38)-

(a8 2 3 21

) () e

[ 8 ) 52
' (4.30.20)

4
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where we have defined additional Hamiltonians as

H, %6, + Mgk (4321)
Hy=G, - 3‘—.".—(0, i (43.22)
oH(L, ¢
H,=G, + gx ) (4323)
i

Now to cause the coefficients of the arbitrary variations

8x,(0,7)  &x,(L,¢)

3(8x) a(8x ) ]
0
to vanish, we must specify the following boundary conditions on the adjoint

variables.
For Case 1 boundary conditions:

8H, _ 3H(0,1) aHO,0 ]\ _ .
{ ax,(0, 1) ax, ” az[ o%, i) (4.3.24)
H,  3H(L,1) _ 3 [dH(L,1)
{ (L) | 0% Ta?[—*‘——ax 0 (4.3.25)
For Cases 2 and 3 boundary conditions:

L L
21'1] ’%ﬁ] . (4.3.26)

X’ 0 X’ 0

In addition, if the terminal state x(z, ;) is completely unspecified, the terminal
conditions on A become

Nz, )4, = k=12...,n (4.3.;7)
k( f)

It should be noted that if the partial differential equations are not second-
order in some of the state variables x,(z, ), then dH /3%, = 0, and Case 2 or 3
boundary conditions are possible only at one side. If, for example, x (L, #) was
unspecified, then the coefficient of 8x (L, f) in Eq. (4.3.20) must vamsh The
boundary condition on A (L, #) would then be

3G, OH
EeY ik 0 (4.328)
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Thus these results apply to both first- and second-order partial differential
equations. Applying these results reduces the variation in 7 to

oI = f”f (aH)Gu,dzd +f{[a (t)] (1) + [a ()]8y,(t)}dt
{(5)- (2 230w
((5)+ () -2 oo

L oH
¥ fo {[3‘-‘,’(—;) ] aw,.(z)} dz (43.29)

where the influence of the variations 8u, dv, 8y, 6w on the objective 87 is now
clear. Since the variations 8u;, 8v;, 8y,, 8w, are all arbitrary, a necessary condition
for 8/ < 0 and the nominal policies ©, vV, ¥, W to be optimal is that the
coefficients of the variations vanish. Thus we can collect our results into the
following weak maximum principle:

Theorem In order for the control trajectories @, V, ¥, and W to be optimal for
the problem defined by Egs. (4.3.1) to (4.3.5) and subject to the upper- and
lower-bound constraints

Ue S uy S uf

Vje
Yie S Vi S IR
wp Sw, S w! (4.3.30)

<y <y

it is necessary that
oH
(a_u,)’ 0 (4.3.31)

for u(z, f) unconstrained and H be a maximum when #(z, ¢) is constrained.
If @, is only a function of z, then

i ”( ... ) dt=0 (4332)

7

must hold for unconstrained i(z) and [§H dt must be maximized with
respect to constrained i(z). Similarly, if # is only a function of ¢, then

f ( i ) dz =0 (4.3.33)

oy,

must hold for unconstrained #(¢) and [§H dz must be a maximum with
respect to constrained #(?).
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Furthermore, it is necessary that

(_af_) wid (43.34)
( g )=o (4.3.35)
{ z;_z: abg()(_; N, 2 [8H(0t ]} il (4.3.36)
( a;, ) =0 (4.3.37)
[e;)G; aHg)I: ) 3(3”“82’)/ o ]=o (4.3.38)

must hold for unconstrained w(z), v,(¢), v,(2), ¥,(#), y,(?), respectively, and
these quantities must be nonnegative at the upper bounds on the controls
and nonpositive at the lower bounds. If any of the w), v, v,, y,, y, are
unconstrained constant parameters, then the necessary conditions become

fo L(a—Hl) dz=0 (4339)

ow, |

yf 3H,
fo ( % ) dt=0 (4340

fo"{ic—’ ., az[aH(o t)”.dtéo (4.3.41)

ao, ax 6xp

fo "(Z—H’-) dt=0 (43.42)

Vs

f" 3G,  H(L,1) _ A(3H(L, 1)/3%,)
ol W, 0x, , 9z

The adjoint variables A,(z, #) are defined by Eqgs. (4.3.16) and (4.3.24) to
(4.3.28), and H, H,, H,, H, by Egs. (4.3.11) and (4.3.21) to (4.3.23).

} dt=0 (43.43)

We hope that the reader was not unduly intimidated by the apparent
complexity of the theorem. The rather involved nature of these expressions is
caused by the fact that we wish to present a fairly general statement of the
necessary conditions for optimality for the system described by Eq. (4.3.1). The
hope is that the reader can apply the results of the theorem directly to many real
problems and will have to derive the necessary conditions only for very unusual
problems not falling within this framework.
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In order to illustrate the application of these general results to a particular
problem, we shall produce the necessary conditions for optimality for the
slab-heating problem discussed in Sec. 4.1.

Example 4.3.1 From the general formulation, produce the necessary condi-
tions for optimality of the heat flux program o(#) for the optimization
problem described by Egs. (4.1.1) to (4.1.6). Let us assume for the moment
that the coefficients a and B are constant.

SoLuTtioN First we shall define the needed Hamiltonians:
a’r
Hs[T - TP + Mz, )% ~=

[ 4(2)] (2,0 B o

Hy,= — %A(O, 1)o(t)

H;=0
Then the necessary condition [from Eq. (4.3.35)] for v(?) to be optimal is
that

rv” . for %)\(0, >0
v(t) ={vs S0 < 0* for %J\(O, )=0
Vs for %}\(0, )<0
where the adjoint equation [from Eq, (4.3.16)] is
9’_‘(‘;—”) =-|AT-T)+ %____azz(zzz f

Clearly the terminal state A(z, #) is unspecified and the boundary conditions
are Case 1, so that the boundary conditions on A [from Egs. (4.3.24),
(4.3.25), and (4.3.27)] become

%%[A(O, n]=0
S5 ML) =0
Az, 4) =0

Thus we have specified the necessary conditions for v(#) to be optimal by
simply plugging into the general equations given in the theorem. We note
the fact, which is of considerable practical interest, that the optimal heat
flux must either correspond to the upper bound (the maximum allowable
value) or be zero. The only exception to this stipulation is the case when
A(O, £) = 0. Thus we have learned the form of the optimal program without
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performing any calculations. One could readily test likely candidates for the
. optimal program uv(f) by solving the given adjoint partial dlfferennal equa-
tions and examining the behavior of A0, ?).

Some Computational Procedures

Just as Pontryagin’s maximum principle formed the basis of computational
approaches to the solution of lumped parameter optimal control problems in
Chap. 3, the distributed maximum principle of this section forms the basis of a
number of computational procedures for distributed parameter optimal control
problems. The most commonly applied method is the control vector iteration
technique. This procedure is very similar to the one described in Chap. 3 and
makes use of the fact that if the initial estimates @, V, ¥, and W are nonoptimal,
then a gradient correction

M, &) - eo(%};{). (4.3.44)
sy e,(f’%‘). (4.3.45)
8v,(¢) = ez( aai’ ) (4.3.46)
bu,(1) = e,[ %—zp’ - %f; + %( %)] (4.3.47)
&,(1) = 24( aH’) ' (4.3.48)

(4.3.49)

b, |
3G, aH 93(dH/3%)
() =e| =24+ - ———=

I, X, 0z

will show the greatest local improvement in 87 for sufficiently small positive &,
€, €5, €3, €, &s. The detailed algorithm then is

1. Guess u(z, 1), (1), y(#), w(2), 0 <t < 1,0 <z < L.

2. Solve the state Eq. (4.3.1) together with the boundary conditions [Egs. (4.3.2)
to (4.3.4)]. Compute / from Eq. (4.3.5).

3. Solve the adjoint Egs. (4.3.16) together with the boundary condition [Egs.
(4.3.24) to (4.3.28)].

4. Correct u(z, t), v(?), v,(2), w(z) by Egs. (4.3.44) to (4.3.49), where the ¢, are
so chosen as to maximize /. A multivariable search may be used, or alterna-
tively we may assume g = aey, i =1,2,...,5 and perform an initial
scaling of the g, followed by a single vanable search on g, at each iteration.

5. Return to step 2 and iterate.
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Just as in the lumped parameter optimal control problems, these procedures
progress very rapidly in the initial stages, but slow down considerably as the
optimum is approached. Thus efforts are being made to extend second-order
ascent procedures as well as conjugate gradient methods to these problems.

From a practical standpoint, computational difficulties would arise (caused
largely by inadequate computer memory) if we were to tackle problems in
several dimensions with a large number of control and state variables using this
technique. We note, however, that it is quite feasible to carry out the optimal
control of systems modeled by partial differential equations and having a
number of state and control variables. Indeed, a host of such problems have
been tackled by chemical and control engineers; some references will be made
to such work in subsequent sections of this chapter.

For practical reasons we shall restrict ourselves, in the illustrative examples
to be presented, to systems described by partial differential equations with
relatively few state and control variables.

To demonstrate this control vector iteration procedure, we shall determine
the optimal inlet temperature control for a train of packed bed reactors whose
catalyst is subject to deactivation (see [32, 33] for the treatment of simila
problems). :

Example 4.3.2 Let us consider the problem of disposing of exhaust gases
from a smelting or other ore-processing operation. One solution which has
been employed to avoid the air pollution resulting from SO, and other
noxious components in the stack gases is to oxidize the material (e.g.,
transform SO, to SO, for the production of sulfuric acid). Let us consider,
furthermore, that this oxidation is to be carried out over some catalyst
which is subject to deactivation with time. Because the reaction is ex-
othermic and is assumed to be reversible, a number of adiabatic stages are
employed with interstage cooling, as shown in Fig. 4.15. We assume that
species A is the reactant and B is the oxidation product. Thus the reaction

ky
A= B
k2

is to be carried out in the three adiabatic packed bed reactors sketched in

1 2 3
Packed Packed Packed jummmpe
T, bed T, bed T bed ]

— 7
T T T T T ¥
+ = + 5 + -
Gl (12 a2 0.3 aJ ﬂ.‘

Figure 4.1 Optimization of the reactors used for SO, oxidation.
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Fig. 4.15. The modeling equations are given as

<l

; (Mass balance on the product) WEL %Y (4.3.50)
E 0z <L

| aF(z',t' gl
| pGuiT ) - (—AH, O K(TYCr - C) = T)Gy ]
o <r <
% Qe balaan) D 5F 34 (43.51)
;g 0<z's<sL

b T(,*,¢) =T, T(a4*, ¢)=T,

% T(ay*,¢) =T, Cy0,¢) = Cy (4.3.52)
5 which represent steady-state material and heat balances in the reactor train.
5 The quantities a; denote the points of separation between the beds, C is the

gotal feed concentration, and Cyy is the feed concentration of B. The total
catalyst lifetime is #, and the total reactor length is L. The reaction rate
constants are given by k; = A,ge " 5/RT i = 0, 1, 2. The decline in catalyst
activity y(z’, ¢') at each point in the bed can be described by

wy(z, t) 5 0S¥ =
s - sl k(T ! 4.3.53
o o DY g ( )
where the initial activity is taken to be unity for fresh catalyst, that is,
Y(z,0) = 1.0 (4.3.54)

Thus if the time scale for catalyst decay is much longer than the time scale
for the dynamics of the reactor, then Egs. (4.3.50) to (4.3.54) are the
modeling equations for the system.

Let us suppose that we wish to control the interstage coolers (i.e., the
inlet temperatures T, T5, T5) so as to maximize the conversion of A over the
catalyst lifetime . However, due to heat exchange constraints, it is assumed
that the possible inlet temperatures are bounded by 7, < 7, < T*. This is a
practical optimal control problem because by raising the inlet temperature,
we both increase the conversion of 4 from Egs. (4.3.50) and (4.3.51) and
hasten the deactivation of the catalyst through Eq. (4.3.53). Thus there is an
optimal inlet temperature control strategy T',(¢"), T,(¢'), T5(¢') which must be
determined, and we do this by applying the control vector iteration tech-
nique to the problem.

SoLuTiON Let us first recognize that Eqs. (4.3.50) and (4.3.51) are not
independent, but can be related by the transformation

T(z,t) =T, + ("p—é’f’-)[q,(z, )= Cylef, )]  i=1,23

P
(4.3.55)
because of the adiabatic operation.
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Now we define the new variables

C RT RT.
x(z, 1) = é x(z, 1) = Y(z, 1) u, = —E—l u, = —E-,—-l
1 1
= o 2 43.56
3. == E'1 == Eo Pl s El— ( S )
_ ¥ A,oLCr o 4 t
Tk—El ,B' = 1—1,2 p--Aotf z-—-z t_Tj
o Crr (—AH)RC, ~ RT, RT*
o =— xlf=— = —_—— Ue = u":=___
L Cr pCPEl E, E,

so that the modeling equations become
o 0xy(z,0)
az

IA

+ 5z O Bie™ /%1 - ) — Pt ] 9 SESH

(4.3.57)
or
ax,(z, t)

0 i f(xp Xy, )

which describes the reactor conversion. The catalyst activity can be de-
termined from

0x,(z, t)

= o (R |
ot p(x ) e g(x]’ X2 uk) 0 <z< 1 (4'3'58)

where
x,(0,8) = x;  xy(2,0) =10 (4.3.59)
and Eq. (4.3.55) becomes
7.(2, 1) = w (1) + J[xl(z, t) = x(a t)] k=123 (43.60)

The objective functional, which is the cumulative conversion of 4 over a
catalyst lifetime, now becomes

I =flxl(1, ¢) dt (4.3.61)
()}
The Hamiltonians of interest, H and H;, become
a L =
H = \(z, ’)[ = i(—z——)‘ + f(x), x5 “k)J + My(z, DE(x), x, 1) (4.3.62)

az
H, = x,(1,1) (4.3.63)
where the adjoint variables are given [see Eq. (4.3.16)] by

= M (z, 1) af
0= “[T“ - +>\2a (4.3.64)
oA,(z, ¢t 5
g Nt af B (4.3.65)

TR 23x,
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with boundary conditions [see Egs. (4.3.27) and (4.3.28)]
ML) =1 (4.3.66)
A(z, 1) =0 (4.3.67)

The computational procedure then is as follows:

p—

. Guess 4,(7),0<t < 1, k=123.

2. Solve the state Egs. (4.3.57) and (4.3.58) forward in z, ¢ using the method
of characteristics (or finite differences); compute I.

