CHAPTER

THREE
CONTROL OF LUMPED PARAMETER SYSTEMS

3.1 INTRODUCTION

In this chapter we shall consider the control of lumped parameter processes, i.e.,
processes described by ordinary differential equations. These include both
single-variable and multivariable dynamic systems. We shall begin with a
discussion of some of the key concepts and practical difficulties encountered in
lumped parameter control system design. Some of the control system design
procedures available for linear multivariable systems shall be presented and
illustrated with examples. Following this we shall introduce optimal control
theory, which represents one approach to control system design, and which
provides a theoretical foundation helpful in understanding material to be
covered later in the book. Finally, we shall discuss special techniques which may
be used for nonlinear dynamic systems.

To provide a very simple example of the type of problem we shall be
attacking and to clarify a number of concepts, let us consider the simple,
well-stirred, steam-heated mixing tank shown in Fig. 3.1. It is used to mix and
preheat a recipe of reactants before passing them to a chemical reactor. Now let
us suppose that we wish to design a scheme for controlling the effluent
temperature 7(¢) to a desired value 7; by manipulating the steam rate Q(¢) with
valve v.

An open-loop control scheme for such a process would involve programming
the steam valve position over time without benefit of feedback information, such
as a tank effluent temperature measurement. Such a scheme might be useful if a
very good mathematical model of the process were available, e.g.,

ar _HL-T) 0@
dt v VoC,

T{0) = T, (3.1.2)

(3.1.1)

and one had the start-up problem of driving 7(¢) from the initial condition T}, to
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Figure 3.1 A steam-heated mixing tank.

the desired set point T,. An open-loop control policy Q(#) could be calculated
from the model and used to program the steam valve without making use of
tank temperature measurements.

In practice, however, most process models contain some error, and closed-
loop control schemes, which involve process measurements (tank temperature, in
this case), have been found necessary for satisfactory controller performance.
The choice of the feedback controller structure is left to the designer; for
example, a common structure is the three-mode proportional-integral-derivative
(PID) controller given by

d( Td £ T)

0N =0, + K. -

(3.1.3)

1 .
(T,,—T)+—T—If(Td—T)dt + 1

where K, 7,, and 7, are the controller parameters. However, in what follows we
shall not restrict ourselves to this limited class of controllers, but shall show, in a
more general way, how one may design both open-loop and closed-loop control
schemes for processes described by ordinary differential equations.

3.2 LINEAR MULTIVARIABLE CONTROL SYSTEMS

Perhaps the most commonly encountered control system design problem in the
process industries is the design of multivariable control systems. If the process
‘under study is linear, a very general model in the time domain (so-called state
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variable notation) is
dx

— = Ax + Bu +
dt
y = Cx
where
d —3
is a k vector of disturbances,
x =
is an n vector of states,
u ——3

is an m vector of controls (manipulated

L

rd (3.2.1)

x(%o) = Xo
(322)

variables), and

Yy
B4

Y

is an / vector of outputs (those states or combination of states which can be

measured). The matrices

[ a, 4ap alnw
A=l o o
anl ann
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[ ‘n 2 Cin ]

o o
o Cin

by, by, blm]
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can be either constant or time-varying. This very general model shall be used as
a basis for much of the discussion which follows.

It is important to note that Egs. (3.2.1) and (3.2.2) have analytical solutions
which are useful to know. In the case of an autonomous system (i.e., where A, B,
C, and T are constant matrices), one may take the Laplace transform of Eq.
(3.2.1) to yield

sIX(s) — x, = AX(s) + Bi(s) + Td(s)
¥(s) = Cx(s)
Solving for X(s), we obtain
%(s) = (sI — A)~'[xo + Bii(s) + Td(s) | (3.2.3)

Now, using the convolution theorem of Laplace transforms to invert this
expression, the analytical solution takes the form

x(1) = AU—0x, + f "eAC=N[Bu(r) + Td(r)] dr (3.2.4)

where the exponential matrix e*” must be evaluated. Let us note that X = ¢ is
the solution to the simple homogeneous matrix differential equation

id’Tﬁ —AX  X(0) =1 (32.5)

where X is an n X n matrix. If the eigenvalues of A are distinct, then there is a
canonical transformation [1]

A =MAM"' (3.2.6)

relating the matrix A to its diagonal matrix of eigenvalues

A 0
Ay
A= ’ 3.2.7)
0 A,
and matrix of eigenvectors M. Substituting Eq. (3.2.6) into Eq. (3.2.5) yields
dM™'X '
_(“Tl —AM-'X)  MIX(0) = M- (3.2.8)
which has the solution
M X = eAMM™!

or

X = e*" = MeMM ™! (3.2.9)
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where e?" is the diagonal n X n matrix
el = . (3.2.10)

Thus one direct way to evaluate " is through Eq. (3.2.9).

In the event that the matrices A, B, C, and T are time-varying, the system
represented by Egs. (3.2.1) and (3.2.2) is nonautonomous, and an alternative
solution must be used. In this case, the analytical solution takes the form [2]

x(1) = ®(1, to)Xo
+ (1, 1,) f’ "O(r, 1) '[B(u(r) + T(Ad(N] dr  (3.2.11)

where ®(t, t,) is an n X n time-varying matrix known as the fundamental matrix
solution. The fundamental matrix solution arises from the solution of the
equation

dd(1, ty)

7 A()D(t, 1) D1, 1) =1 (3.2.12)

Example 3.2.1 To illustrate how these general results apply to a particular
multivariable system, let us consider the stirred mixing tank in Fig. 3.2 with
cross-sectional area A,. There are three streams entering the tank: (1) a hot
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Figure 3.2 Stirred mixing tank requiring level and temperature control.
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stream at temperature Ty with adjustable flow Fp, (2) a cold stream at
temperature T, with adjustable flow F¢, and (3) a disturbance stream from
another process unit with variable temperature 7, and flow F,. The tank is
well stirred, with liquid outflow determined by the liquid height in the tank,
h, ie., F(h) = Kh'/2. The modeling equations arise from material and
energy balances: '

dh

A, = Fy + Fo+ Fy = F(h)

d(hT)
dt
Clearly the tank model is nonlinear; however, it is possible to linearize the

equations about the desired operating point h,, T, by using Taylor series
expansions truncated after the first-order terms:

pC,A, = pC,[ FyTy + FcTe + F,T,— F(WT]  (3.2.13)

1 K
F(h) = F(h,) +§Zl'/—2(h =M+
T.K(h— h
F(h)T = F(h)T, + F(h (T — T,) + %—:—-(;I—I/Z—L) + o
hT = hT,+ h(T — T,) + T,(h — h) + - - - (3.2.14)

FyT o FuTy+ F(Ty— Ty) + Tp(Fy = Fa) + -
If we then define Fy,, Fe,, Fy T as the steady-state values of Fy, Fes Fys
T, corresponding to h = h,, T = T, that is, satisfying
0= Fy, + Fe, + Fy — F(h) :
0= Fpy,Ty + Fo, T + Fi Ty — F(h)T, (3.2.15)
then one can use the deviation variables
x,=h-—nh x,=T-—T,

) s

uy=Fo— Fsy, dy=F,—F, dy=T,— Ty (3216)

u, = Fy — Fy,

to obtain the linearized modeling equations

dx, 1 K
Ac—gt—= u, + u, + dl _mel
de dxl
A\ RS2+ T2 | = Tyu + Teuy + Tudy + Fuds
T, K
-3~ — Fh), (3.2.17)
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or rearranging,

dx, 1 1 F(hs)

i e i B e

dx 1

dt2 - [(Ty — T,)u, + (Tc — T,)u, + (T, — T)d,

+ Fudy, — F(h,)x;] (3.2.18)

Thus, if we define the vectors

<[] e=fa] el

and the matrices

[ 1 F(h) " 1 1
2 Ah, A, A,
- . _ F(hy) S| Ta-T, T-T,
Ak, Ah, Ah,
1
I 0
'l =~ % . g (3.2.19)
Achs Achs

then the model for this system is in the form of Eq. (3.2.1). If both the state
variables are measured, then

re[il[R] e eofo d]

To use the analytical solution, Eq. (3.2.4), for this example problem, let
us note that the matrix A is diagonal and that the characteristic equation

|A—=MN|=0
yields the eigenvalues
1 F(h,) F(h,)
A= — 5 Lk A, = — Ak (3.2.20)

Hence A is already in canonical form and

0 e)\zlr

eA*=[eA" d } (3.2.21)




46 ADVANCED PROCESS CONTROL

Let us now evaluate the response of the system to a unit step change in u,
and u, at t = 0, that is 4, = 1, u, = 1. Further, let us assume

b
x(0) = x, =[x;‘;} and dy=d,=0
In this case Eq. (3.2.4) becomes
x(t) = eMx,y + f "eAC=OBu(s) ds (3222)
0

or

2
A(t=s5) =
(1) [x] Pl A
x =

X Ty + To— 2T,

Ay (1—s) H s
Ay + f ( Ah ) ds
Evaluation of the integrals yields the analytical solution:

F(h, 4h, 1 F(h,
(t)—exp{ 3 A(h) }xm+ F(h){l—ep[—i A(chs)t]}

T, + Tp = 2T,
xz(t)=exp[ A(h) }xzo ——+F—(g—)——{l——

(3.2.23)

Time-Domain versus Transform-Domain Representation

In considering the dynamics of multivariable linear systems with constant
coefficients, one may choose to do the analysis either in the time domain, with
models of the form

dx

- - Ax + Bu+Td  x(%) = X, (3.2.24)
y = Cx (3:2:25)

or in the Laplace transform domain, involving transfer functions in the form
7(s) = G(s)a(s) + G (s)d(s) (3.2.26)

Here the overbar denotes the Laplace-transformed variable and the matrices
G(s), G,(s) are the multivariable transfer functions relating the system control




CONTROL OF LUMPED PARAMETER SYSTEMS 47

variables i(s) and disturbances d(s) to the system output, i.e.,

[en(s) gals) 0 &™) ]
gy BB Balll - - Bl
21(s) 8in(s) |
i ; (3.2.27)
gi(s) gh(s) - ghls)
gy | W Bl e )
L g,l(s) gIk(s)

Note that the state variables x are not used in the Laplace-domain representa-
tion.

Some control system design procedures are easiest in the first representation,
while other algorithms are more convenient using the second. Thus the control
system designer should have the capability to quickly switch back and forth
between the two formulations. Let us discuss how this may be easily done.

The transformation from the state space [Egs. (3.2.1) and (3.2.2)] to the
transform space is unique and simply done by taking the Laplace transform of
Egs. (3.2.1) and (3.2.2) with x, = 0, to yield

§ = C(sI — A) " 'Bii(s) + C(sI — A)~'Td(s) (3.2.28)

Hence
G(s) = C(s1 — A)"'B (3.2.29)
G,(s) = C(s1 — A)~'T (3.2.30)

There exist standard computer programs (see Appendix A) which can efficiently
perform the operations in Eq. (3.2.28).

The reverse transformation from the transform domain to the time domain
is more difficult for several reasons:

1. Because there is more information contained in the time-domain representa-
tion than in the simple input/output transfer function, the transformation
from the transform domain is not unique. There are many sets of Egs. (3.2.1),
(3.2.2) equivalent to Eq. (3.2.28).

2. Among the many possible transformations, one wishes to choose one which
provides the minimal realization of the transfer function. This means the
smallest set of state variables necessary to match the transfer-function rela-
tionship. Even so, there are many possible choices of a minimal realization.
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Among the several different algorithms for finding the minimal realization of a
transfer function (see [3-5] for a more detailed discussion) is a most useful
technique which works when all the poles of the transfer function matrix are real
and distinct. The procedure may be outlined in the following way.

Let us consider the transfer function matrix G(s) which can be expanded in
a partial fraction expansion of the form

V4
G(s) = _§1 ST"}\i (3.2.31)

where the —A, i = 1,2,...p, are the poles and the / X m matrix M, is the
matrix of residues for the pole —A,, defined by

M, =

1

rB)\i [(s + AN)G(s)] (3.2.32)

li
s—

If n, is the rank of the ith matrix of residues, then the minimal state space
realization must consist of n state variables, where

P
n= Y n (3.2.33)
i=1 ’

The construction of the matrices A, B, and C can be done in many different
ways, and, as noted above, the selection is not unique. One procedure is to make
A diagonal and of the form

A= B (3.2.34)

where the diagonal submatrices are given by
A, = —Ailn,

and I, is an identity matrix of dimension #;. To determine the elements of B and
C, note that with A in diagonal form, the quantity (sI — A)~' is also diagonal, so
that Eq. (3.2.29) may be rewritten in the form of Eq. (3.2.31), where M, will be
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composed only of the elements of C and B:
Mi = 2 cybzl- i = 1’ 27 ORCE ,P (3.2.35)
j=1

where ¢;; is an / vector and b, is an m vector. Then the vectors ¢, b are one
possible choxce for the columns of C and B, respectively, and these would take
the form

B = . C=[c“...clnlic21...cznz:...,cpl...cpnp]

(3.2.36)
where, of course, B is an n X m matrix and C is an / X n matrix.

If in addition we must invert the disturbance transfer function
,=C(s1 —A)~'T (3.2.30)

we must now choose the n X k matrix I' to obtain the proper transformation.

This can be done by expanding G, in the form of Eq. (3.2.29), where the poles of
G and G, must be the same:*

P Md
G, =Y d (3.2.37)
S s+ N -
Here the matrix of residues M;’ may be expanded as
o

* This is not really a restriction because a common denominator may be defined which contains
all the poles of G and G,.’
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where the elements c; have already been determined and the k vector y; must
be selected to form the matrix

r=| : (3.2.39)

Let us illustrate these procedures by examples.

Example 3.2.2 Let us consider the dynamic modeling of a liquid-phase
chemical reaction for reacting species A to products. Assume that the rate of
reaction is independent of temperature and that the reactor chosen is an
adiabatic stirred tank. Composition and energy balances yield the modeling

equations
de, 1
r —a'(cAf = ¢4) = ke,
ar 1
7[- =§(7}" T) 2 JkCA

Here we assume 7 is the manipulated variable and T the output, so that by
letting x, = ¢4, x, = T, ), = ¢4y, 4, = T, and y = T, one obtains

dx
'E;'—AX'FI)M
y=Cx (3.2.40)
where
—(%+k) 0 -}5 0
A= i B = I C=[0 1]
Jk =3 0 ]
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Then, by application of Eq. (3.2.28), one obtains
G(s) =C(sI —A)"'B

where
s+—}0-+k 0
(s — A) = 1
- Jk S+—é
and
1 s+% 0
=8 = e T BG T 1
) Jk  s++k
Thus
s+—-+k
1 Jk [}
CO = GFiavG+1/8)| 0 9 ARAL

is the unique transfer function required.