. Solve the adjoint Egs. (4.3.64) and (4.3.65) backward in z, ¢.

4. Correct the controls u,(7) by
( a—H) dz (43.68)

Qg 41
u (1) = (1) + &
new old f"‘k Oy

where k = 1,2,3,a, =0, @, =1, a; =2, a, = 1, and ¢, is determined by
a one-dimensional search.
5. Return to step 2 and iterate.

w

It is important to note that because there are three beds, control u, only
applies over 0 <z <3, u, over 3 <z <2, and u; over 2 <z < 1. This
explains the limits on the integral in Eq. (4.3.68). This computational
algorithm was applied for the set of parameters 8, = 5.244 X 10°, 8, = 2.28
X 10°, p = 1300, . = 0.070, u* = 0.080, p = 1.648, p, = 1.666, J = 0.005,
xy; =0, and the result after five iterations is shown in Fig. 4.16. The

B, = 5244X10° P = 1648
B, = 228X10° P, = 1666
p = 13000 J, = 0.005
—{ 0.080
r—-“l
= 0078 %I%
5 3
é
s
3 0076 §
g 5
§ E
Qo
0.074
. L . L Figure 4.16 Optimal inlet tem-

00 02 04 06 08 1.0 perature progression for Exam-
Operation time ple 4.3.2, an oxidation reaction.



182 ADVANCED PROCESS CONTROL

In principle a direct substitution approach similar to that discussed in Chap.
3 could be used for these problems. However, the uncoupling problem of
explicitly representing the optimal control in terms of the state and adjoint
variables can rarely be done in practice; thus direct-substitution methods usually
cannot be applied.

There have been a large number of applications of these computational
procedures to practical problems. The reader is directed to Refs. [1, 2, 36-40] for
general surveys.

Optimal Feedback Control of Linear Distributed Parameter
Systems—The Linear-Quadratic Problem

Just as the linear-quadratic problem led to an optimal feedback control law for

lumped parameter systems in Chap. 3, there are similar results for distributed

parameter systems. To illustrate this general result [2, 3], we shall explicitly

consider an example of parabolic second-order partial differential equations.*
Let us consider the linear state equations

ox 92x ox
E = Azg + Al—a'z- + AOX + BII(Z, t) (4373)
with boundary conditions
% +Dgx =Bguy(t) z=0 (4.3.74)
ax
5 D,x = Bu,(?) z=1 (4.3.75)

Now the quadratic objective functional has the form
1,1 -
I1=1 x(r, t,)" SAr, $)x(s, t,) dr ds
zj;_/(; ( f) j("s)(s j)
+1 fo y fo : fo [x(r, )TE(r, 5, OX(s, 1) + u(r, )TE(r, s, (s, 1) ] dr ds dr
1/
+1 [ 0B )uo(r) + w (E (2 (1) ] (4.3.76)

Now let us apply the maximum principle of the previous section to this problem.
Let

H(r,t) = %fl(xTFx + u"En) ds + A7(r, 0)[ Ax(r, 1)
0

+ Ax(r, 1) + Ax(r, 1) + Bu(r, 1) ] (4.3.77)
Hy(t) = 3uiEqug — AT(0, 1)A,[ —Dox(0, 1) + Bouy(1)] (4.3.78)
Hy(t) = 3u{Equ, + AT(1, NA,[ —-Dix(1, 1) + Byu,(1)] (4.3.79)
Hy(r) =3 fo 'x(r, t)"S[(r, s)x(s, 1,) ds (4.3.80)

* As we shall show, these results also apply to hyperbolic first-order PDE systems.
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Then the necessary conditions for optimality become

0H(r, 1) 1 T
il o M2 AP + BTA =0 4.3.81
T ™ Tl + IR i
oH
——2 = Equy — BTATA(0, 1) = 0 (4.3.82)
du,
dH
-2 = Eju, + BIAJA(1,7) = 0 (4.3.83)
1

If u depends only on time, then the necessary conditions for optimality
become

fo 'a%‘f(’?)i). & - fo '[ fo 'E(r, 5, )u(r) ds + BTA(r, z)] dr =0 (4.3.84)

For u(r, ¢), inverting Eq. (4.3.81) leads to
1
u(r, 1) = — f E*(r, s, )BTA(s, 1) ds (4.3.85)
0

where E*(r, s, ) is the inverse of E(r, s, t), defined by ,
f 'E*(r, 5, DE(s. p, ) ds = 8(r — p)I (4.3.86)
0

For u(?), Eq. (4.3.84) leads to
1,1 -1 ,1
u(s) = —[ fo fo E(r, s, t)ds‘dr] fo BTA(r, 1) dr (4.3.87)

Similarly,
uy(?) = Eg 'BTATA(O, ©) (4.3.88)
u,(2) = —E['BTATA(1, ©) (4.3.89)
Now the adjoint variable A(r, ?) is given by
dX(r,) _ 1 o 7OA 92
el fo F(r, s, )X(s, {) ds A+ AT - AT (4390)
with boundary conditions
1
A, r) =f SA(r, s)x(s, t;) ds
0
DIATAQ, 1) — ATA(O, 1) + AT 2D _ g (4391)

—DTAIN(L, 1) + ATA(L, 1) — AZTE)A(alz, g

Now if we define a variable S(r, s, f) by the Riccati transformation

Alr, ) = j; IS(r, s, )x(s, t) ds (4.3.92)
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we can substitute Eq. (4.3.92) into Eq. (4.3.90) to yield

fo '[$x(s, 1) + Sx(s, 1)] ds = LHS (43.93)
RHS = fo =K 5, (s, 1) — ATSX(s, 1)
+ ATSx(s, 1) —A]S,x(s, 1) ] } ds (4.3.94)

LHS = f’{Sx + S[A2 22" + A, %" + Agx + Bu(s, t)]} ds (4.3.95)
0
Now
1 ox? ax 1! 1 ox
j; S(I’, S, I)Az'as—2 ds —S(r, S, t)Az—a; ]o —'l(; S:AZX ds

= S(r, 1, )A,[Bu, — Dyx(1, 1) ]
— S(r, 0, 1)A;[ Bou

—Dex(0, 1)] —S,4,x]} + fo 'S_A,x(s, 1) ds

(4.3.96)
Similarly
f SA, ds =SAxx]! f S,A,x(s, t) ds (4.3.97)
Thus
- '[($ +S,A; — S,A, + SA)x(s, 1) + SBu(s, )] ds
0
= [S(r, 1, DA, D, — S(r, 1, DA, + S,(r, 1, DA, ]x(1, £)
+[S(r, 0, )A, D, — S(r, 0, )A; + S,(r, 0, H)A, ]x(0, 1)
+S(r, 1, )A,Bu, — S(r, 0, )A,Byu, (4.3.98)
Now

fo 'SBu(s, ) ds = — f ' fo 'S(r, s, )BE*(s, p, )BTA(p, 1) ds dp

1,1
= — [ [ [, 5, OBE*(s, p, ()BTS(p, 2, 1)x(z, 1) dz ds dp
0 Y0 Y0

ﬂ
o\-

l[_/:fols(” z, 1)BE*(z, p, )BTS(p, s, 1) dz dp]X(S, t) ds

(4.3.99)
1

S(r, 1, )A,Bu, = — f S(r, 1, ))A,B,E; 'BTATS(1, s, 1)x(s, ) ds (4.3.100)
0

S(r, 0, )A,Byu, = fo 'S(r, 0, 1)A,B,Es 'BTATS(0, s, H)x(s, ) ds (43.101)
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Now combining RHS and LHS and collecting coefficients of x(s, ), one
obtains the Riccati equation:
S,(r,s,t) = —S_ A, — AJS,, + S A, +AS,
1,1
—SA, — ATS + f [S(r, 2, (yBE*(z, p, )BTS(p, s, 1) dz dp
oo
+S(r, 1, t)A,B,E; 'BTATS(1, s, 1)

+S(r, 0, t)A,B.Eg 'BIATS(0, s, t) — F(r, s, 1) (4.3.102)

With the coefficients of x(1, #), x(0, #) in Eq. (4.3.98) yielding the boundary
conditions

S,(r, 1, )A, + S(r, 1, £)(A,D, — A)) =0 (4.3.103)
S,(r, 0, 1)A, + S(r, 0, /)(A,D, — A) =0 (4.3.104)
and the terminal condition [see Egs. (4.3.91) and (4.3.92)]
S(r, s, ;) = S{r, 5) (4.3.105)
one can show that the symmetry conditions
S(r,s,8) =S(s, r, )7 (4.3.106)

must hold. Thus we now have the feedback control law for u(z, ) as

u(z, ) = - [ : fo 'E*(z, s, )BTS(s, p, x(p, 1) ds dp  (4.3.107)
0

and for u(7) from

u(t) = — [folj(;lE(r, s, t) ds dr]—lj;]j;lBTS(s, p, t)x(p, t) ds dp

(4.3.108)
The boundary controls take the form
ug(r) = Eg 'BIAT [ 'S(0, s, 1)x(s, 1) ds (4.3.109)
0
w(1) = —E;'BIA [ 'S(1, s, Ox(s, 1) ds (4.3.110)
0

where S(s, p, f) can be precomputed off-line from Egs. (4.3.102) to (4.3.106).
Thus the linear quadratic problem leads to an optimal feedback control law
even in the case of PDE systems.
Let us now illustrate the specific form of the optimal control law with more
detailed examples.

Example 4.3.3 Let us consider the control of the temperature distribution in
a long, thin rod being heated in a multizone furnace. This is similar to the
example problem discussed in the last section. The modeling equations are
aT(z',¢) _ , d°T

p CP at’ =k F) 212

+q(z,r) T(z,00=T, (43.111)
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where ¢(z’, ') represents the heat flux from the different zones of the
furnace and the boundary conditions

oT
ik

arise when we assume negligible heat loss at the ends of the rod. Defining
dimensionless variables

z7=0 z'=1

_tk _ , _q(z, )2 , _T(z, 1)
t= P Sl u'(z, 1) kT, x'(z,8) = T,

where T, is the initial uniform temperature in the rod, one obtains
dx'(ze 1) o, A%z 1)

o 52 + u'(z, 1) (4.3.112)

ax’
z=0 = - 0 (4.3.113)
= 1 i 0 (4.3.114
e = 3z ‘ ELE)
t=0 x' =1 (4.3.115)

If we define the objective functional (to be minimized) as
I =%fl[x’(z, 1) - x",(z)]ZS/ dz
0
lf’ffl ’ ’ 2 ’ ’ 2
+1 {F[x'(z, ) = x(2) ]+ E[ (2, 1) — u(2) ] }dtdz  (43.116)
o Jo

where x;(z) is the desired final temperature profile and uj(z) is the final
steady-state control profile required to hold x)(z), i.e.,

9%x(2)
9z2
and defining x = x’ — x, u = u' — u}, then Egs. (4.3.112) to (4.3.116)

become
ax(z, 1) _ 0%x(z, t)

u(z) = - (4.3.117)

o a2 + u(z, 1) (4.3.118)
ox
z=0 PP 0 (4.3.119)
9x
z=1 - 0 (4.3.120)
x(2,0) =1 — x(2) (4.3.121)

1 41
I =§sffo x*(z, 1) dz +§f0 fo [ Fx*(z, 1) + Eu*(z, )] dt dz
(4.3.122)
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This is the same form as the linear-quadratic problem posed above, where
S{r,s) = S;8(r — s)
F(r,s,t) = F8(r — s)
E(r,s,t) = E&8(r — s) = E*(r,s,t) = E~'8(r — 5) (43.123)
A,=1 A4,=0 A4,=0 B=1
Dy=By=D, =B, =0
Thus the optimal feedback control iaw for this problem is

wlz, ) = = fo 'E-18(z, p, D)x(p, £)-dp (43.124)
where S(7, s, t) is given by
S(r,s,8)=-S,— 8, + j(;lS(r, p, VE ~'S(p, s, t) dp — F 8(r — s)
(43.125)

with boundary conditions
S,(r, 1,8) = S,(r,0,2) = S,(1,5,7) = S,(0,5,£) =0 (4.3.126)
and
S(r,s, 1) = S 8(r — ) (4.3.127)

Thus one can precompute S(r, s, ¢) from Egs. (4.3.125) to (4.3.127) and use
it in the optimal feedback law, Eq. (4.3.124).

Example 4.3.4 Let us now consider the feedback control of the steam-
jacketed tubular heat exchanger shown in Fig. 4.5 and discussed in Example
4.2.1. Thermocouples measure the tube fluid temperature at four points,
7(0.25, ¢), T(0.5,¢t), T(0.75,¢), and T(l, ), and adjust the steam-jacket
temperature 7,(f) (through a steam inlet valve) in order to control the
exchanger.

Recall that the mathematical model for the process takes the form

oT 0T hA
o + 0—5; — ;C—.,p(T -T) 70, ¢t) = Tf (4.3.128)
Now if we define the deviation variables
hA
x=T—- T,z u=T,—-T, ay, = —
d( ) d 0 PCP

where T,(z) is the desired temperature profile and T, , is the steady-state
steam jacket temperature required to keep 7' = T(2); i.e., T, satisfies

0T, hA
v =TT TO=T, (4.3.129)
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then the linear quadratic problem takes the form
. i Y 2 1 ‘I{ 1 2 2} )
= o) S;dz +5 L) F|dz + Eu(t)"} dt
g b = ot [T Tole ] e e
(4.3.130)

where

ox ax
F Rl A + Ggx — agu x(0,¢) =0 (4.3.131)

Again, this is in the linear-quadratic form of Egs. (4.3.73) to (4.3.76) where
S{r, s) = 5, 8(r — )
F(r,s,t) = F&(r — s)
E(r,s,t) = E= E*(r,s,t) = E"! (43.132)
A, =0 A, =-v Ag= —aq, B = +a,
Dy — o0 By,=0
Thus the optimal feedback control law is
u(t) = — E"aoflflS(s, p, )x(p, t) ds dp (4.3.133)
()
where S(, s, t) is given by
S,(r,s,1) = —S,0 — S,0 + 2Sa, + af,E"‘[folS(r, z, 1) dz]

x [ [ 'S(o, s, 1) dp] ~ F8(r—3) (4.3.134)

0

with boundary conditions
S(r,0,17) = S(0,s,7) =0 (4.3.135)
S(r,s,4) = S;8(r — 5) (4.3.136)

Thus the optimal feedback control can be implemented if x(z, f) can be
estimated from the four measurements x(0.25, ), x(0.5, #), x(0.75, ¢), and
x(1.0, ). More shall be said about this estimation problem in Chap. 5.