Example 3.23 Let us now determine a minimal state space realization for
the transfer function, Eq. (3.2.41), derived in the previous example. Clearly
the poles are —(1/8 + k) and —1/6. Thus a partial fraction expansion of
the form of Eq. (3.2.31) gives

1 J 1 J 1
G(s)-rrl/—orz[“é °]+S+1[3 z]
A

Since the rank of each of the M;, i = 1,2, is 1, a minimal realization
requires two state variables. Let us now determine a set of A, B, C for this
realization using the algorithm suggested above. In diagonal form,

—(l+k) 0

how| AP : (3.2.42)
’ "9
and we can choose M, and M, according to Eq. (3.2.35), i.e,,

me(-3 - [-5



52 ADVANCED PROCESS CONTROL

Thus
=& 4
B = Jo1 c=[1 1] (3.2.43)
6 @0
is an acceptable choice. Note that this leads to the state space model
'dx, 1 J
5 b ’('é*")"l‘z“l
dx, 1 J
AR A
y=x+x

Clearly y, u;, and u, have the same physical meaning as in the previous
example, but x, and x, here are not the same. In fact, x, = Jc, + T,
x, = — Jc, here.

This example clearly illustrates the nonuniqueness of the minimal state space
realization, since the transfer function of Eq. (3.2.41) has been shown to be
equivalent to two different state space models, Egs. (3.2.40) and (3.2.42), (3.2.43).

More complicated transformations will be illustrated in the next example
problem.

Example 3.2.4 In this example we illustrate the state space representation of
a more complicated transfer function relationship,

¥ = Gu(s) + G,d(s) (3.2.44)
where
[ 0.7
0
| L+9s
G =1 10 0.4
i 1+ 8s 1 + 9s
0 0
G,s)=| o05 1.0
| 1 + 8s 1+ 9s

Making use of Eq. (3.2.31), one obtains

1 70078 o0 1 0 0
G(s) = ——| O i e
() s+g[ 0 0.044} s+§[0.25 0]

where A\, = — 3, A\, = — £ are the poles. Evaluating the ranks of the residue
matrices, one obtains n, = 2, n, = 1, so that the minimal realization must be
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of order 3. By using the diagonal form,

0

S S

-1

9
A 0 -
0

o o=

00| =

and expanding M;, M, in the form of Eq. (3.2.35), then

1 0
M1=[0] [0.078 o]+[1} [0 0.044]
0
= 025 0
2 H Sl
Thus B and C can take the form
0.078 0
B=| 0 0044 c=[(‘) (1’ ‘”
0.25 0
Now expanding G,(s), one obtains
1 fo o 1 0o o
=— -
Ga(s) s+;[0 0.111] s+%[0.0625 0}
and expanding the matrix of residues M? according to Eq. (3.2.38), one
obtains
1
M7=[0] [0 0]+{‘1)] [0 0.111]
0
M‘2‘=[1] [0.0625 0]
Thus
0 0
I'= 0 0.111
0.0625 0
Summarizing, the state space model takes the form
= L 0 0
1% ’ [ *1 0 0078 a
| %=l 0 =5 0 x2+00.044[‘]
X3 x| o025 o -
0o o0 -3 L7 -
0 0 Jra Xy
+ 0 o1n [dIJ [ﬁ’]=[(1) - ﬂ X3
00625 0 L% . %

and is an equivalent minimal realization of the transfer function relation-

ship, Eq. (3.2.44).
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Figure 3.3 Multivariable block diagram.

Multivariable Block Diagrams

Having developed the facility to readily convert linear constant-coefficient
systems between the time domain and the transform domain, it is now useful to
consider multivariable feedback control loops. As a preliminary, let us discuss
the meaning of the simple multivariable block diagram shown in Fig. 3.3. In the
transform domain, G(s) and G,(s) are the plant transfer functions relating the
control variables and disturbances to the process outputs,

¥(s) = G(s)a(s) + G (s)d(s) (3.2.45)

Here G(s) and G,(s) are defined by Eq. (3.2.27), where the elements take the
form*
K;IL(1 + hZs)

P
g,(s) = (3.2.46)
I+ efs)
p
for lumped parameter systems. The parameters are
K,,—transfer- (- hf ~! _ transfer-function zeros
function gain (=ef ~! _ transfer-function poles

It is interesting to realize that these block diagrams may also be represented
in the time domain. In this case, G and G, may be thought of as integral
operators. For the linear system equation (3.2.1) with initial condition x, = 0, G
is defined as

y(#) = <G(2), u(s)) (3.247)

* As described in Chap. 4, sometimes time delays also appear in the transfer function.
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where
G(1) = CB(7) fo ‘®(r)"'B(r)() dr (3.2.48)

and the brackets (L, w) represent a general inner product operation of the
operator L operating on the variable w. This result comes directly from the
analytical solution to Eq. (3.2.1):

x(1) = B(1, 1o)X,
+@(1, 1,) f “©(r, 1,) "' [B(r)u(r)] dr (3.2.49)
o
y(2) = Cx(?) (322)
where we recall that ®(t, t,) is the n X n fundamental matrix solution defined by
®=ANP Bty 1) =1 (32.12)

The block diagram in Fig. 3.3 also includes a multivariable controller G,
which can be written in either the transform or state space domain. Although G,
can have entries in all elements, it is very common to have multiple single-loop
controllers where G, takes the diagonal form

G, = , (3.2.50)

Here the single-loop controllers could be of the simple linear proportional-in-
tegral-derivative type. In the Laplace transform domain, these take the form

g (s) = Kc(l - X -+ 'rDs) N 8 e | (3.2.51)
e i TS i

In the time domain, the single-loop controller action u(¢) is

u(t) = (G, &y, = Kc,

1 de;
&+ ey f &(1) dr + 70,7,} (3.2.52)

where the output error signal is
&(1) =y (1) — y,(2) (3.2.53)

Thus block diagrams such as Fig. 3.3 can represent linear systems in either the
transform or state space domain.

The closed-loop operator equations for the block diagram shown in Fig. 3.3
can be found in the standard way by writing

y=6GG.e+ Gd (3.2.54)
e=y,—y (3.2.55)
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where ¢ is the / vector of deviations from the set-point vector y, and d is the
process disturbance. Substituting Eq. (3.2.55) into Eq. (3.2.54) yields the closed-
loop expression

y = (I + GG,)"'(GG,y, + G ,d) (3.2.56)

where for the transform domain, the inverse operation denotes matrix inversion.
This expression may be simplified to

y=Ty,+T,d (3.2.57)

where the closed-loop transfer functions T and T, are defined by
T = (I + GG,)”'GG, (3.2.58)
T,=(0+ GG, 'G, (3.2.59)

We shall discuss methods of designing these multivariable controllers in the
latter part of this chapter. However, we must first introduce some important

concepts.
Let us recall the time-domain representation of our system,
d
7’: =Ax+Bu+Td  x(t) = x (3.2.1)
y=Cx (3.2.2)

and consider some important properties of this system.

Controllability

One notion which is very useful in analyzing control systems is controllability [2,
6, 7]. Loosely speaking, a system may be said to be controllable if there exists a
control policy u(z) which will steer the system from any given initial state x, to
any other desired state x, in finite time. A more precise definition may be given
as follows:

If every initial state x,(t,) can be taken to any other state x,(t) in some finite
time t > ty, then the system is completely controllable. It is also possible to have
systems which are only partially controllable, i.e., in which there are some
subsets of initial states x,(¢,) which cannot reach every other state in finite time.

It is possible to define conditions of controllability for specific classes of
systems [2]. For example, if the matrices A and B are constant, then it can be
shown [2, 7] that the system of Eqs. (3.2.1) and (3.2.2) is completely controllable if
and only if the rank of an n X nm “controllability matrix” L, is n, where

L. =[BIABIA’B; - - - |A""'B] (3.2.60)

An informal derivation of this result may be seen by considering the
analytical solution to Egs. (3.2.1) and (3.2.2).*

x(?) = e“’“x0 + fteA(‘—:)Bll(S) ds (3.2.61)
0

* We neglect the disturbances d(f) because controllability is a property of the system itself.
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where the exponential matrix may be written [1]
eM=T1+At+3A% + - - (3.2.62)

which when combined with the Hamilton-Cayley theorem* [1] leads to the finite
series representation

A = ¢l + c,At + (A1) + - - - +c,_(A1)" ! (3.2.63)
Upon substitution of this into Eq. (3.2.61), one obtains

x(1) = e*'x, +f’[coB +c(t — 5)AB + - - -
0

+c,_y(t — 5)"'A" "B u(s) ds (3.2.64)
or
x(1) = eMx,
cou(s) ]
| o3 8 e b vas
+f0[B;ABg...;A"-'B] fidantsias s ds  (3.2.65)
| amilt = 5 u(s) |

Now the concept of controllability means that the control u is capable of
influencing all the states x through the integral in Eq. (3.2.65). Therefore the
system is controllable if and only if the integrand in Eq. (3.2.65) allows the
influence of u(z) to reach all the states x(¢). This requires the n X nm matrix
transformation

[ B/AB! ... A" 'B]
to have rank n.

Note that output controllability conditions can be found by multiplying Eq.
(3.2.64) by C to yield

y(1)=Cx = Ce*'x, + f’[COCB + ¢,(t — s)CAB + - - -
0

+¢,_y(t = 5)""'CA""'Bu(s) ds (3.2.66)

Thus, by the same arguments, the controls u(f) must influence all the / outputs
y(#) for output controllability. This means that the outputs y are completely
controllable if and only if the rank of the / X nm controllability matrix L? is /,
where

L. =[CBiCAB: ... !CA""'B] (3.2.67)

* This theorem states that every matrix satisfies its own characteristic equation; thus every
infinite series can be reduced to an n-term series.
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Controllability conditions for the case of a linear nonautonomous system of
the form of Eq. (3.2.1), when A(¢), B(¢) are known functions of time, specify that
the nonsingularity of the n X n matrix

M(1o, 1) = f, (1, ;) 'B(1)BT(1)[@(1, 1)) " at (3.2.68)

is necessary and sufficient for controllability. Here the n X n matrix ®(s, t,) is
the fundamental matrix solution defined by
B(1, 1)) = A(DD(t, 1) Pty 1) =1 (32.12)

The proof is straightforward [2], but shall not be given here. Note that since the
integrand of Eq. (3.2.68) is positive semidefinite, it is sufficient for controllability
that the integrand be nonsingular for any instant of time 7, <t <.

Let us illustrate these points with a few examples.

Example 3.2.5 Let us consider an isothermal continuous-stirred tank reactor

i ¢ = : k ;
CSTR with the irreversible first-order reactions 4 - B =P taking place.
The rates of reactions are given by

ry =k,
ry = kjcp

where k, and k; are constants.
The modeling equations for this system take the form

dc
Vd—; = F(cAf = gg) = Wlky) c4(0) = c49
dcg
V_dt—’ = F(cg — cp) + V(kicy — kscp) cp(0) = cp

It is required to control ¢4, ¢y as close as possible to a desired set point ¢,
cpa by adjusting ¢, and cpy, the feed concentrations of 4 and B. Let us now

define
kv k,V t'F
Da,=—— Da,=-—2 t=—
F F V
() c CA C
X, = 4 Xy = 2 u = Y Uy, = B
C4 ref C4 ref €y ref Cy ref

where ¢, s is an arbitrary reference concentration of 4. In this instance, the
modeling equations take the form

dx
Ttl. = = (1 + Da,)xl + u, x](to) = X0
dx
—dt2 = Da;x; — (1 + Day)x, + u, x5(p) = X0

Thus one wishes to control the reactor outlet concentration x, x, by
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adjusting the feed concentrations u,, u,. By putting these equations into the
general form of Eq. (3.2.1), the controllability criterion may be tested by

noting that

— (1 + Da)) 0 10
A=[ Da, —'(1+Da3)} B—[O 1]

and the “controllability matrix” is

. 1 0:—(1+Da,) 0
10 1. Da, — (1 + Da,)

Clearly the rank of L, is two for this second-order system, so that the system
is completely controllable.

Example 3.2.6 Let us now consider the question of controllability of the
reactor in Example 3.2.5 with the modification that u, = cg;/c, . = 0 and
only u,, the feed concentration of 4, may be manipulated to control the
reactor. In this case A is given as before, but B and L, take the form

T _[1i—-(+Day)
it |

0: Da,
Again the rank of L, is two, so that the reactor is completely controllable
with only control variable u,. However, the controller performance would
surely be poorer than for the case when both u, and u, are available.

Stabilizability
A much weaker condition than controllability for a system is the property of
stabilizability [2). Stabilizability is the property that all the unstable modes of the
system Eq. (3.2.1), can be made stable by controller action. This means that any
positive eigenvalues of A may be made negative by controller action. Clearly
then, any system with A having all negative eigenvalues is stabilizable (in fact,
even without controller action). In addition, any system which is controllable is
automatically stabilizable.

In the case of the constant-gain proportional feedback controller on the
state variables

u(r) = —Kx(7) (3.2.69)

where K is an m X n feedback matrix of controller gains, the system of Eq.
(3.2.1) becomes

d
7’: = (A — BK)x (3.2.70)

The system would then be stabilizable with such a feedback controller if and
only if there existed a combination of feedback gains k;; which would cause the
real parts of all the eigenvalues of (A — BK) to be negative.
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With a proportional controller on the output variables

u(?) = —Ky(?) (3.2.711)
the system of Eq. (3.2.1) takes the form
-“’1—’1‘ = (A - BKO)x . @am)

In this case, stabilizability requires that the real parts of all the eigenvalues of
(A — BKC) be negative for some selection of the feedback gains k; ;.
We shall illustrate these points with an example problem.

Example 3.2.7 Let us consider the reactor problem of Example 3.2.5 except
now c,, is fixed and only ¢z, may be adjusted to control ¢, and c,. In this
case let us define

T L. NP ¢ "4
T, 1+Da, M7, TV Dy ==
k3V ch Dal
D = — B e— —
BTF YT, 1+Da
so that the modeling equations take the form
dx
—Jtl = —(1+Da)x, x(t)=xp (3.2.73)
dx,
— Da;x; — (1 + Day)x, + u;  x,(2) = Xy (3.2.74)
In this instance, the A matrix is given as before and

0 0: 0
"=[1} Lc=[1g ~ (1+ Day)

Here the controllability matrix L, is singular and the system is not com-
pletely controllable. Only the state x, can be controlled by u;, and x, is
completely free. However, from the solution of Eq. (3.2.73), one sees that

x(#) = x;gexp[ — (1 + Da,)(z - 1)]

so that the eigenvalue associated with x, is always negative and x, is stable.
Thus the system of Egs. (3.2.73) and (3.2.74) is stabilizable. In practical
terms, this means that while both concentrations 4 and B cannot be
controlled by adjusting the feed rate of B (only B can be controlled in this
manner), the concentration of A4 is stable and will approach the steady state
unaffected by whatever control action is taken. Thus one could successfully
design a control system for Egs. (3.2.73) and (3.2.74) even though the system
is not controllable.