A fuller discussion of the linear-quadratic problem applied to first-order
partial differential equations such as these may be found in [41, 42].

Example 4.3.5 Let us now consider the optimal feedback control of the .
heated rod problem of Example 4.2.4 with discrete spatial actuators. Recall
that the model equations take the form

aX(az D D L S ) (43.137)
t 322 k=1

0x
y 0 z=0,1 (4.3.138)
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and the linear-quadratic control problem (Example 4.3.3) is to minimize*

1 41 M
I =%'£) Sfxz(z, tf) dz + %j(;fj; [sz(z, t) + kgl E,‘gk(z)(u,‘(t))2 dz dt

(4.3.139)
Thus by choosing
[ f lEl g, dz 0 ]
0
1
f E,g, dz 2
E(r, s, t) = 9 =E
0 j(; lEMgM dz
(4.3.140)
and applying the general results of Eq. (4.3.86), one obtains
: . -
(5 ) :
0
1 -1
E,g, dz =
E*(r, s, t) = (_/(; 282 ) -t
0 ( j(; IEMgM dz)_
(4.3.141)
and the feedback control law
A 1,1
u(r) = £-! f f g(s)S(s, p, )x(p, t) ds dp (4.3.142)
)
where
uy(?) &(2)
u(r) = : g= : (4.3.143)
up (1) gm(2)

The Riccati equation then becomes

A

SAr 5.0 = =8, = S, +[ [ 2, 087(2) dz B[ ['S(e. 5, 0e(o) do
0 (i}
—F&(r—s) (4.3.144)
with boundary conditions given by Egs. (4.3.126) and (4.3.127).

* Notice that we use only the first power of g,(x) in the objective. This is done to avoid
mathematical complexities when delta functions such as in Eq. (4.2.152) are used.
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To illustrate, the form of the control for discrete pointwise controllers,
Eq. (4.2.152), is

1
u (1) = E! f S(zt, 0, Ox(p, )dp  k=1,2,..., M (4.3.145)
. 0
where S(r, s, t) is the solution of

M
S(r,s,0) = —8,— S, + > S(r,z2, )E'S(z},5,1) — F8(r — )
k=1

(4.3.146)

In the case of zone heating, Eq. (4.2.153), the control law is

w() =[Eeta ~ D)7 | [0 0.0 s |x(0. 0 do

k

(4.3.147)

where S(r, s, ¢) arises from

-4 ZE 4 o
S,(I',S, 1) = ~ B = A ¥ Z {fk S(r, z, ’)dz[Ek(zI:+l—zl:)] l
k=11%"z¢

x [ P gle, 5,0 dp} e E W= & (4.3.148)

In order to determine the optimal location and shape of the actuator
signal g,(z), it is necessary to define a suitable objective functional. For
example, the linear quadratic objective, Eq. (4.3.139), could be modified to

1
min {1 =%[01Sfx2(z, y) dz +%j:’j; [sz(z, t)

(1), 8(2)
M
+ ¥ Ekgk(z)u,f(t)] dt dz} (4.3.149)
k=1

where one must optimize both with respect to #,(f) and to the function
8(2). Note that having complete freedom in the choice of g,(z) is equivalent
to choosing the continuous control u(z, ) optimally. Thus Eq. (4.3.149) is
most useful when g, (2) is restricted in form. For a detailed discussion of the
optimal shape and location of discrete controllers, see Refs. [25-29].

It is possible to extend the linear-quadratic optimal feedback control prob-
lem to nonlinear partial differential equation systems by linearizing about some
nominal optimal open-loop trajectory, just as was done for lumped parameter
systems in Chap. 3. However, this extension is straightforward and shall not be
discussed further here.

Some more detailed examples of the application of optimal feedback control
are given in Chap. 6.
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4.4 FEEDBACK CONTROLLER DESIGN FOR
NONLINEAR DISTRIBUTED PARAMETER SYSTEMS

Just as for lumped parameter systems, nonlinear distributed parameter processes
are difficult to analyze because most of the powerful tools of linear analysis fail
to apply. In addition, many of the exact lumping methods of the last section also
are not applicable. Thus one must resort to a host of ad hoc methods for
controller design similar to those employed for lumped parameter systems, and
some new lumping methods must be used. In this section we shall begin with a
brief discussion of some nonlinear controller design methods and then proceed
to a more detailed treatment of efficient lumping techniques for distributed
parameter systems.

Controller Design Methods

The design methods available for nonlinear distributed parameter systems are
essentially of the same type as for lumped parameter systems. They are princi-

pally: :

1. Linearized linear-quadratic optimal feedback control

2. Feedback controller parameterization

3. Linearization and application of linear design methods (e.g., Sec. 4.2) to the
linearized equations

4. Lumping the system to ODEs and application of the lumped parameter

* design methods of Sec. 3.2

Linearized linear-quadratic feedback control was discussed in Sec. 4.3 and is
similar in approach and philosophy to the design procedure for lumped systems.

Feedback controller parameterization is conceptually the same procedure as
discussed in Sec. 3.4 for lumped parameter systems. Basically one defines a
feedback controller structure, e.g.,

u(z, 1) = j(;lFB(z, r, t, a, x(r, t), x,(r, 1)) dr (44.1)

with parameters a, and then chooses the controller parameters to minimize some
desired objective functional. Some examples of this design procedure may be
found in [43, 44].

Linearization of the distributed parameter system about some steady state is
possible in some instances. However, there can be some difficulties when the
linearization is about a nonhomogeneous steady state because the coefficients
become spatially dependent. Example 4.4.1 below illustrates these points.

Lumping of the distributed system and then applying lumped parameter
design methods is the most straightforward approach. However, one must be
aware of the potential loss of information in the lumping process, as discussed in
Sec. 4.2.

Various approaches to this problem are illustrated in what follows.
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Example 4.4.1 Let us consider the nonlinear problem of the control of a
short, homogeneous chemical reactor in which a zero-order exothermic
reaction is taking place. A mathematical model for such a system is the axial
dispersion model

oT : oT 'y -
pfgfw = —prp!v—é;; + k-é‘;;; + (—AH)koe E/RT _ hA_,(T = Tw)

0<z <l wa
>0

with boundary conditions

aT
zZ=0 prP/U(T s 7}) o k_b_z_’ (443)
oy T =0 (4.44)
z

where 7} (¢), T,,(¢) may be considered the manipulated variables. Let us now
put the model in dimensionless form by defining

_to . 2 s PG
t= ] gms Pe = k
—AH )kge E/RTo | E hA,l
2Co, To v RT, PGy 0
= = = 44.
x(z, t) T, u T, g T, (44.5)
where T, is a reference temperature. The system then becomes
ax(z, 1) 9x 1 3% T
—_—t = -+ —— TR = t 4.4.6
5 % T Pe a22+Be Bx + Bu(t) ( )
z=0 %; = Pe x — Pe uy(1) (44.7)
dx
=1 B F 4.
z % 0 (4.4.8)

Now we shall indicate how one may linearize this system about some
steady state x,(2), u,, u,,, satisfying

ax, 1 9%,

0= — T Yoge ™ + Bes/(+x) — Bx + Bu, (4.4.9)
3

z=0 3’;— = Pe x, — Pe ug, (4.4.10)
3

¥ ol o O (4.4.11)

0z

s
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Subtracting Egs. (4.4.9) to (4.4.11) from (4.4.6) to (4.4.8) and linearizing, one
may obtain the linearized equation in X(z, ¢) = x(z, t) — x,(z), 4 = u() —
U, aO = uO(’) — Ugs

xX(z,1) _  3X(z,1) 2 X 0% (z, 1)

+J(2)% + B (4.4.12)

ot 0z Pe azz
z=0 o Pe X —Pe i, (4.4.13)
0z
=1 9% g (4.4.14)
az
where J is the Jacobian of the nonlinear term evaluated at x,(z)
J(z) = —2L _emsarx) _ g (4.4.15)
(1 +x)

Note that it is this nonlinear term which makes the analysis difficult—due
to the fact that J depends on x,(z) and is thus a function of z. However, let
us proceed to show how one, in some instances, may be able to use modal
decomposition and control on these linearized equations. Let us first make
the boundary condition, Eq. (4.4.13), homogeneous by inserting the homo-
geneous part into the differential equation with a delta function to generate
the equivalent system of equations [and let us suppress the () notation]:

ax(z,t) _ Ox(z, 1) 1 3%(z,0)
—a = 0t T + J(2)x + Bu + 8(z)u,
(4.4.16)
Ix
z=0 = Pex (4.4.17)
3o 2 0 (4.4.18)
az — Ve

This system of equations is now amenable to modal decomposition. Thus let
us assume that a solution to Eqgs. (4.4.16) to (4.4.18) is in the form

x(z, 1) = 2, a,(1)d,(z) (4.4.19)
u()) = 3 5,06, - u(z)[ ) b,.¢"(z)] a0

8(z)up(t) = i c(De,(2) = “o(’)[ i. C,,¢..(Z)} (4.4.21)
which means

o0

Sha=1 3 () =502 (4422)

n=1 n=1
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Applying separation of variables leads to

1 dan = &u(t) - cnuO(t)
a, d a, a,
2
l = d¢n 1 d ¢n (4.4‘23)

el  Z Rt J(2)¢a(2) | = —A,

and the equations

da, + Na, = Bbu(t) + cu(t) (4.4.24)

dt
1 d’¢, dg, |
Pe 2 @ T+ A]e() =0 (4.4.25)
d¢22(0) = Pe ¢,(0) (4.4.26)

d¢;z(l) =0 (4.4.27)

Notice that the presence of J(z) in Eq. (4.4.25) is a problem because it
prevents a general analytical solution to the eigenvalue problem of Egs.
(4.4.25) to (4.4.27). To surmount this problem, there are several ways to
proceed. ‘

1. If the steady-state temperature profiles of interest are essentially uniform,
then one may linearize about a uniform temperature x,(z) = const, and
J(z) becomes a constant. In this case, the separation of variables solution
proceeds in a straightforward way.

2. A second approach is to assume that the J(2)x(z, t) term in Eq. (4.4.16)
may be expanded as follows:

J(2)x(z, 1) = Zlﬂ.(t)«#,.(Z) (44.28)
where f,(7) is to be determined.

In this instance the separation of variables procedure leads to

e Na0) = Bou() + i) + () (4429)
1 d%s, do, B
Pe gz @ TMe(z) =0 (4.4.30)

with boundary conditions (4.4.26) and (4.4.27). Now this equation may be |
put into Sturm-Liouville form ]
1 d

_ a() .
L)y w2 [ p(z)—dz—-] + 4(2)() (4.2.108)
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by noting that
P& _ 1 1d@)_

o — . s (4.4.31)
q(z) = A,
which immediately leads to
p(2)=e*  p(2) = Fle—e“P” g=A\, (4.4.32)
and Eq. (4.4.30) becomes
Pe ep“%(e“l’”iz—") + A dy(z) = 0 (4.433)

with the orthogonality relation
[ e Py (2)e,(2)dz =0 n#m (4.4.34)
0
Thus ¢,(z) is the system eigenfunction and ¢}(z) = e Pe2g (z) is the adjoint

eigenfunction.
To solve Eq. (4.4.30) for ¢,(z), let us make the substitution

o,(2) = e /2w (2) (4.4.35)
to yield
I Pe _
5o+ (}\,, - —4—)w,, -0 (4.4.36)
subject to
aw,(0) _ Pe
aw,(1) Pe
—d‘z—"— - = 7 Wn(l) (4438)
Now this has the solution
w, = A, sin a,z + B, cos a,z (4.4.39)
where
2 Pe
O Pe(A,, " -4—) (4.4.40)
Now application of Eq. (4.4.37) yields
A, Pe
—En- =5 (4.441)

and Eq. (4.4.38) gives

: P .
a,(A, cos a, — B, sina,) = — —ZE(A,, sin a, + B, cos a,,) (4.4.42)
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or substituting Eq. (4.4.41) and collecting terms,

2
ot i [a,, " (%e—) ai,, ]sin a, (4.4.43)
which may be simplified to the transcendental equation
P
tng, = ——2  pE2.. (4.4.44)
of — (Pe/2)
Thus
Pe .
s B,.(cos @z + 5 sin a,,z) n=1,2... (4445

where a,, is determined from the roots of Eq. (4.4.44). In terms of the system
eigenfunctions, the solution to Eq. (4.4.30) is

¢,(2) = B”e””/z(cos a,z + ;Tesin a,,z) n=12... (44.46)

n

We shall choose B, to make the eigenfunctions orthonormal to the adjoint
eigenfunctions [see Eq. (4.4.34)]:

fl( Pe
cos a,z +
0 2a

n

B =

n

2 -1/2
sin a,,z) dz} (4.4.47)

Thus we have accomplished the exact modal decomposition, where the
lumped system equations are given by Eq. (4.4.29). This can be used directly
in a control synthesis scheme. The coefficients c,, d,, f,(?) are given from the
orthogonality relations

b= [ ‘wde . We12... (4.4.48)

0
¢, =6,00=B, n=12,... (4.4.49)
£ = fo '[J(z)qb,,(z) ﬁlam(t)%(z) dz (4.4.50)

Note that in practice only N terms in the eigenfunction expansion will be
retained, and this means the evaluation of N integrals for f,(?), i.e.,

N

W =3 a1, (4.4.51)
m=1
where
Ln = [ T(2)60(2)0,(2) dz (4.4.52)
0

Thus one can effectively linearize nonlinear PDEs and perform exact modal
analysis. However, the equations for a,(#) are now coupled [due to the f,(¢)
term], so that the problem is multivariable in a,(f) with interactions.

R et sk
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; Even more complex nonlinear distributed parameter systems have been
analyzed through such modal decomposition using the eigenfunctions of the
associated linear operator (e.g., [45, 46]). This shall be illustrated through an
example.