Let us review the implications of controllability and stabilizability in the light
of these three examples. First, a control system can always be designed for a
completely controllable system and is sometimes impossible to design for one
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which is not completely controllable. 1f the system is stabilizable (but not
completely controllable) and the uncontrollable eigenvalues of the systerp are
sufficiently large and negative, then an acceptable control system design is
possible. However, if the system is not stabilizable, then control is generally
impossible.

For Examples 3.2.5 to 3.2.7, the use of control variables c,;, cg, together or
Caf alone will allow the CSTR to be completely controlled, but cg, alone cannqt
completely control the reactor. Physically this is due to the fact that there is
kinetic coupling from c, to c; but not in reverse, i.e., the rate of formation of B
depends on c,, and thus the control of ¢, by c,; is sufficient to control ¢, as
well. In contrast, the rate of formation of A4 is independent of cp, and thus
controlling ¢, exercises no control over c,. Had the first reaction been reversible
in Example 3.2.7, then the reverse coupling would exist and the system would
have been controllable with c, alone.

Normality

A stronger form of controllability is called normality [2]. A system is said to be
normal if each element of the control vector u alone will achieve controllability.
This will be true if and only if the normality matrix L,

L, =[b;Ab;A%, - - - iA""'b,] (3.2.75)

has rank n for all i, where b, i = 1,2, ..., m, are the columns of the matrix B.
Thus the CSTR control system discussed in Example 3.2.5 is completely control-
lable but not normal because u, alone will not cause the system to be controlla-
ble. For scalar control variables, normality and controllability are identical
properties.

The Interaction Problem

The fundamental problem in designing multivariable feedback controllers lies in
the steady-state and dynamic interactions which occur between the various input
and output variables. If the system had no coupling between variables and the
number of control variables equaled the number of outputs to be controlled,
then the linear system of Eq. (3.2.1) in the transform domain would have a
diagonal open-loop transfer function

g“(S) 0
G(s) =C(sI — A)"'B = 822(s) (3.2.76)

0 . 8u(s)

and for G, in the diagonal form, Eq. (3.2.50), the closed-loop transfer function,
Eq. (3.2.58), relating y to y, would then be diagonal and each control loop could
be tuned separately by classical methods.

Unfortunately, most multivariable systems have significant coupling be-
twe}en outputs and controls, and these pose great difficulties in control system
design. To illustrate these problems, consider the following example.
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Example 3.2.8 You are working for XYZ Chemical Co. in their engineering
department and the plant supervisor comes to you with a control problem.
In the plant is a large binary distillation column, sketched schematically in
Fig. 3.4. There are four product streams drawn from this tower, with
concentrations of the heavier component in the top three sidestreams
denoted by y,, y,, and y,. The bottoms must satisfy an overall material
balance. The compositions of these products at each drawoff point have
specifications y,;, y,4 and y,; and are controlled by adjusting the drawoff
rates, u,, u,, and u,. Currently the tower is run by manual control because
the present single-loop PID controllers do not work well. They produce
considerable offset and occasionally cause the sidestream compositions to
continuously oscillate. Under manual operation there are no oscillations,
but there are still significant deviations from the set point which require
hours of time and many trial-and-error manual adjustments to eliminate. As
an indication of the problem, the plant supervisor asks you to consider Fig.
3.5, where the operator successfully adjusts y, to a new set point by
increasing flow rate », and decreasing flow rate #, by an equal amount. This
causes the concentration of the less volatile component at sidestream 2, y,,

T \ I _ Overhead

’1

I g a Sidestream

Y2

Feed =]

I Sidestream

Y3

4

- Bottoms

Figure 3.4 Multi-sidestream distillation column.
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1 —_\ IOffset
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New set point
Set point

V3 ey —
ul "l
) L)

Time -

Figure 3.5 Open-loop response of the distillation column to manual adjustments of »; and u,.

to decrease to the new set-point value.* However as can be seen, the
concentration drawn overhead does not remain constant but decreases also.
The concentration y; at sidestream 2 first increases and finally decreases to
approximately the old operating point. Thus, by successfully meeting the
new specification on y,, the operator has thrown y, off specification and
must now work on correcting this by adjusting u,. This begins a whole new
round of detrimental interactions, and meanwhile the column is making
many tons per hour of off-specification product.

Note that because of dynamic interactions which can cause temporary
deviations in the wrong direction, after each adjustment, the operator must
wait for the transients to die out to determine if this action is a success. The
plant engineer asks for your help to develop a better controller for this
tower." ,

As a good control engineer, you first request that some modeling work
be carried out on the column. Thus step input test data are fit to a rather

simple transfer function relating the flow rates u to the sidestream composi-
tion y(s), i.e.,

¥(s) = Gu(s)

* The operator uses this approach because he has learned that this usually doesn’t cause y; to be
thrown too far off specification.

t Chapter 6 contains a further treatment of this example problem.
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where G(s) has been found as

0.7
1+ 9s 0 b
2.0 0.4
= 2,79
G1%) 1+ 8s 1 + 6s i)
23 2.3 2.1
_1+10s 1+ 8s l+7s_

Some interpretation of this model shows that all the responses between flow
rates % and sidestream compositions y; can be considered first-order.
However, one should note that in actuality the system is of much higher
order (order ~ number of trays between drawoffs). In practice, time delay
terms e ~“* would often appear, but for smaller columns, these delays may
be negligible and have been neglected here. The model shows that there are
significant interactions between variables, and in fact, the diagonal terms
are not even dominant. Note that the interactions are one way, i.e., the
adjustment of a drawoff rate affects all stream concentrations below it, but
none above. This is the easiest type of process interaction to deal with.

Let us try to understand the difficulties encountered by the operators.
The present column feedback control scheme, which was taken out of
service, is of the form shown in Fig. 3.3, where

gnt(s) 0 0
G = Y 822,(5) 0
0 0 833,(5)

represents three single-loop PI controllers. From Eq. (3.2.56), the closed-
loop transfer function for the column is

y="Ty, (3.2.78)
where
T=(0+GG,) 'GG,=1—-(I+GG,)! (3.2.58)
and
[ 078, ]
1+ 9s 0 ’

GG,

2. 4

O, Odea, 0 (3.2.79)
1+ 8s 1+ 6s
2.3g”= 2.3g22: 2'133%
| 1+ 10s 1+ 8s 1+ 7s
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Thus
0.7g“=
1 +9s +0.7gy,,
2.0g,, (1 +9s)(1 + 6s)
T=| (1+8s)(1+9s+ 0.7g,, )(1 + 65 + 0.4g5, )

2.3gy,, (048, 3 1) _ 4.6, 8,
l+10s(l+6s (1 + 8s)®

i (1+ 95 +0.7gy, )(1 + 65 + 048, )(1 + 7s + 2.1g3)

(1 + 9s)(1 + 6s)(1 + 7s)

0485,
1 + 65 + 04g,,

2.3g5 (1 + 6s)(1 + 7s) 2.1gs;,
(1+8s)(1 + 65 +0.4gy, )(1 +7s +2.1g;;) 1+ 7s+21gy)

(3.280)

Observe that there are significant off-diagonal terms in T corresponding to
strong dynamic and steady-state interactions in the system. This easily
explains how operating difficulties with the present control scheme could
arise if the controllers were not carefully tuned. Note that because the
interactions are only one way, the controllers could, in principle, be tuned
one at a time, starting at the top of the column. Nevertheless, the control
system performance could be greatly improved by a better control system
design which would minimize the effects of interaction.

Let us now consider another example problem where the transfer function is
full and interactions occur in both directions.

Example 3.2.9 Recall the simple mixing tank control problem shown in Fig.
3.2 and discussed in Example 3.2.1. If we assume that both the liquid level
and tank temperature are measured, then the state variables and output
variables are identical. Using Eq. (3.2.28) to convert to the Laplace domain,

G(s) =C(s1 —A)"'B
G (s) = C(s1 — A)”'T
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or
-1
1 F(h,)
s —2- A h 0
G(s) _ l 0 e""s
0 1 " i F(h,)
) ACh.V
[ 1 1
1 F(h,) 1 F(h,)
Ac(s + 3 ik ) Ac(s + 2 A,
G(S) = T, — T, T, - T,
F(h,) F(hy)
Achs(s + Ah, ) Ach:(s + Ak,
1 F(h,)
S s+ 5 Ach‘, 0
Gas) = | ] : F(h,)
AChS
Yo :
Ac(s + —2' A‘.h_, )
Culs) = T, — T, F
F(h,) F(h,)
Achs(s + Ak ) Achs(s + Tchs

1 1
4, 4,
In=1, Te-1T,
A h A_h,

1
A, ¥
Ly = 1, Fy
A_h, A_h,

Thus changing either tank inlet flow rate, u, or u,, influences both the level
and the temperature; hence coupling is in both directions.

Efforts have been made to establish measures of interaction in multivariable
processes. Perhaps the most widely used measure is the Bristol array [8], which
measures the degree of steady-state interaction. To illustrate the application of
the Bristol array, consider the 2 X 2 multivariable system shown in Fig. 3.6. The
conventional method of tuning the control system would be to first open loop 2
and tune loop 1 so that y, has a good response, then open loop 1 and tune loop 2
until y, has a good response. If there were no interaction (g,, = g,, = 0), one
could then close both loops and expect the control system to work well.
However, in the presence of interactions, the overall control system performance
could be quite poor when both loops are closed. Bristol [8] developed a general
measure of this interaction in the steady state in a form of the so-called Bristol
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Loop 1

" > V)

b+

o
+v
\ 4
ol

Loop 2
Figure 3.6 2 X 2 multivariable system undergoing sequential tuning of conventional controllers.

array:
An A Aim
A = AZI BT S T
>\m1 Amm

whose elements are defined as the steady-state ratio:

)
al{/ all loops open

y;
_5;_1' all loops closed

except for 1

Lj=1,2,...,m

A=

The elements of the Bristol array are then the ratio of the steady-state open-loop
response and the steady-state closed-loop response when a particular manipu-
lated variable is adjusted. It is straightforward to determine the elements of the
Bristol array, for the numerator is simply the 7, jth element of the open-loop
steady-state transfer function, ie., /im g;(s). The denominator is calculated

assuming that all the closed loops worsl?perfectly, so that y, is constant for k 7.

Thus
{ayi} _{ay.-} _[a“i}—l
auj all loops closed au! T ayk ¥i constant, i %=k

except for y

However, {du/dy,] is just the j, ith element of the inverse of the steady-state
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process transfer function, i.e.,

u' . -
Syf = l‘_rf})[G )]

Thus
N =[60)],[607],

where [ ],; denotes the i, jth element of the matrix in question.
To illustrate the application of the Bristol array, consider the 2 X 2 system
shown in Fig. 3.6 with

ky k
limG(s) =| "' "2
5s—0 i: k21 k22

kzz —k21
—k12 ‘ ku

Ty=1"_
[G(O) ] a kukzz_ k12k22

Then

and

_k21k12 kukzz
kukzz - k12k21

[ kukzz _k21k121|
A_

Several things can be noted from this example which are general properties of
the Bristol array:

1. The sum of any row or any column in the Bristol array is unity.
2. When the transfer function matrix is diagonal or is triangular, the Bristol
array is the identity matrix.

From the definition of the interaction measure, it is clear that the best possible
situation is to have all the off-diagonal terms near zero and the diagonal terms
close to unity, i.e.,

Rt = L
0 1
This means that there is little interaction and that the closed-loop behavior is
similar to the open-loop behavior. As the off-diagonal terms increase in absolute
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magnitude and the diagonal terms depart from 1.0, more and more interaction is
indicated.

Positive interaction arises when all elements of A are positive: this means
that there is some interaction, and one must choose the loop pairings (%, y;) to
make the diagonal terms as close to unity as possible.

Negative interaction occurs when some of the elements of A are negative.
This means that changing % in the closed-loop situation has just the opposite
effect from changing #; in the open-loop case—a potentially dangerous situa-
tion.

The Bristol array can be used as a guide in choosing the pairing of control
and output variables. Some general rules for this pairing are:

1. From examining G(0), pair u, y such that diagonal elements are largest
relative to off-diagonal elements.

2. From examining A, pair u, y such that diagonal terms are dominant and close
to unity in absolute value. If some diagonal terms are negative, then all must
be negative for good performance.

Example 3.2.10 Let us consider the pairing of control loops for the distilla-
tion column in Example 3.2.8, where

07 0 O 1 1.43 0 0
GO0)=|{20 04 O GO) ' =| -7.14 2.5 0
38 23 i 626 —274 048
Thus
10 0 O
A=|0 10 0
0 0 10

and the Bristol array predicts no serious steady-state intereactions because
the coupling is only in one direction. Tuning can be carried out one loop at
a time, i.e., loop 1 (%, versus y,) can be tuned, then loop 2 (u, versus y,), and
then loop 3 (u; versus y;). This procedure should, in principle, allow
reasonable control system performance when all loops are closed. However,
as shown in Chap. 6, there are still interaction problems with these columns,
and more sophisticated multivariable controller designs can be helpful.

Example 3.2.11 Let us now consider the stirred tank of Example 3.2.1 where
we pair the control and output variables as shown in Fig. 3.2; i.e., the
level is controlled by adjusting the hot stream, and the tank tempera-
ture by manipulating the cold stream. Recall from Example 3.2.9 that

y = G(s)u




70 ADVANCED PROCESS CONTROL

where
_ g : E
1 F(hy) ] 1 F(h) |
Ac S+'2— Ach_‘. AC[S"I"EH
G(s) - Ty = I, T - Ty
F(h,) ] F(h) |
Ach_‘. I —/ZE Ach: s+ Ach_‘.
and

= 1 u= .