Example 4.4.2 Let us consider a packed bed reactor with jacket temperature
cooling. It is assumed that the exothermic gas phase reaction 4 — B is
carried out in the reactor and that the reaction is zero order. Furthermore,
the thermal time constants of the packing are dominant, so that we assume
the gas temperature is always at quasi-steady state (i.e., the gas residence
time is much shorter than the packing thermal time constant). Thus the gas
temperature is given by

aT,
up,cp,—‘,f =hS(T—-T,) - hS(T,~T,) (4.4.53)

with boundary conditions
2 =0 T, =T, (4.4.54)

-4
Now the catalyst packing has the equation

aT 9°T

i —— —E/RT _ N
Py 12Ya e az,z ( AH)koe thl.‘(T 8)

~hS,[T - T,(1)] (4.4.55)

where S, is the pellet surface area/volume and S, is the surface area for wall
heat transport/unit volume, and with boundary conditions

=0 L - (4.4.56)
9z

2 =1 - =it (44.57)
0z

Now if we put this problem in dimensionless form by defining

L ~F T =T h.S,1 kSl
xg == T X = ac = ag = ——
h; T; up;Cyy up;Cpr
5 = e P
! p,C, 12 RT;
(—AH)kge™ 12 h S, 12 B, Syl
= KT, B. = % ) = "% (4.4.58)
T, E 1 E E x
u(t) = — — — —_—
W=7 R~ '"%+1 RT, RT 'x+1
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then we get
ox,
-5-;—. = a(x = x;) — ag(x, — u) (4.4.59)
x,(0,) =0 (4.4.60)
x(z,t) 9%(z,1) /lx
a 3z = Be*/(+Dl — B.(x - xx) - Bp(x — u)
(4.4.61)
dx
z=0 ;e 0 (4.4.62)
ox
= | Frie 0 (4.4.63)
Now the equation for x, can be solved as
x(z,1) = fle—("“““-)(‘_’)[acx(r, 1) + e u(t)] dr
0
= a‘u(t) — e (acta)z lo—(ata)z-n
_—ac+ag(1 e )+acj(;e X(r,t)dr
(4.4.64)
If we assume that the solution can be found in terms of
N
X (2, 1) = 3 c,()(2)
n=0 (4.4.65)
N
x(z, 1) = X a,()$,(2)
n=0
N
u(t) = 20 b,(1)$,(2) (4.4.66)

and assume the nonlinear terms can be expanded in terms of the complete
set of functions ¢,(z):

F(x, %) = Be"/C*0 _ g(x — 2y~ Bx= 3 1(06:(2)

n=0
(4.4.67)
then Eq. (4.4.61) becomes
da,(t)  d’,
dt n dz?

6,(2) =[B,b.(1) + £,(D]0u(2) (4.4.68)

R
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with the boundary conditions

de,

Al 5 =0 (4.4.69)
. Y 4.4.70
z=1 o = ( 4. )

By separating variables we are led to the equations

da (¢
( ) + Aa,(t) = B,b,(1) + £,(1) (4.4.71)
d

¢"(z) +A9,(z) =0 (4.4.72)

Now the eigenvalue problem [Egs. (4.4.69) to (4.4.72)] is the same one
treated in Sec. 4.2 and has the solution

1 =0
- 4.4.73
(%) [ V2 cos nmz =12...,N ( )
and
A=n* n=012...,N (4.4.74)
From the orthogonality relations
a0 = [ '.(2)x(z, 1) dz (4.4.75)
0
1 u(?) n=20
b,(1) = dz = 4.4.
(0= [leud = {40 170 @ae)
¢ (1) = fo '6,(2)x,(2, 1) dz (4.4.77)
1
£ = fo 6,(2) F(x, x,) dz (4.4.78)

Thus the control scheme has the structure shown in Fig. 4.17. Notice that a
nonlinear function generator is needed to determine the coefficients f, and
that the controller must deal with nonlinear behavior f,(a, ¢). The resulting
lumped system, Eq. (4.4.71), is a nonlinear multivariable lumped parameter
system with interactions because Eq. (4.4.67) leads to a nonlinear relation
between f, and aq,, c,; i.e., substituting Eq. (4.4.65) into Eq. (4.4.67) and
applying Eq. (4.4.78) yields

> 4,9,

1
¢,(z){ B exp| v
L 1+ X a9,

-B.X(a,— )b, — B, X a,0,1 dz = f,

(4.4.79)
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Thus the lumped controller design equation takes the form

da,(1)
S — 1) + Jllg ays .+ s Gy, €1 €3 - < 5 B5) + BB
(4.4.80)

and we must appeal to the nonlinear design techniques of Sec. 3.4. This
Galerkin modal decomposition procedure should converge for sufficient
number of eigenfunctions. This method can be applied whenever the nonlin-
earity appears as a forcing function in the partial differential equation—a
very frequent situation.

Lumping Methods

If one wishes to “lump” the partial differential equations (either before control
system design or after the design in order to numerically solve the design
equations), there are a large number of very efficient methods available. There-
fore classical finite difference methods should be used only after several of the
more efficient methods have been considered. The most efficient lumping
methods may be viewed as pseudo-modal methods; that is, one expands the
solution into a set of known basis functions ¢,(z); for example,
N

x(20) = 3 a,(0,(2) (4.4.81)
n=1

Then one uses some goodness-of-fit criterion to determine the coefficients a,(f)
which yield the best approximation to x(z, f). Notice that this is simply an
extension of the modal decomposition method with the difference that pseudo-
modal methods may use any set of basis functions, while eigenfunction expan-
sions use the eigenfunctions of the linear operator. It is possible to treat both
linear and nonlinear partial differential equation systems by pseudo-modal
methods such as the method of weighted residuals [47-51]. Given a nonlinear
system, for example,

2
9x(z, 1) = A,(z, ¢, x) -——2 )zc + A(z,1, x)% + Ag(z, 1, x)x + f(x, u, z, t)
" ;

at
0<z<1
e (4.4.82)
with boundary conditions
a
z=0 by(1, x)—ég + bo(t, x)x = fy(x, ug, 1) (4.4.83)
z=1 g6t x)?a—)zc- + co(t, x)x = fi(x, uy, 1) (4.4.84)

one can proceed to reduce the system to a set of ODEs by pseudo-modal
methods. To do this, one takes a set of basis functions ¢,(z), which are analogous
to the eigenfunctions for the linear problem. These functions ¢,(z) should be
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complete and preferably orthogonal with some weighting function p(z):
1
f p(2)6,(2)¢,(z) dz =0 forn#m (4.4.85)
0

The choice of the ¢,(2) is arbitrary, but it is helpful to try the eigenfunctions of a
related linear problem—particularly if Eqgs. (4.4.82) to (4.4.84) are only slightly
nonlinear.

The approximate solution to the problem is then expressed in terms of N
basis functions, Eq. (4.4.81), where the coefficients a,(f) must be determined in
such a way that x,(z, 7) is a good approximation to the solution to Egs. (4.4.82)
to (4.4.84). Many criteria are possible for measuring a good approximation, and
each criterion chosen leads to a different technique. The method of weighted
residuals (MWR) is one class of methods. One often chooses the ¢,(z) so that the
boundary conditions, Eqs. (4.4.83) and (4.4.84), are satisfied exactly* and the
residual (let us assume u, u,, u, = 0 for the moment)

X  ~ 0% . 0%

R(Z, t) L 737 - Az—a'?z' = AIE - joi —j (44.86)

must be made small in the sense that
1
f wi(z)R(z,)dz =0 i=0,1,2,...,N (4.4.87)
0

where the w,(z) are a set of weighting functions to be chosen. The choice of
weighting functions can lead to several different criteria. Let us discuss some of
the types of criteria possible.

1. Galerkin’s method 1f the weighting functions are chosen to be the basis
functions themselves,

w,(z) = ¢,(2) n=0,12...,N (4.4.88)

then the technique is called Galerkin’s method. This has the advantage that
the residual is made orthogonal to each basis function and is, therefore, the
best solution possible in the space made up of the N + 1 functions ¢,(z).
Thus as N - o0, R(z, t) - 0 because it will be orthogonal to every function
in a complete set of functions.

2. Method of subdomains If we choose the w, to be a set of Heaviside functions
breaking the region 0 < z < 1 into subdomains, i.e.,

wa(z) = [ Lo iy RS By (4.4.89)
0 elsewhere

then Eq. (4.4.87) becomes
fz"HR(z, Ndz=0 n=012...,N (4.4.90)

* Cases where the boundary conditions are not satisfied exactly are also possible (e.g., [47], [S1]),
but usually it is more convenient to satisfy them a priori.
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and the average value of the residual must vanish over each of N + 1
subdomains. For N = 0 (zeroth approximation), z, = 0, z, = 1, and we have

[ 'R(z, 1) dz = 0 (4.4.91)
0

This special case is called the integral method and is used widely in
boundary-layer problems.

3. Method of moments. If the w, are chosen to be powers of z, then Eq. (4.4.87)
becomes

f‘z"R(z, dz=0 n=012...,N (4.4.92)
0

and the first ¥ moments of R(z, ¢) are required to vanish.
4. Collocation methods. If the w, are chosen to be delta functions §(z — z,), then
Eq. (4.4.87) becomes

R(z,)=0 n=0,12...,N (4.4.93)

and the differential equation is required to be solved exactly at N points on
the spatial domain. The collocation method has been refined greatly [47, 49,
51] and has been shown to be extremely powerful. The recent versions are
called orthogonal collocation because orthogonal polynomials are used as the
basis functions and the collocation points are specified automatically.

There are other pseudo-modal methods which can be considered as MWR
techniques. For example, finite element methods [50], the use of spline functions
[47], and other approaches may be shown to fall within this framework. Results
on the convergence of pseudo-modal methods are not abundant. Galerkin
methods may be shown to be uniformly convergent for a rather broad class of
problems (see [47, 52]), but general convergence results have not been proved at
present for most other methods.

Although pseudo-modal methods have been known for more than fifty
years, it has only been recently that extensive computational experience has
been available. The most popular approaches appear to be Galerkin’s method
(e.g., [47), [53-56])), collocation methods [47, 49, 51], and finite element methods
[50]. We shall illustrate the application of some of these methods with examples.

Example 4.4.3 Let us consider the heating of a thin metal rod in a furnace
as in Example 4.3.3. However, in this case, the temperature range of interest
is so wide that pC, and k depend strongly on temperature. Thus modeling
equations take the form

8T _ 3(k(T) 8T /dz')

| eC, Y2 % + q(z, t) (4.4.94)
with boundary conditions
.2 I 0 atz =0,/ (4.4.95)
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In this instance the differential spatial operator is nonlinear and given by

T _ k T 1 9k (9T \2
S o et i / 4.4.9
ar pCP 9272 * pC, BT( az') * ¢e's 1) ( 5

Now let us suppose that it is possible to neglect the second term and
represent the nonlinearity in the first term by the form

k
a=—=ag+ T 4.4.97
pCp 0 1 ( )
Furthermore, let us put the problem in dimensionless form by setting
Z el cul . _ 4
z2= x-—To t——l2 ,B-—aoTo u aTo
(4.4.98)
then we get
a"(" £ it » gy 2] x(" . SR (4.4.99)
with boundary conditions
dx
z=0 4 =0 (4.4.100)
dx
z=1 ;- =0 (4.4.101)

Now if we choose as basis functions the eigenfunctions of the problem when
B = 0, we obtain

x(z,t) = ﬁ a,(t)p,(z) (4.4.102)
n=0
N
u(z, t) = 20 b,(t)p,(2) (4.4.103)
where
o 38 n=0
(5) = { V2 cos nmz n=12...,N s

Now if we substitute Egs. (4.4.102) and (4.4.103) into Egs. (4.4.99) to
(4.4.101), we see that the boundary conditions are satisfied exactly and the
residual becomes

N
R(z, =% ¢,.(2){ = 2 [ Ba,a,(mm)s,(2)] — b,(1) + a,.(t)(mr)z]

n=0 m=0

(4.4.105)

Now if we apply Galerkin’s method to the problem, we must have

[(6(IR(z1)dz=0 n=012...,N  (44.106)
0
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which becomes

N N
‘Zn e (nw)Za’l - b(8) — 'Bfl S 2 ¢n(Z)¢m(Z)¢k(Z)amak(’"”7)2 i
0 m=0k=0
or
da

N N 1
"y (mm)a, — b() - B S ana(mm) fo (2)b(2)bi(2) dz = 0

dt m=0 k=0
n=0,12..:; ¥
(4.4.107)

Now let us denote
Lo = [ 6uomtn 2 (4.4.108)
0

Although it requires some algebra, this integral /,,, can be evaluated
analytically in the following way:

I =2V2 folcos nwz cos mmz cos kwz dz =V'2 [ol[cos (n + m)mnz

n,

+cos(n — m)mz]cos knz dz (4.4.109)
Now using integral tables (e.g., [57], p. 105), one obtains
L .:=0 ifn—ms#km+n+#k (4.4.110)
Also if n — m = k or n + m = k ([48], p. 101), then
Lmn™ —\/25 (4.4.111)
and for n = m = k ([48], p. 102),
L y=0 (44.112)
Thus in summary
0 ifn=m=kor(n—m+kandn+ m #k)
qu if one of the indices n, m, k = 0
Lo,e= and p, q are the remaining indices
%2_— fn+m=korn—m=k
(4.4.113)
Therefore Eq. (4.4.107) becomes
da N N
2t e, —b() - B3 3 a.a(m)l,,, =0

m=0 k=0
n=0, 1 2...,N
(4.4.114)
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To illustrate this lumping, let us look at the first few terms

d
%’. —by— B(n%a? +4n%a + - - - ) =0 (4.4.115)
s a,V2
—dTl + ’77201 = bl e B alﬂz(ao =+ 22 )
rap(a 4 a2 ) 4 } =0 (44116)
da a?Vv2
—j + 4n%a, — b, - .3[004'”2‘12 * _"2_72
+a1a3(——-—\/25 97r2+————\/2§ 772) + .- J =0
etc. (4.4.117)

Thus the coefficients are coupled and nonlinear, and the controller design
requires the use of nonlinear lumped parameter design techniques. The
control structure will be very similar to that shown in Fig. 4.17.

It should be noted that Galerkin’s method leads to exact modal analysis
when the system becomes linear (e.g., when B = 0 here), and thus is to be
recommended on that basis. Also if we choose an orthonormal basis, the
orthogonality relations allow us to synthesize u(z, ¢) from Eq. (4.4.102) and to
obtain a,(¢) from the data from

a(f) = fo 'x(z, )9,(2) dz (4.4.118)

Thus Galerkin’s method when used with a set of orthonormal basis func-
tions has all the properties of exact modal analysis except:

1. The solution to the system is only approximate, and the smallness of the
residual R(z, ¢) will depend on the type and number of basis functions
chosen.