Y= Uy
where y, represents the tank level and y, the tank temperature. Here u, is
the flow rate of the hot stream and », the flow rate of the cold stream. If we

pair u, with y, and u, with y,, as shown, it is interesting to calculate the
Bristol array to check the interaction. Note that

G(0) = 1 2h, 2h,
= -5 n-x
Gr(o)-—l o F(h,) =iy (TH '
20T~ Ty)| -2k 2h,
so that the Bristol array becomes
o=~ 1, = (TH = T:)
A To — Ty Tc— Ty
== K-
T - Ty Tc — Ty

where we recall that T, Ty, and T, are the temperatures of the cold inlet
stream, the hot inlet stream, and the steady-state exit temperature, respec-
tively. Note that since T, < T, < T}, all the elements of A are positive, so
that only positive interactions are possible. Furthermore, if the steady-state
operating temperature 7, is close to the hot-stream temperature 7, the
Bristol array predicts diagonal elements close to unity, and the present loop
pairing will be good.

If, on the other hand, the steady-state temperature 7, is close to the
cold-stream temperature 7, then the diagonal elements in the Bristol array
are almost zero and the loop pairing should be switched for good perfor-
mance. In the event that 7, is midway between 7. and T}, then

_[05 05
& [0.5 0.5]

it o ssats
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and neither loop pairing will be very good. Very difficult interactions will be
present. This example illustrates the fact that the amount of interaction can
depend on the steady-state operating condition in some problems.

It should be emphasized that the Bristol array is only a measure of
steady-state interactions. Although a great deal of work has been devoted to the
study of dynamic interactions, there is, as yet, no generally accepted measure of
dynamic interaction comparable to the Bristol array. Such a measure would be
useful because it is sometimes possible to have significant dynamic interactions
in the absence of important steady-state interactions.

Noninteracting Control

The performance of a multivariable control system can often be significantly
improved by some type of compensation which accounts for interactions. Such
improvement is possible even for systems which appear to have only weak
interactions according to the Bristol array. There are numerous techniques for
designing multivariable feedback controllers with compensation for interactions.
One of the classical approaches to the problem is to design a noninteracting
controller [9, 10]. To illustrate noninteracting control, let us assume that it is
desired to control the process outputs y(¢) by adjusting the controls u(z). The
feedback control structure, making use of single-loop controllers and a noninter-
action compensator G,;, may be seen in Fig. 3.7. These single-loop controllers give
G, the diagonal form

3 b _ (3.2.50)

The closed-loop transfer function for the noninteracting control scheme
shown in Fig. 3.7 is

¥ = (I + GG,G,) " '(GG,G.F, + G,d) (3.2.81)
Process
d——r» G,
3 +
Y4 € gontrollers z > gj)mpensator u > grocess | v
c +

Figure 3.7 Multivariable controller structure which includes interaction compensator.
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or

¥y=Ty,+Tud (3.2.57)

Here G, is a compensator which must be designed to eliminate as much
interaction as possible. Ideally G,(s) should be chosen to make

T = (I + GG,G,) " 'GG,G, (3.2.82)

diagonal and drive T — I for s = 0 ( — ) for some choice of the controller
tuning parameters (such as controller gain). Obviously noninteracting control
only makes sense when G, G,, G, are square matrices (i.c., when the number of
controls and outputs are the same).*

Recalling that G, is diagonal, a sufficient condition for T to be diagonal and
have T(0) — I as the controller gains increase is to require

GG, = diag G(s)
or
G, = G ! diag G(s) (3.2.83)
where diag G(s) is a diagonal matrix having the diagonal elements of G(s) along
the main diagonal, i.e.,
gu(s) 0
Zoo(S
diag G(s) = u(s)

0 ' g(s)

If this compensation were done perfectly, the closed-loop transfer function
would take the form ¥

¥(s) = (I + GG™! diag GG,)” (GG~ diag GG.j, + G,d)

or '
gii‘(s)gii(s)

1 # gﬁ,(s)gii(s) s

1 k R
PO Taa— i=1,2...,1 —
l <= g,',"(s)gi‘.(s) ng gj‘(s) j(s) i ( )

F(s) = (s)

Notice that there is total decoupling for set-point changes, and that even though
each disturbance may influence all the outputs, the effect of the disturbances on
any output y; is damped by a single controller 8-

* If there are more controls than outputs, m > /, then a subset of controls may be chosen to
accomplish decoupling, while if there are more outputs than controls, / > m, then only partial
decoupling is possible.

A

St
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Sometimes it is difficult or impossible to accomplish perfect dynamic
compensation of the form of Eq. (3.2.83); however, one may always carry out
steady-state decoupling, which eliminates the steady-state interactions. This re-
quires lin}) T(s) in Eq. (3.2.82) to be diagonal. The steady-state compensator is

5>

given by
G,, = limG,(s) = lim [G(s)™' diag G(s)] = G,' diag G,, (3.2.85)

In this case the closed-loop transfer functions takes the form

7 = (I + GG;' diag G,G,) (GG diag G,G.§, + G,d) (3.2.86)

With such steady-state decoupling, the steady-state interactions are eliminated, so
that by increasing the controller gains, steady-state offset may more easily be
decreased. Even so, there is still a period of dynamic interaction which could
cause single-loop controllers to fight each other if they were too tightly tuned.
For the same reasons, significant integral action in the controllers is usually not
desired, for this often leads to controllers fighting with each other in an attempt
to eliminate offset.

In our discussion, we have presented noninteracting control via output
feedback. 1t is also possible to use state feedback control to accomplish decou-
pling if all the state variables can be measured or inferred [11].

We shall illustrate noninteracting controller design with an example prob-
lem.

Example 3.2.12 Let us consider the distillation column control problem
discussed in Example 3.2.8 and design both static and dynamic noninteract-
ing controllers for the column. For steady-state decoupling, G,

G_' diag G, where we recall
[ 07 |
14 9s ¢
2.0 0.4
B~ v  T= 7 0 (3.2.87)
23 2.3 2:1
_l+10s 1+ 8s 1+ 7s
07 0 0 07 O 0
G,=[20 04 0 diagG,=| 0 04 0 | (3.2.83)
23- 28 2.1 0 0 2.1
and thus
1.43 0 0 07 0 0 1 0 0
G, =|-714 25 0 0 04 0 |=[-714 1 0
626 —274 048 0 0 24 626 —274 1

If we neglect disturbances for the moment, the noninteracting control
scheme for the distillation column is shown in Fig. 3.8, where for static
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Yy

Dilstillation Y2 -
column ——-?— —
G(s)
V3 —
Figure 3.8 Noninteracting control of a distillation column.
decoupling,
1.00 0 0
g, =| -714 g, =| 10 g, =| 0 (3.2.89)
6.26 —-2.74 1.0

Thus u, responds only to errors in y,, while , responds to errors in both y,
and y,, and u, responds to errors in all three output variables.
The dynamic compensator design for the column is of the form

G, = G(s)™' diag G(s) (3.2.83)
where
[ 1.4301 + 95) 0 0 ]
(1 + 9s)(1 + 65)
e e 2.50(1 + 6s) 0
G '(s) =| [ 7820+ 990 +65)(1 +75)
b 8P 2.74(:l++6;1§ 1+79) o481 +7s)
-1 56(1 + 9s5)(1 + 7s)
: (1 + 10s) ]
(3.2.90)
and
[ 07 |
1+ 9s . .
. 04
diag G(s) = 0 Y- 0
2.1
g 0 1+ 7s

RS i Sk
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G,(s) =
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1
—7.14(1 + 9s)(1 + 6s)
1+ 8s

7.82(1 + 9s)(1 + 65)(1 + 7s)

(1 + 8s)°
_ —1.56(1 + 9s)(1 + 7s)
1+ 10s

—2.74(1 + 65)(1 + 7s)

and the compensator blocks in Fig. 3.8 take the form

8,

(1 + 9s)(1 + 65)

1+ 8s

1.0
-7.14

7.82(1 + 9s)(1 + 65)(1 + 7s)

(1 + 8s)?