2. The lumped parameter controller design, Eq. (4.4.114), in the coefficients
a,(t), b,(?) is a coupled, nonlinear multivariable design problem of order N so
that simple PID single-loop controllers will not suffice, but some control
design compensating for interaction must be used.

It is useful to compare the eigenfunction expansion method of Examples
44.1 and 4.4.2 with the approximate Galerkin method of Example 4.4.3. The
principal differences in the first two examples were that the spatially dependent
coefficients of the forcing function in Example 4.4.1 and the nonlinear forcing
function of Example 4.4.2 are assumed to be exactly expandable in the eigen-
functions of the linear differential operator. In this case uniform convergence of
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the Galerkin aproximation can be shown.* In contrast, for Example 4.4.3, there
is the requirement that the second spatial derivative be exactly expandable in the
eigenfunctions of the linear operator for the separation of variables method to
apply. However, the second space derivative of the solution will, in general, not
be uniformly convergent in the basis functions (see [47], pp. 373-379), and thus
the Galerkin method will not necessarily converge uniformly for this example.

It should be emphasized that Galerkin’s method is not the only technique
one may use for this example. In fact, collocation techniques would also seem to
have some advantages, particularly if the control were applied at discrete points
in space u(z,t), i = 1,2, m. If the collocation points were chosen at these
points, then the control could be incorporated directly.

The detailed application of these methods to example nonlinear distributed
systems is discussed in Chap. 6.

4.5 CONTROL OF SYSTEMS HAVING TIME DELAYS

An especially important class of distributed parameter systems is hereditary
systems, or systems having time delays. This class of dynamic systems arises in a
wide range of applications, including paper making, chemical reactors, and
distillation. Example 4.1.2 serves to illustrate a very simple single-loop control
problem with a transport time delay. The principal difficulty with time delays in
the control loop is the increased phase lag, which leads to unstable control
system behavior at relatively low controller gains. This limits the amount of
control action possible in the presence of time delays.

In multivariable time-delay systems with multiple delays, these problems are
even more complex. In these problems, the normal control difficulties due to
loop interactions (see Chap. 3) are complicated by the additional effects of time
delays. A good example of this type of problem is in distillation column control.
To illustrate, let us consider the problem discussed in Example 3.2.8, where the
column output compositions y; are related to the sidestream flow rates »; by a
transfer function matrix

¥(s) = G(s)u(s) (45.1)
Now in practice, the transfer function matrix often has elements in the form

!
K,.je—ﬁ'/" II (aijps +1)

=1
gi(s) = 7 “ (4.5.2)
ql;[l By + 1)
or rewriting,

B st + ey 8TV 4 - - e )

€ €ijS T €15 €ijo
g,(s) = ot — : (4.53)

s d 8T+ g

* For convergence in Example 4.4.1, see [47], p. 371; for Example 4.4.2, see [47], pp. 373, 374.
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Here the factor e "2 denotes a time delay associated with the i jth element of
G(s). Hence the transfer function for the distillation column of Example 3.2.8
would more often in practice have the form

B i
0.7¢™*
1+ 9s o v
—5s —2s
G(s) = 2.0e 0.4e™ - 0 (4.5.4)

1+ 8s 1+ 65
238" 1) 3% e
1+ 10s 1+ 8s 1+ 7s

where the time delays in each element of the matrix will be different.

The time-domain realization of transfer functions such as Egs. (4.5.1) to
(4.5.3) will have a slightly different form from that discussed in Chap. 3. In
terms of Eq.(4.5.3), the time-domain representation is given by

dz, (1) j = 1,2
ij i=12,...,n
e A,z (1) + b u(t — B,)) P S (4.5.5)
where
x(t) =23 [zijl(t) + hijOuj(t - ,Bij)] (4.5.6)
Jj=1
Zi j1 0 1 0 0
Zij2 0 0 1 0 0
zl'j = Aij = .0 ................... 1 .....
ztjl _dUO dul dijl—l
(4.5.7)
ij1
h.
i j2
b, = : (4.5.8)
hijl
and
hij =€y
l-p—1
Bijp =6 = 20 hjeiasy P=0,1,2,...,1-1  (459)
q=

Thus transfer functions of the form of Egs. (4.5.1) to (4.5.3) when converted to
state space take the form of ODEs with delays in the control. Other realizations
of time delay systems are discussed by Ogunnaike [58].

A oA G it i it O Ao 0
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SRS R e

In this section we shall first present a rather general formulation of time-
delay control problems and then consider some relatively simple design proce- i
dures for this class of problem. Finally, optimal control theory and practice for
time-delay systems shall be discussed.

A General Formulation

A very general representation of systems having delays in the control variables 4
u(?), state variables x(7), or output variables y(¢) is illustrated in Fig. 4.18. Each !
type of delay can be thought of as a transport lag in a pipe modeled by a
first-order hyperbolic equation (see Example 4.1.2). The inlet to these pipes can
be either the state variable x(¢) or control u(z). If we further allow integral
hereditary terms, the general formulation is given as follows:

dx(1) .
. f(x(t), wi(ry, 1), Wi(ry, 1), . wi(r5, 8), u(2), Wy(Fy, 2),
1
WPy 1), « o Wy 1)) + f K(w,(r, ), r,u(t)) dr  (4.5.10)
0 i
ow,(r, 1) ( ) i
lat —M;(r, ) l + g(wi(r, 1), wy(r, 1), x(2), u(?))
(4.5.11) 1
aw,(r, 1) aw,(r, 1) 1]
‘_zé;—' = —My(r, ’)2— + g(wi(7, 1), wy(r, 1), x(2), u(2)) :
(4.5.12) \
i
x(t-a;)
E x(t-a,)
x(t-a;)
State Delays,
- Yy vy E; ?456?{;
ll Control Delays, Output delays,
Eq. (4.5.12) (0 Eq. (4.5.20)
(r-p )| Process, |
..‘....l L M l’_q(45]9) eo0c0000 y[_x (t a*)
u(r-6,)
> > y,= X, (t-ay%)
u (-6
3= >y, =X (t-a%)

Figure 4.18 Example of transport lag models for systems having state, control, and output delays.
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with initial and boundary conditions

x(0) = x, (4.5.13)
w;(r, 0) = wyo(r) (4.5.14)
w,(r, 0) = w,,(r) (4.5.15)
w,(0, 1) = b,(x(?)) (4.5.16)
w,(0, 1) = by(u(?)) (4.5.17)

The outputs take the form
1
¥(1) = h(x(2), w,(r}, 1), wi(rd, 1), . .., wi(r¥, 1)) + fo H(w,(r, 1), r) dr

(4.5.18)

It is possible to show that this coupled set of ODEs and first-order hyperbolic
PDEs have as special cases all the commonly encountered time-delay problems
[59, 60].

As an example, if one allows that K =H =g, = g, = 0, b,(x(?)) = x(2),
b(u(?) = u(®), M, =1Ia ., M, IB,. b h = 1=, F=
B:/ By, wi(r, 0) = ®(—rpB,),w,(r, 0) &(—ray,,), then w 1( N = x(t - a),
- w(r¥ 1) = x(t — aF), w2(r‘,., 1) = u(t — B;). Thus Egs. (4.5.10) to (4.5.18) reduce
to a nonlinear ODE system having constant time delays:

d"(’) = 1(x(0), X(1 = @), . .., X(t = &), u(t), u(t = B,), ..., u(t — B,))
(4.5.19)
y(2) = h(x(2), x(t — a}), x(t — a¥), ..., x(1 — at)) (4.5.20)
x(1) = ¢(1) O SES 0 ag,, = max(a;, af) (4.5.21)
u(?) = ®(¢) -8, 2150 (4.5.22)
Another important class of problems arises if one allows
K=H=g =g,=0 d=y=A=1 r=rf=¢=1
b, (x(1)) = [x"(2), x" (1), x"(2), ..., x"(1)]"
by(u(1)) = [u”(2), w'(2), wT(2), ..., uT(1)]"
(0 i #j
e By T3 7 T

M, (r, 1) =[ M, (r, N]=1

M,(r, t) = [Mzij(r, t)] =Ji- rBi
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Then w(r, ) = [wlrl(r, 0, wi(r, )7, . Wy g, 4Y,
T
whir s whir, 1), ..., wi(r, t)]
wy(r, 1) = [Wh(r, ) wWh(r, 1), ..., Wh(r, )]
wii(r, 0) = &(— ra;(0)), wi(r, 0) = 4’(—"‘1;(0))
wy(r, 0) = ®(—rB,(0)),
then wi(1, ) = x(z — o(2)), wi(1, 1) = x(z — a(1))
wy(1, 1) = u(z — B(1))
In this case we obtain a nonlinear system of ODEs with time-varying time delays

.‘1’;_(;_)_ = f(x(t), ¥t — mlD), .- - ; x(t - ap(t))’

u(s), u(z — By(1), ..., u(r — B,(1))) (4.5.23)
y(2) = h(x(2), x(t = af(?)), . .., x(t — a*(2))) (4.5.24)

a(1) < 1 (4.5.25)

a*(1) <1 (4.5.26)

Bi(t) <1 (4.5.27)

x(t) = ¢(¢) FElla S £ 0 (4.5.28)

u(?) = ®(¢) — By SEE D (4.5.29)

Ay = max[al(O), cey ap(O), a3 (0); .« 5 a;“,(O)] (4.5.30)
Bumax = max[ ,(0), . . ., B,(0)] (4.5.31)

The conditions of Egs. (4.5.25) to (4.5.27) are necessary to ensure that the time
delays do not increase faster than time itself.

Many other time-delay problems of interest may be extracted from the
general formulation, Eqgs. (4.5.10) to (4.5.18), but we shall not treat all of them
here. The reader is referred to [59, 60] for a fuller discussion of these.

Time-Delay Compensation Methods

Aside from optimal control design methods to be discussed later in this section,
controller design procedures for time-delay systems usually involve using a
prediction device in the control loop to compensate for the time delays. If this is
done, then often the standard ODE multivariable controller design procedures
of Chap. 3 may be used. There are several methods which may be used to
compensate for delays in the states, outputs, or controls. One may use one of the
statistical state-estimation procedures of Chap. 5 or much simpler procedures
such as the Smith predictor [61-63], which has been applied with success to
processes having delays in both the outputs and the controls. Other methods
which have been proposed involve the use of cascade control [64], feedforward
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control [65], or noninteracting control [66] to compensate for the time delays.
Our emphasis in the discussion here will be on time-delay compensation proce-
dures and will highlight recent results on multivariable, multidelay compensators
[67]. :

Let us begin by considering the design of compensators for single-loop
control problems with time delays. In the late 1950s Smith [61] developed a
time-delay compensator for a single delay in a single control loop which
eliminated the delay from the feedback loop, allowing higher controller gains to
be used. This compensator, termed the Smith predictor, is shown in the block
diagram in Fig. 4.19. Here the compensator

&i(s) = h(s)g(s)(1 — e™*) (45.32)
acts to eliminate the time delay a from the system characteristic equation. To
see this, note that when g, (s) = 0, the closed-loop response of the system shown
in Fig. 4.19 is given by

7(s) =[1+ h(s)g(s)z.(s)e™*] " &(s)e™“2.(s)7u(s) + 8(s)d(s)]
(4.5.33)

Thus the characteristic equation
1 + h(s)g(s)g.(s)e > =0 (4.5.34)

contains the time delay a. When the Smith predictor, Eq. (4.5.32), is added to
the loop as shown in Fig. 4.19, the closed-loop response becomes

7(s) =[1+ h(s)g(s)2.(s)] "' [ &(s)g.(s)e ™ “Tls) + guls)d(s)] (4.5.35)
and the time delay has been removed from the control loop characteristic
equation,

1 + h(s)g(s)g.(s) =0 (4.5.36)

so that higher controller gains are allowed before the system becomes unstable.

Moore et al. [68], working with a scalar state-space model, used the analytic
solution of the modeling equation to predict the value of the state one delay time
ahead. This analytical predictor was developed primarily for sampled data
systems and hence included in its structure corrections for the effect of sam-

x = h(s) g(s) (1 e )| d—> £

£.(s) % i g(s)e ™ .

h(s)

Figure 4.19 Single-loop control system including a Smith predictor for a system having a single
delay.
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pling, and the zero-order hold. It can be shown that the Smith and Moore
predictors are equivalent [67].

Example 4.5.1 To illustrate these compensators, let us consider the control
problem described in Example 4.1.2 and Fig. 4.2. Recall that the relation
between the fraction of hot stream fed to the tank u(¢) and the tank outlet

temperature y(f) was given by

a%=u;—nno—@—y (4.1.14)
in the time domain and by the transfer function
2 (Ty—~ To)e™ _

y(s) = ———()—s—:l————u(s) (4.1.15)

in the Laplace transform domain. If we assume a perfect measuring device
h =1 and a proportional feedback controller g, = k,, then the closed-loop
transfer function, Eq. (4.5.33), takes the form

- k(Ty — Te)e ™™ 17V kTy — Tc)e™ _
7 =1+ =5+ ] [ Bt 4
(4.5.37)
By application of the Smith predictor, Eq. (4.5.32),
T, - T,
Ble) = —f 511 — #~) (4.5.38)

the closed-loop response of the compensated system becomes

k(Ty — T¢) ]—1[ ke(Ty — TC)e_M);d(s) (4.5.39)

Pl =1+ =55 B+ 1

Note that the characteristic equation of the compensated system, Eq.
(4.5.39),

kc(TH i Tc)

eIy " 0 (4.5.40)
has stable roots for all positive controller gains, so that stability is not a
problem. By contrast, the characteristic equation for the uncompensated
control system, Eq. (4.5.37),

1+

k(Ty — T,
1+ —c—(H———Qe"‘“ =0 (4.5.41)

Os + 1
has unstable roots for sufficiently large values of controller gain. For
example, if § = 10, a = 2, the uncompensated system becomes unstable for
kAT = Tp) > T:04.
The practical value of this compensator may be seen by comparing the
control system response both with and without the compensator when
Ziegler-Nichols controller tuning [i.e., k(T — T.) = 3.52] is used with the
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12
. )
Set point
Io o ————— ——— — —— ———— — —————_ —
- /‘\
i ; (// \\
g 0.8 I \-".—-—-———.———
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1
E 06—
g0 1
= 1!
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© 04— / with Smith
S / Predictor
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0.2 I Predictor
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Figure 4.20 Response of heated mixing tank to set-point change in outlet temperature; dashed lines
show the response without the Smith predictor, k(T — T.) = 3.52; solid lines show the response
with the Smith predictor, k (T, — T) = 30.

uncompensated system and k(7 — T.) = 30 is used with the compensated
system. The response of the system to a unit set point change may be seen in

Fig. 4.20. Note the much slower response and much greater offset with the
uncompensated system.

For the more general case of multivariable systems with multiple delays, the
design of a compensator becomes more complex. Let us consider the general
form of a multivariable transfer function such as described in Egs. (4.5.1) to
(4.5.3). Recall that the transfer function between outputs y and controls u is

y(s) = G(s)u(s) (4.5.1)
where y is an / vector of outputs and u is an m vector of controls. Similarly, the
transfer function between the outputs and disturbances d is

¥(s) = G (s)d(s). (4.5.42)

where d is a k vector of disturbances. The transfer functions G(s), G,(s) are
matrices of the form '

gu 812 8im 8n gIdZ gldk
2 O R B A S A Gs)=|8n v e e
&n 8im 811 glz

ko

it
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In many practical applications where the transfer functions are fitted to experi-
mental data, g; (s) or g,.‘j.(s) have the rather simple form of Eq. (4.5.2). However,
more complex transfer functions sometimes arise as illustrated below.

The block diagram for the system under conventional feedback control may
be seen in Fig. 4.21, where G, represents the feedback controller, H the output
measurement device, and y, the output set point. The closed-loop response for
the conventional controller is then given by

¥(s) = (1 + GG.H) " '[GG,y(s) + G,d(s) ] (4.5.44)

in the Laplace domain. In the absence of time delays, there are many multivari-
able control design procedures available (see Chap. 3) for choosing the elements
G, in order to achieve good control system performance. However, when there
are multiple delays in the transfer function, as in Eq. (4.5.2), the choice of design
algorithm is more limited. Thus it is advantageous to use time-delay compensa-
tion methods in combination with the conventional controller design methods of
Chap.- 3. These compensation techniques can largely eliminate the effects of the
time delays and allow conventional multivariable controller design procedures to
be used for systems with multiple time delays. The multidelay compensator can
be formulated so as to apply in either a continuous time or in a discrete time
(DDC) mode [67].

There are many different forms that linear systems with time delays may
take. For constant delays, a general formulation for linear multivariable systems
in the time domain is

x=2Ax(1—p) + ZBu(t — B) + 3 D,d(r - §,) (4.5.45)
i J k
y= 2 Cx(1 - v) + ZEu(r — g) (4.5.46)
i J
where x is an n vector of state variables and the p,, B, 8, v;, g are constant time

delays. By taking Laplace transforms of Egs. (4.5.45) and (4.5.46), transfer
functions of the form

¥(s) = G(s)u(s) + G d(s) (4.5.47)

o m—— G,

Figure 4.21 Block diagram for conventional feedback control of a multivariable system.

o S T S e i e e A T
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arise, where
G(s) = 2 Ee ™% + [( > C,.e—”“)(sl -> Aie""‘)—]J( > Bje”ﬁﬂ)
J i i J
‘ (4.5.48)
G,(s) = [(2 C,e""’)(s[ -3 Aie_”’)_ 1}( ) Dke“""‘) (4.5.49)

Note that G(s) and G,(s) in Egs. (4.5.48) and (4.5.49) are very much more
general than the more commonly encountered forms of G(s) and G,(s) given by
Eq. (4.5.2). However, in normal engineering practice, the usual modeling proce-
dure is to carry out step, pulse, or frequency response measurements on the
actual process to obtain an approximate transfer function model in the simpler
form of Egs. (4.5.2) and (4.5.42). The more complex forms [Eqgs. (4.5.48) and
(4.5.49)] usually arise when the model is formulated as differential equations and
transformed to the Laplace domain.

For the case of multivariable systéms in the general form [Egs. (4.5.48) and
(4.5.49)] that have multiple delays in the transfer functions G, G, H, it is
possible to design a compensator analogous to the Smith predictor which
eliminates the time delays in the characteristic equation. As we show [67], this is
not equivalent to predicting the output variable at some single time in the future
but corresponds to the prediction of certain stafe variables at various specific
times in the future. By analogy with the philosophy of the original Smith
predictor, the corresponding multivariable multidelay compensator would have
the structure shown in Fig. 4.22, where the compensator G, could have many
forms. Let us demonstrate that with the particular choice

Gx = H*G* — HG (4.5.50)

(where H*, G* are the transfer functions H, G without the delays), the com-
pensator eliminates both the delays in the output variable signal sent to the

H

Figure 4.22 Block diagram of feedback control of a multivariable system with time-delay compensa-
tion.

TN
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controller and the delays in the characteristic equation. To see this, let us
evaluate the inner loop G in Fig. 4.22. Here

u=G’e
or
G*=(1+G,G,) 'G, (4.5.51)
Thus the entire transfer function including the multidelay compensator is
¥ = (I + GG*H) '(GG*y, + G ) (4.5.52)

One of the principal goals of time delay compensation is to eliminate the
time delay from the characteristic equation of the closed-loop transfer function
so that higher controller gains and standard multivariable controller design
algorithms may be used. Let us show that the multidelay compensator noted
above achieves this goal. Substituting Egs. (4.5.5) and (4.5.51) into (4.5.52) yields

7 = (I + GR"'G,H) '(GR™'G,y, + G,d) (4.5.53)
where
R = I + G,(H*G* — HG) (4.5.54)

Now it is easy to show that if G is square and nonsingular* then the
following identity holds:

(I+ GR™'G,H)" ' = G(R + G,HG) 'RG™!
Now, from Eq. (4.5.54),
R + G,HG = I + G, H*G*
Thus Eq. (4.5.53) becomes
¥ = GI + G, H*G*) " 'G,j, + G + G, H*G*) 'RG™'G,d (4.5.55)

Hence the stability of the closed-loop system including the compensator
(Fig. 4.22) is determined by the characteristic equation

I + G.H*G*| = 0 (4.5.56)

and the compensator has indeed removed the time delays from the characteristic
equation. Thus the delays do not influence the closed-loop stability if the model
matches the plant exactly. In practice, modeling errors usually allow some
delays to remain in the system, so that one should be conservative in controller
tuning. However, even with very conservative gains chosen for the compensated
system, the control system response will be much better than in the case with no
compensation.

It is useful to note that the Smith predictor [61] and the Alevisakis and
Seborg predictor [62, 63] all become special cases of this general multidelay

* This is by no means restrictive, since we can always construct pseudo-inverses or generalized
inverses of the matrix G. We note, however, that in most cases the number of inputs and outputs
used in a feedback control scheme are equal; hence G is square.
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compensator. It is also important to realize that any type of delay can be dealt
with through the use of this compensator, even the very complex types shown in
Egs. (4.5.48) and (4.5.49). In addition, it can be shown that the feedback law
resulting from using the multidelay compensator has exactly the same structure
as that obtained from the optimal feedback controller (to be discussed below),
and can therefore be made an optimal controller with proper tuning.

Let us demonstrate the multidelay compensator with some illustrative exam-
ples.

Example 4.5.2 Some physical interpretation of the effective action of this
compensator is useful and can be illustrated by the following 2 X 2 example
system with H = H* = I and

- [ ay(s)e” v alz(s)e-a'sz (4.5.57)

ay(s)e™ " ay(s)e ™

By definition,

G* = ay(s)  ap(s) (4.5.58)
ay(s)  ax(s)
and for G, consisting of two proportional controllers,
" k., 0
<l o0k,
then
1+ k. day; k., a,,
I+ G.H*G* = . - (4.5.59)
kcna2l 1+ kcua22

and the characteristic equation is
I+ GH*G*| =1+ k. ay + k. a» + k. k. (a0, — aj,a;) =0
(4.5.60)
which contains no time delays.
Further, because of the compensator (see Fig. 4.22), the error signal fed
to the controller is

74

S PR
Here

y* = G*u (4.5.61)
is the output variable without delays in G. Now it is interesting to note that
y* does not correspond to the actual value of y at any specific time, but is a

totally fictitious value composed of certain predicted “state” variables. To
illustrate, let us define variables x; ; by

x,(s) = ay(s)e”“u(s) (4.5.62)
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Thus the system with delays
¥(s) = G(s)u(s)

may be written

yi(s) = xp(s) + X15(s) ,

Va(s) = Xy (s) + Xp(s) (4.5.63)
or in the time domain

i(8) = x4 (1) + x15(7)

Ya(1) = x3(2) + x5(?) (4.5.64)

By adding the compensator to the loop, the controller receives y*(s) defined
by Eq. (4.5.61), which may be written as

Vi(s) = e*x ((s) + e X ,(s)
FH(s) = e*Fyy(s) + ey (s) (4.5.65)
where X, ;(s) is defined by Eq. (4.5.62). Thus in the time domain

yE() = xy(t + ayy) + x5(1 + ayp)
y3(t) = xpu(t + ay) + x5(1 + @) (4.5.66)

and the compensated output y*(#) is composed of predictions of the “state”
variables x; ;. Because the time delays in all the state variables are different,
y*(¢2) is a totally fictitious output never attained in reality. However, if the
control system is stable, then y* — y as # — oo and the fictitious value y* is a

good “aiming point” for the controller.

Example 4.5.3 As a means of illustrating the case of state variable delays
combined with output delays, consider the two-stage chemical reactor with
recycle shown in Fig. 4.23. The irreversible reaction 4 — B with negligible
heat effect is carried out in the two-stage reactor system. Reactor tempera-
ture is maintained constant so that only ¢, and c,, the composition of
product streams from the two reactors, need to be controlled. However,
there is substantial analysis delay. The manipulated variables are the feed
compositions to the two reactors ¢, and c,;, and the process disturbance is
an extra feed stream F,; whose composition c, varies because it comes from
another processing unit. The flow rates to the reactor system are fixed, and
only the compositions vary. The state delay arises due to the transient lags
in the recycle stream.

A material balance on the reactor train yields
dc '
V,—d—t' = Fic); + Rey(t — a) + Fyey — (Fy + R + Fy)e, — Vikie,

dc
VZTIZ =(F,+ R+ F;— F,)c, + Fyey; — (F, + R)c, — Vikye,
(4.5.67)
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F Fresh feed
1+Cyp r Fa.cq
R Disturbance
Recycle 2
¢, (ta) 1
\f
. F, , interstage feed
; o
Fpyocy
Product stream, 1 2
Y,
sz, [
Recycle R, ¢, Product stream, 2

Figure 4.23 Two-stage chemical reactor train with delayed recycle.

where the second product stream F, , s given by

2
Irpz=Fl+Fd_—F;1|+F2
Defining the variables
Vi Y,
0, = —5——F—— 0, = ———
F, + R + F, 5, =R
- —,—,—,—,—,—,—_—— ‘L=_—-——
R F,+R+F, AR
£y
Ad--—-—————Fl TRTE, a, = k,0 Da, = k,0,
Uy = Cip— Cyy, Uy = C3p'— Cap
X =c¢ — € Xy = Cy — Cp d=e;—cy

(where ¢y, ¢y, ¢y, €3, ¢; denote steady-state values) allows one to use
vector-matrix notation, so that Eq. (4.5.67) becomes

d" = Ag(f) + Aixly — o) + Bu(t) +Dd (4.5.68)

y(1) = x(2)
Ym(2) = Hx(2) (4.5.69)
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where y,,(?) is the measured output and

[ 1+D
. | 0 0o MR
-~ 6, e 6,
AO - ﬁ_ . _ 1+ Daz 1 0 0
6, 0,
e~™ 0
H= (4.5.70)
0 e
[ 1+ 2 = A, A
— e 8 0 =
- i
0 7 0

Here 7, and 7, are the delays in analyzing ¢, and c,, respectively. Taking
Laplace transforms, one obtains a transfer function model of the form

¥(s) = G(s)u(s) + G (s)d(s) (4.5.47)
or, since what we observe is ¥,,,
¥..(s) = H(s)G(s)a(s) + H(s)G,(s)d(s) (4.5.71)
where
1=Ag = Ay 1 + Da, A —p)
6, ( i 00, °
[ S i~ 1 + Da,
96, " 9, (S A
G(S) - —as
2 4 1+Da,+l+Da2 +(l+Da,)(1+Da2)_)\Rp.e
’ , 6, ) 0,6, 6,6,
(4.5.72)
Ay 1 + Da,
ol
M »
01 02
G -
s) o4 (L*Da  1+Day)  (I+Da)(l+Da) Agpe ™
01 02 0102 0102

(4.5.73)
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and if we let
Go(s) = H(s)G(s)  Guo(s) = H(5)G,(s)
then the working transfer functions are

L Py x,,(s L Daz)e_m Nald =) oo

0, 0, 8,6,
= N —ras =
(1= Az 2 1e 1—p e 1 + Da, o
0,0, 9, 8,
Gals) = 1+Da, 1+D 1 + Da,)(1 + Da,) Aque ™
4 o AW 4 s+( g a;)  Agpe
6, 0, 6,9, 0,0,
(4.5.74)
Ay 1+ D\,
o, \’ 5, )¢
>\d K =T
6,8,°
G =
aols) 2, (1+Da 1+Da\  (I+Da)(l+Da) Agpe ™
0, 9, 0,0, 0,6,
(4.5.75)
Now, using the multidelay compensator shown in Fig. 4.22, H* becomes I
and
L=2Xs = X5 +1+Da2 Ag(l — )
3 W 6,6,
L= Rg = = 1 + D
( R d)l‘ 1 u ik a,
0,0, 0, 0,
G* =G} =
e ( 1 + Da, N 1 +Da2)s . (1 + Da)(1 + Day)  Agp
8, b, 6,0, 6,0,
(4.5.76)
and by choosing two single-loop proportional controllers for G, i.e.,
" k, O
e™1 o k.. (4.5.77)

we may compare the control system performance both with and without the
compensator. To illustrate, let us choose

0, =1 0, =1 Da, =1 Da, = 1 Agr =05 A, =0.1
p=205
with time delays a = 1, 7, = 3, 7, = 2.
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In this case

0.4(s + 2)e > 0.25¢~%
s+2% =025 (s+2)°—025¢"°
Gols) = HG(s) =| CF D 7O it iy
0.2e~% 0.5(s + 2)e™

(s +2)*—025¢™° (s +2)* - 0.25¢*

0.4(s +2) 0.25 1
G3(s) = He(s)Gr() =| RO +0f5-(53>(i ;)1.5)

(s+23)s+ 13} (s+ 235)s + L.5)

0.1(s + 2)e™
(s +2)2 — 025¢~°
0.05¢~%

(s +2)> — 025¢7*

G,(s) = (4.5.78)

so that the closed-loop system without the compensator is
y =0+ GG,H) 'GG,y, + (I + GG,H)"'Gd (4.5.79)
or equivalently, since y,, is observed and y,, = Hy,
y,, = (I + HGG,) 'HGG,y, + (1 + HGG,) 'HG_d
or in terms of Gy, G,
Y, = (I + GoG,) GGy, + (I + G,G,) "G d (4.5.80)
Now with the compensator the closed-loop expressions are
y = G(I + G.H*G*)'G,y, + G(1 + G.H*G*) 'RG"'G_d
or in terms of Gy, G,
Y, = Go(I + G,G¥) " 'G,y, + G,(I + G.G})RG™'G,d (4.5.81)
where
R =1+ G, (G} — Gy)

The control system performance for set-point changes y,, = 0.5, y,, =
1.0 is shown in Fig. 4.24. The dashed lines represent the performance
without the compensator for controller gains k, = 3.0, k., = 3.5. In the
neighborhood of k. = 5.0 serious instabilities set in due to the presence of
the time delays.

The application of the multidelay compensator permits the use of higher
controller gains k. = k. = 20.0, and as seen in Fig. 424 (solid lines),
greatly improved performance is obtained.
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Figure 4.24 Chemical reactor response to set-point changes. Dashed lines: proportional control
without compensator; solid lines: proportional control with compensator.

In Fig. 4.25 the response to a step input in disturbance d = 5.0 is shown.
The dashed lines show the response without the compensator. Again,
controller gains k, = 3.0, k. = 3.5 are used, these being the largest before
the onset of serious instabilities. The continuous lines show the performance
using the compensator with gains k., = 45.0, k., = 20.0.

This example serves to illustrate the improvements in control with the
multidelay compensator for a problem having both state and measurement
delays.

Example 4.5.4 To illustrate the effects of multiple delays in the control and
output variables, let us consider the binary distillation column studied by
Wood and Berry [69], Shah and Fisher [70], and Meyer et al. [71, 72]. The
column, shown in schematic in Fig. 4.26, was used for methanol-water
separation and was found to be well modeled by the transfer function model
¥(s) = G(s)ii(s) + G (s)d(s) (4.5.47)
where, in terms of deviation variables,
y,; = overhead mole fraction methanol

»y, = bottoms mole fraction methanol

u, = overhead reflux flow rate
u, = bottom steam flow rate
d = column feed flow rate

After pulse testing of the column, the transfer functions determined from
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Figure 4.25 Chemical reactor respons;e to a step change disturbance. Dashed lines: proportional
control without compensator; solid lines: proportional control with compensator.
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Figure 4.26 Schematic diagram of the methanol distillation column with conventional two-point
column control system, Wood and Berry [69].
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the data were [69]

12.8¢~° —189¢ 73
16.7s + 1 21.0s + 1
G(s) =
(s) _6.6e” " —19.4¢~ 3
| 1095+ 1 1445 + 1
[ 3.8e%"
| 1495+ 1
Giloy =1 o m (4.5.82)
i 13.2s + 1

where the time constants and time delays are given in minutes.* Here we
take H = H* = I because any measurement delays may be included in G
for this problem.

We shall illustrate the performance of the system under conventional PI
control (Fig. 4.26) both with and without the compensator. The steady-state
values for the overhead and bottoms compositions are taken to be 96.25
percent and 0.5 percent methanol, respectively, (see [69]) for this simulation.
With the “tuned” conventional controller settings which were originally
used experimentally by Wood and Berry [69], reported in their Table 1, i.e.,

Overhead Bottoms
K, K, K, K,
0.20 0.045 —-0.040 -0.015

the control system response is shown in dashed lines in Figs. 4.27 and 4.28.
Figure 4.27 is the response to the same positive disturbance, 0.34 1b/min in
feed flow rate, as that used in the experimental study. Figure 4.28 is the
response to the negative disturbance, —0.36 Ib/min in feed flow rate.

This simulated response is seen to be essentially identical to the experi-
mental response reported by Wood and Berry [69] for conventional control.
Larger controller gains cannot be taken because the characteristic equation

[T + GG,| = 55,0455* + 14,698s> + 12195 + 625 + 1
+ (22895 + 31.9s + 1)[ g, (12 + 172.85)e
—8.,(194 + 32385)e™> — 232.8g, g e~ ]
+124.7(240.55* + 31.1s + 1)g, g, e ' =0
* The time unit of minutes was used here in place of the appropriate SI unit (seconds) to avoid
confusing the reader who may refer to the original articles from which this example was taken.

t+ Private communications with Professor R. K. Wood confirmed that the signs of the controller
gains reported in the original publication should be corrected as shown here.

Bl S i



96.50

96.25 \

Overhead, X,

L e
-
~

96.00 I | '~ ) | L | 1 ] 1

IS
o
)
H
)
(=
S
o
3
)
3

Bottoms, X
5

I|ll|l]ll

;/

\

|

|

/

\

0.5

[ \ 7 N s W —
- L ] 1 1 1 | 1 | 1
NG 0 20 40 60 80 100
Time (min)

Figure 4.27 Comparison of column performance with and without the multidelay compensator
(positive feed-rate disturbance). Dashed line: without compensator; solid line: with compensator.
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Figure 4.28 Comparison of column performance with and without the multidelay compensator
(negative feed-rate disturbance). Dashed line: without compensator; solid line: with compensator.
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contains time delays which cause stability problems. Here we have taken

g. 0
G, =™ (4.5.83)
0 g,
with
K K
8, = K, + 5

in keeping with the notation of Wood and Berry.
When the multidelay compensator is applied to the control loop as in
Fig. 4.22, with

12.8 —18.9
G* = 167s + 1  21.0s + 1
6.6 —19.4

109s + 1 144s + 1

and G, as in Eq. (4.5.83), the characteristic equation becomes

L+ G,G*| = 55,045s* + (14,6985 + 39,553g, — 74,117g, )s
+ (1219 + 8259g, — 14,769g, — 23,290g, g, )s*
+ (62 + 555g, — 942g, — 35462, g, )s
+(1-108g, g,)=0

which contains no time delays. The improved response obtained with the
compensator is shown as continuous lines in Figs. 4.27 and 4.28 for precisely
the same controller settings specified in the table. Apart from noting that
there are no serious oscillations, observe that the bottoms composition
benefits more from the use of the multidelay compensator. That this should
indeed be so can be readily seen by merely inspecting the transfer function
G(s) and noting that the time delays associated with the bottoms are
substantially larger than those associated with the overhead.

One interesting feature of this distillation column is the appreciable
amount of interactions existing between the system variables. This is due to
the presence of off-diagonal elements in G(s), with the result that y, is
affected by u,, and y, by u,. The system performance is most affected by
this coupling when set-point changes are made. For example, when a
set-point change from 96.25 to 97.0 is made in the overhead composition,
the multidelay compensated system responds as shown in dashed lines in
Fig. 4.29. The interesting point to note is the resulting effect on the bottoms
composition. Were there no coupling between the overheads and bottoms
compositions, such a set-point change would not have perturbed the
bottoms composition.
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Figure 4.29 Column response to a positive set-point change in overhead composition using the
multidelay compensator. Dashed line: without steady-state decoupling; solid line: with steady-state
decoupling.

To illustrate how the multidelay compensator may be used in conjunc-
tion with the conventional multivariable control design techniques of Chap.
3, we shall attempt to eliminate some of the interaction effects through the
use of steady-state decoupling along with the multidelay compensator. This
combined control scheme is illustrated in Fig. 4.29 by the solid lines. Note
the improvements in the bottoms response resulting from this very simple
additional design change.

Optimal Control of Time-Delay Systems

Optimal control is one approach to controller design which can be used either in
an open-loop fashion (such as in start-up) or as a closed-loop feedback control
system. Here we shall outline the essence of optimal control theory and present
some examples to demonstrate how the control schemes might be implemented.
General fundamental results on the optimal control of time-delay systems are
discussed in [60, 73]; however, here we shall discuss only the case for constant
time delays, i.e., for the system
d’fT(tt) = f(x(2), x(t — &), . . ., x(t — ag), u(2),u(t — B,), ..., u(t — B8.)

(4.5.19)
x() =¢p(t) —ay<t<0
u(t) =®(r) -B,<t<0 (4.5.22)
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where the o, i =1,2,...,8, and Bj, j=12,...,p are constant state and
control delays, respectively. The maximum principle, which provides necessary
conditions for optimality, takes the following form:

Theorem For the optimal control problem given by the system equations
(4.5.19) to (4.5.22) with the objective

1= G(x(1)) + fo’fF(x(t), x(t — ay), ..., x(t — az), u(?),

u(t = By), ..., u(t— B,))dr (4.5.84)

to be maximized, and where u(¢) belongs to a constraint set £, the optimal
control u(#) must satisfy the conditions

0H(1) | i [ 3H(r)

ou(r) "~ S| ou(r - B) |,_,., i

BH(1) Ek [ 8H(r)

e =0 L AR o g
au(t) j=1 au('r = [3/) Jf-r+ﬁj 3 B#-f-] k 44 Bll k
dH(t
au((t)) = =B <t<yg (4.5.85)
for @(¢) in the interior of € (u unconstrained), while at constraints the
quantities
n
H() + X H(t + B) i<t~ K
Jj=1

i L, <t <t —
H(t)+ X H(t + B) 7~ Buris = Bu-s
- k=1,2...,p—1

H(?) =B <ty (4.5.86)

must be a maximum with respect to u(z). In addition, it is necessary that this
last maximum condition hold even on unconstrained portions of the control
trajectory. The Hamiltonian is given by

H(t) = F+ AT(o)f (4.5.87)
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and the adjoint variables A must satisfy:

.

RO dH(T) B
{ ax(1) + El [—————ax(T oy ]T_Ha.} 0<t<ty— a5
Ll dH(1)  °SK[ oH ¥ Rsa-a
Ta - { ax((t)) = [ax(f (—T)a.)] } T
= ¥ lrsrey k=12...,6=1
oH
~ %5 y—a <t <y
‘ (4.5.88)
My—a*)=My—9a7) i=12...,8 (4.5.89)
AMy=B) =AMy -87) Jj=L2....p (4.5.90)
and for x(#;) unspecified,
oG
(t) = —— 4.5.91

The proof of this maximum principle and more general results may be
found in [73). Let us now proceed to illustrate the application of control
vector iteration computational procedures through an example problem.

Example 4.5.5* To demonstrate the application of the theory we have
developed, we shall treat an example of the open-loop control of a continu-
ous stirred tank reactor (CSTR). Suppose we would like to optimally move
from one steady state to another in the CSTR shown in Fig. 4.30. The
describing equations are

Vs—tc, = uj(c; — ¢) — KoVe ¥/RTec  ¢(0) = ¢, (4.5.92)
V;idti, = (1 — Y)uy(r — B)) + yup(¥) — Cu; &0) = ¢,
(4.5.93)
rC, V—Z,—; = pCuy(T; — T) + (—AH)K Ve E/RT¢c
—{hd + wy()[T(* — a})) ~T,](T - T,)
o) =T (4.5.94)

where it is assumed that:

1. The chemical reaction A4, — A, is first-order in both the catalyst ¢ and
reactant c.

* This example is taken from [73] with permission of Pergamon Press Ltd.
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Figure 430 The CSTR system [73). (Reproduced by permission of Pergamon Press Lid.)

2. The catalyst feed u; is made up of two parts (see Fig. 4.30): a fraction y
entering the reactor directly, and (1 — y) mixed with the feed a time S,
upstream of the reactor.

3. The temperature is controlled by a feedback controller which uses
continuous temperature measurements at time ¢ — aj to adjust the
coolant flow rate, where u{(¢’) is a time-variable proportional gain.

4. The molar feed rate of catalyst u; is negligible compared with the
reactants feed rate uic;, so that the physical properties are unaffected by
catalyst addition.

If we wish to move from the state (cq, ¢y, Tp) to (c,, ¢, T,), then it is
convenient to define the dimensionless variables

t=% u, = u;;} u, = {‘}%; uy -l-;% (4.5.95)
o-zr A-% =5 °-%r
P=Kyhe % J= ————-——(;épb;zé’ X3, o ;’ %
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so that
dx,

i P[(l + x,)(1 + xz)e9x3/("’+]) = u3] x,(0) = x,o

(4.5.96)
dx,
ar
dx,

dt

= (1 = Y)u(t — B)) + vu(?) — us(x, + 1) x5(0) = x5
(4.5.97)

= —uyxy + JP[(1 + x)(1 + x,)e™/(1+x) — 4, ]
= Q[ x3(1) = x3.(1 = u3)] — (1) x5(t — ;) [ x3(2) — 3]

x3(0) = x5 (4.5.98)
We shall apply our maximum principle to this system so that we find
the controls which minimize the functional

4 fot’[ x2 4 x4 x4 my(uy — 1) + m3(us — )] dt (45.99)

subject to the constraints

e <u < ut i=1273 (4.5.100)
We will choose the set of parameters
0 =25 Q=1 x;3,=—0125 P=1 J=025
B,, = 0.020 =04 y = 0.1 u,. = —500
ut = 500 Uy =0 us. = 0.01 uy = uy =2
X10=049 x,0=0.0002 x3,=—0.02 a, = 0015 (4.5.101)

and the initial functions

x(f) = =002 —a, <t<0
u(t) = 1 =@ 2i¢<D
u(1) =1 —max(a,,, B,) <t <0 (4.5.102)

and apply a control vector iteration method to the problem to find the
optimum. The detailed algorithm is described in [73].

We shall assume that the flow rate u; is not a control but is held
constant at the steady-state value. Hence, our time delays are constants. The
results of applying the control vector iteration procedure from two initial
guesses of u,, u, are shown in Figs. 4.31 and 4.32. We see that n, = 1 is too
large to allow any control action in w, and all the control is being done by
u,. Note that the same optimal state trajectories x,(f), x,(?), x,(f) are found
from both starting guesses, which suggests adequate convergence of the
algorithm. The differences in u, for large ¢ are due to the fact that x; = 0, so
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Figure 431 Optimal open-loop control policy for Example 4.5.5 when 1, = 1.0 [73). (Reproduced by
permission of Pergamon Press, Ltd.)

that any gain u,(f) gives good results. If we remove the penalty on the
control u, from the objective by setting 1, = 0, the u, does exercise some
control, but gives only a slight improvement in the state trajectories and the
objective functional.

Linear-Quadratic Feedback Control

As in other distributed parameter systems, it is possible to design an optimal
feedback controller by considering the linear problem with constant time delays:

dx(1) 2 £
= = Ax(1) + 21 Ax(t — ) + Bau(?) + 21 Bu(t — B) (4.5.103)
i= Jj=
x(2) = ¢(2) —a; <t <0 (4.5.104)

u(z) = ®(2) ~R 2150 (4.5.105)
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Figure 4.32 Optimal open-loop state trajectories for Example 4.5.5 when 7, = 1.0 [73]. (Reproduced

by permission of Pergamon Press, Ltd.)

with the quadratic objective

I=1x7(1)Sx(r) +1 fo IXT())Fx(1) + u’(1)Eu(t)] dr

(4.5.106)

The optimal feedback control law has been derived by many routes [60, 74, 75]

and takes the form

w(e) = —E“{ [BTE() + EX(1, 0)]x(r)

+f° [BIE,(1, ) + EI(t, 5, 0)]x(¢ + s) ds

+f_°ﬁ"[BgE3(t, s) + E (¢, 0, s)]u(t + ) ds}

(4.5.107)
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where the controller parameters may be precomputed from

dlizoz(t) = —Eo(1)Ag — AJE((t) — E[(1,0) — E (1, 0)

+[E0(g)Bo + Eq(1, 0) JE~'[BJEy(¢) + E(1,0)] — F

(4.5.108)
' 3E,(t,5) OE(t,s
09 L 6D \re (1,9) ~ Bx(s,0,5) + [Ea(0)Bo + Bx(5, 0]
X E7'[BJE(s,5) + E{(1,5,0)] —a;<s<0 (4.5.109)
OEy(t,r,s) OEy(t,r,s) OEy(t,r,5) .
n = > + % + [E, (¢, r)By + E5(2, 1, 0)]
= KK 0
x E~'[BIE,(1, s) + EX(1, 5, 0)] _‘;" <: L, (@510
8 - -
oE,(¢, s oE,(¢, s
E’; ) = 3§s . AJE (1, 5) — Eg(1, 0, 5) +[Eo(£)By + E5(2, 0) ]
X E™'[BJEs(, 5) + E((1,0,5)] o TIE L (4.5.111)
OE,(t,r,s) O3E (t,r,s) OE(tr,5) 5
3 = o + T +[EJ(¢, r)By + Eg(2, 1, 0)]
—f. < F <0
X E~'[BJEs(t, 5) + E((1,0,5)] _/;“ 2ral (4.5.112)
, <5 <
OEy(t,r,s) OEg(t,r,s) OEs(t,r,5) i
& = % + % +[E{(¢, )By + Es(1, 7, 0) ]
' —B,. <5 £0
XE™'[BJEs(t, 5) + Ey(1,0,5)] _ﬁ <i e (4.5.113)
§ — -

where Ey(?), E (¢, s), and Ey(7, r, s) are n X n matrix functions; E,(¢, s) and
E (t,r,s) are n X m matrix functions; and E(t,r,5) is an m X m matrix
function. The boundary conditions on the delayed time variables, s and r are
given by

E\(1, —ay) = Eo(1)A,
Eq(s, _B,‘) = Ey(1)B,
Ey(t, — a5 5) = ATE(2, 9)
E(t, —B,, s) = B{E;(2, 5)
Es(t, — a5, 5) = AE;(1, )
Es(t, r, — B,) = EX(1, )B, (4.5.114)
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The matrices Ex(¢, r, 5), E (¢, r, 5) have the property
El(t,r,s) = Ey(t,s,7)
El(t,r,5) = Eyt,s,7) (4.5.115)
while the terminal conditions are
Eq(t) =S
E(t,5)=0—-a;<5<0
ENt,r,s)=0—a;<s<0—a;<r<0
Ey(4,5)=0—-B,<s<0
Et,r,5)=0—-B, <s £0-8 2r50
Es(t,r,5)=0—-B,<s<0-a;<r<0 (4.5.116)

In addition there are certain discontinuities which must be satisfied at a;, B;:

E(1, —a,) = E(1)A,
E(t, —o*)=E|(t, —o, )+ Ey()A;, i=12...,a—1
Ey(1, = B,) = Eo(1)B,
Ey(1, —B*) = Ey(t, —B°) + Eg(0)B, j=12...,6—1
E,(t, —a,, s) = ATE(¢, s)
E(t, —at,s) =Ey(t, —a,,5) + ATE\(t,s) i=1,2,...,a—1
Ey(t, — By 5) = BYE;(1, 3)
Et, —B*,s) =E(t, =B, s) +B/Ey(t,5) Jj=1,2,...,b—1
Es(t, —a,, s) = ATE (4, 5)
E(t, —a*,s) =Es(t, —a,,5) + ATEs(t,s) i=1,2,...,a—1
Es(t,r, — By) = E{(#, 7)B,
Es(t,r, —B*) = Eg(t,r, —B7) +EX(4, B, j=1,2,...,b—1
(4.5.117)

Notice that the first term in the feedback control law, Eq. (4.5.107), is
analogous to the familiar form for systems without delay, while the additional
terms account for the delays in the state and in the control. As would be
expected, elimination of both state and control delays reduces the control law to
the conventional type (Chap. 3), with Eq. (4.5.108) taking the form of the
well-known Riccati equations for such systems.

|
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Example 4.5.6* Let us now illustrate the application of linear quadratic
controller design by recalling the class of problems represented by Egs.
(4.5.1) and (4.5.2), i.e., linear transfer function models having time delays.
As an example, the exit temperature from a tubular heat exchanger x(#) can
be shown [76] to be related to the jacket temperature u(¢) by the transfer

function
K\[1 - Ke #]
(as + 1)(bs + 1)

Let us suppose we wish to control the exit temperature by adjusting the
jacket temperature while minimizing the quadratic objective:

%(s) = i(s) (4.5.118)

I= %f"[ F(x - x)' + E(u — u)*] dt (4.5.119)
()}
For this problem the differential-difference equation representation
becomes
z= Az + Byu(t) + Bu(t — B) z(0) =0
&I Ay (4.5.120)
u(f)=0 -B<t<0
where
0 1 0
A=l _1 _(a+b) B,=| K,
ab ab ab
0 x;
B, =| KK, 2 (4.5.121)
]
ab

For the numerical computation we choose the parameters F(¢) = 2¢%,
E=2, K,=1 K,=05 B=10, a=40, b=15 =280, x,=0.2,
u, = 0.4 and apply the optimal feedback control law developed above.
This becomes

u =1~ ()" ([BIE(") + E[(1 0)]y
+f—°ﬁ{[BgE,(t, s) + E,(1, 0, s)][u(t +5) — us]} ds)
(4.5.122)

y=[x_.x‘}=[z‘_x‘] (4.5.123)

where
X Z3

* This example is taken from [76] with permission of Pergamon Press Ltd.
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and feedback controller parameters
E, = Eyn  Epz E, =[§n}
Ey1  Epp 12

and E, are determined from the following Riccati differential equations:

dE(t —
E;t( - —Eo()A — ATE(?) +[Eo(1)B, + E,(£, 0)]E ™!
X [BJE(1) + E{(2,0)] — F, - (4.5.124)
t, =
aElg()i, .. aE‘;s . ATE(1,5) +[Eo(1)By + E(2, 0)]E ™!
X [BJE,(2,5) + E)(1,0,5)] -B<s<0 (4.5.125)
0E,(t, r,s) QOE,(t,r,s) OE,(t,r,s) "
2 = - ' 4 as +[EJ(1, r)By + Ey(t,r,0)|E
-B<r<o0
X [BJE,(,5) + Ey(1,0,5)] _B<s<0 (4.5.126)
where F, is defined as
_|F 0
fo=[§ o
The boundary conditions on the variables r, s are
E (1, —B) = Ey(1)B,
E,(t, — B, s) = BTE(¢, 5) (4.5.127)
and the terminal conditions are
Eo(1) =0
E (s 5)=0 =B Er £ 0
Ey(t;r,5) =0 —-B<r<0-B8<s<0 (4.5.128)

Even though these equations appear quite formidable, they can be precom-
puted off-line and the optimal feedback controller of the form

u=u — P()(x — x,) — Py(t)%
+f° Py(t, )[u(t + 5) — u,] ds (4.5.129)
=

implemented, where P,(7), P,(t), P;(t, s) are the obvious combination of
terms in Eq. (4.5.122). For this case it is seen that the optimal feedback
controller is a proportional-derivative controller with a memory of the
control required over the interval (¢ — B, ¢).

The feedback controller may be implemented by precomputing Egs.
(4.5.124) to (4.5.126) and forming the variable gains P (£), P,(¢), P;(t, s). The
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Figure 4.33 Optimal linear-
quadratic feedback control of
a tubular heat exchanger [76].
60 70 80 (Reproduced with permission of
t Pergamon Press, Ltd.)

0.025

results are plotted in Fig. 4.33 and show the controller gains as well as the
state and control variables under optimal feedback control.

The linear quadratic formulation may be extended to nonlinear prob-
lems by linearization about a nominal open-loop trajectory. The feedback
control law in this case and an example problem may be found in Ref. [77].
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PROBLEMS

ki &
4.1 Consider the chemical reaction 4 — B — C described in Example 3.3.2, except that it is now
carried out in a homogeneous tubular reactor. If the reactor has length L, mean velocity v, and a flat
velocity profile, a possible model is

ac, dc, 5 0<z <L

kN Y%z ky(T)er t>0

aCz aCz P 0 < 2l b
B gt ky(T)ei — kx(T)e, Sl

z2=0,¢,=10,¢c,=0 forallz >0
t=0,¢,=10,¢c,=0 for all z’€(0, L)

Suppose that the reactor tube is immersed in a well-agitated bath and the heat of reaction is
sufficiently small that isothermal operation is possible at the bath temperature 7(¢).
By defining § = L /v, the mean residence time, and z = 2’/ L, one obtains the model

M=—l%—k,(T)cf 0zl

at ] t>0
dcy(z, 1) 1 9c.
=g w o wt & k(T ki T)ey

Now it is desired to start-up the reactor in such a way that we maximize the production of species B,
ie.,

r}x(a‘))({laf‘;"cz(l, t)dt}

i
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T(t)

where the bath temperature is constrained by
L.xsT=T*

(a) Derive the necessary conditions for optimality of 7(¢).

(b) Describe in detail the control vector iteration procedure you would use to determine 77(¢).
List all the equations (including boundary conditions) needing solution. Describe your proposed
numerical procedure.

(¢) Carry out this control vector iteration procedure for the parameters given in Example 3.3.2
and with the additional parameters § = 1 h, t = 2/5.

4.2 In Sec. 4.3 the linear-quadratic optimal feedback control law has been derived for Ay, A|, A o, B
only functions of ¢. Rederive the equations for the case where A,, A;, A ¢, B all depend on the spatial
variable z as well.

43 For the heated rod problem of Example 4.3.3, use modal analysis to decompose both the state
and Riccati equations.

(a) Describe in detail the modal computational algorithm for S(r, s, 7) to be solved off-line.

(b) Describe how you would simulate the controlled system and how you would implement the
feedback control law.

(¢) Carry out the computations and show the response of the feedback controller for F = 1,
E = 0.25, x(z,0) = V2 cos nz, i = 4.

4.4 Consider the boundary control of a thin metal rod which has one end in a water bath at 25°C
and the other end inserted into a steam chest. Air at 25°C is blowing transversely across the rod. The
temperature of the right-hand end is assumed fixed at 25°C, while the temperature of the left-hand
end may be controlled by adjusting the steam pressure. Thus the system may be modeled by
2 ’
pc,%;(z', ) k% -mr-2 9<r<l
Z’=0 70, ) = T,(¢)
=L T(L,t') =25
where T,(?) is adjustable.
By using the dimensionless variables
T-25 T,-25 t'k _ I -z
iy o~ tspC,Lz P = z

k L

we obtain the model

oax(z, 1) _ & _
d 32 P
z=0 x(0, 1) = ug(1)

z=1 x(1,)=0
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Air at 25°C
{ Water
Steam
bath
chest ¥ at 25°C
0 e 1

Now it may be more convenient for you to consider the equivalent form

k) k) 2 .
TT' - _a_z_;‘ = Bx — 8(2)ue(?)
with boundary conditions

z=0,1 x=0
Note that é(z) = d(8(z))/ dz where 8(z) is the dirac delta function. Also note that for any continuous
function ¢,(z),

Jy 8one) de = = ['6,(2)8() e

Given this information: -
(a) Solve the modeling equations through an eigenfunction expansion of the form
N

x(z0) = 2 a((2)
and determine an orthonormal set ¢,(z) and the equations for a,(?).

(b) Determine if the system is approximately controllable.

(¢) Develop the optimal linear-quadratic feedback control law, Riccati equations, and im-
plementation scheme for this boundary control problem.

(d) Carry out the computations and show the response of the feedback controller for F = 1,
Ey= 025 B8 =3, x(z,0) =V2 sin 7z, = 10.

4.5 For the nonlinear system described in Example 4.4.3, develop a pseudo-modal feedback
controller. In particular,

(a) Outline how one would implement such a controller.

(b) Simulate the system under feedback control using the described Galerkin procedure and
computationally determine the number of “eigenfunctions” necessary to obtain reasonable conver-
gence.

(c) Discuss the multivariable controller design problem arising from this pseudo-modal analysis.
4.6 Consider the heat exchanger control problem posed in Example 4.3.4. Show that this system in
the Laplace transform domain has the same form as Example 4.5.6. Discuss the relationship between
first-order hyperbolic partial differential equations and differential-difference equations. Compare
the optimal feedback control law formulations for both forms of the problem.

4.7 For the distillation column discussed in Example 3.2.8 but for the case where G(s) contains time
delays [i.e., G(s) given by Eq. (4.5.4)]:

(a) Determine the equation for the time-domain realization of y,(?), y,(?), y3(#) in response to
(1), uy(1), us(®).

(b) Calculate the open-loop response for step changes in the controls, u; = 1.0, u, = 2.0,
uy = 3.0

(c) Design a multidelay compensator to be included in a feedback control system where
proportional controllers are used and the loop pairings are y, <> ;, y, <> 4, y3 <> ;. Develop all the
necessary design equations.

(d) Simulate the performance of your multidelay compensator using the realization equations
similar to those developed in part (a).
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