0

1.0
—2.74(1 + 6s)(1 + Ts)

(1+ 8s)

(1 +9s)(1 + 7s)

1+ 8s

= 1.56

1.0

1+ 10s

ot

(3.2.91)

Note that for this example problem dynamic compensation requires dif-
ferentiation of the signal coming from the single-loop controllers. The actual
performance of steady-state and dynamic noninteracting control designs for
this example problem will be described in Chap. 6.

Noninteracting controller design does not always work out as well as it did
for the previous example. There can be conditions where implementation is
difficult or impossible. For example, if the transfer function G(s) contains time
delays, then the dynamic compensator will often contain time leads, requiring a
knowledge of the outputs at some future time. Clearly this is impossible to
implement exactly. However, in some cases, such a control scheme involving a
predictor can yield reasonable results.

A problem encountered even more frequently results from the fact that
perfect compensation requires a perfect transfer function model. Because the
process model is often only approximate, the actual control scheme imple-
mented will have the closed-loop transfer function

§ = (I + G*G™' diag GG,) 'G*G ™! diag GGy,

(3.2.92)




76 ADVANCED PROCESS CONTROL

where G* is the actual process and G~ ! is the inverse of the process model. If
the differences between the model and the process are too large, the control
scheme behaves badly and can even become unstable.

These stability problems are most serious if there are right-half-plane zeros
in the transfer function. These zeros become unstable poles in G,, and imperfect
cancellation of these elements due to imperfections in the model can result in
unstable poles in the transfer function.

Another potential disadvantage of noninteracting control is that a great deal
of the control flexibility is used to achieve noninteraction, sometimes at the
expense of overall dynamic response. In cases where some of the interactions
greatly aid dynamic response, another type of controller design which takes
advantage of these beneficial interactions (and only eliminates the most
troublesome couplings) might be a better choice. We shall describe some
alternative methods in what follows.

Set-Point Compensation

As an alternative means of eliminating steady-state interactions due to set-point
changes, one may use set-point compensation. This scheme, which can be applied
either directly to analog controllers by the operator or through supervisory
computer control, compensates for steady-state offset due to set-point adjust-
ments. Recall that for the control scheme shown in Fig. 3.3,

y=Ty,+ T, (3.2.57)
where G, is a diagonal controller matrix and
T = (I + GG,)"'GG, (3.2.58)

is, in general, not diagonal. However, suppose Fig. 3.3 is altered to Fig. 3.9 by

Disturbance
P, pra— G,(5)
Controller
GC
y +Y
? 1d € uy -
1d = b &11c ‘ > g
o Set point y r- € u *Y
Y24 = compensation LU S 4 2 m 2 Er(c:c):ess :® » V)
S + +
A- € +yY

= y3d 3 u3
V3d = = 833c —>®
+ +

Figure 3.9 Multivariable control with set-point compensation.



CONTROL OF LUMPED PARAMETER SYSTEMS 77

the addition of the set-point compensator
Y, = Sy, (3.2.93)

where §, is the actual set point desired and S is the set-point compensation
matrix. For example, for the three-input, three-output system in Fig. 3.9,

Sll SlZ S13
S=|8y S»n Sxn
S31 Sy Si
Substitution of Eq. (3.2.93) into Eq. (3.2.57) yields
¥ = (I + GG,)”'(GG,Sy, + G,d) (3.2.94)
and S must be chosen so that
T =1+ GG, 'GG,S (3.2.95)

is diagonal and approaches the identity matrix at steady state. Thus by the
ultimate value theorem of Laplace transforms,

S = lim [@+6GG,)'c6,]™ (3.2.96)
The application of the set-point compensator shall be illustrated by the follow-

ing example.

Example 3.2.13 Let us consider the distillation column control problem of
Example 3.2.12 and apply the set-point compensation scheme shown in
Figure 3.9. If the controller matrix G, consists of three proportional con-

trollers
k., 0 0
G, =|0 Kk, 0 (3.2.97)
0 0

€
and G,, is given by Eq. (3.2.88), then
' S =(G,G,)” ' +G,G,) = (G,G,) ' +1 " (3.2.98)

Now
(G,G) ' =G 'Gy!
where

1/k, 0 0

<1

G'=| 0 1/k, © (3.2.99)

]

0 0 1/k

€3
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and
1.43 0 0
G,'=|-714 25 0 (3.2.100)
626 —274 048
Thus the set-point compensator is
[ 1.43 ]
X +1 0 0
—-7.14 2.5 1
S= X 75; + 0 (3.2.101)
6.26 —-274 048 i
ke, k., k.,

Note that for sufficiently high controller gains (i.e., k, — o), S — I and no
steady-state compensation is necessary.

As an exercise, show that the set-point compensator S is the identity matrix
I if PI control is used; i.e., if

kc(l +—1—) 0
I TS

(3.2.102)

0 kc(1+l)
3 .8

3

Explain why this must be true.

One obvious drawback of the set-point compensator is that it will not
improve the response to disturbances because it does not appear in the feedback
control loop. However, in making new set-point changes to compensate for
sustained disturbances, a set-point compensator will minimize the effects of
steady-state interactions. This is especially valuable if one is using supervisory
control with local analog controllers in order to minimize the effects of interac-
tion. In this case set-point compensation is rather easy to implement.

Modal Feedback Control

Another approach to multivariable controller design is to use modal feedback
control. This technique makes use of the linear nature of the system model to
design a control scheme which allows one to specify the closed-loop eigenvalues
of the system. To illustrate this technique, let us consider the system described in
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state space by
x = Ax + Bu + I'd (3.2.1)
y = Cx (32.2)

where for this discussion let us assume the number of controls, and the number
of outputs, are the same as the number of states. Thus A, B, C are constant
n X n matrices, and we shall assume A has real, distinct eigenvalues. These
limitations are not crucial to the method (see [12]), but make the explanations to
follow easier.

Let us further assume a proportional controller on the output

u(?) = -G,y = -G,Cx (3.2.103)

Now let us review the concepts of eigenvectors and eigenvalues. If A is a
diagonal matrix of eigenvalues of the n X n matrix

A 0
A
A= . (3.2.104)
0 A
then
RA = AR (3.2.105)
AL =LA (3.2.106)

where R and L are the normalized right and left eigenvectors for the matrix.
This means that R, L are the matrices of the n solutions of the equations

Ar, = Ar; i=12...,n (3.2.107)
I7A = Al A I S | (3.2.108)

where the eigenvalues A, i = 1, . . ., n, are solutions of the equations
|A=NI=0 i=12,...,n (3.2.109)

The n vectors 1, r; are each divided by a constant to make them orthonormal,
L&,

I'r, = S r,.le = §; (3.2.110)
or
LR=RL =1 (3.2.111)
where
R =[r r} .E'"]

(3.2.112)
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Thus the properties in Egs. (3.2.105) and (3.2.106) follow directly from Egs.
(3.2.107) and (3.2.111).
Making use of Egs. (3.2.105) and (3.2.106), one can show that

A =LAR (3.2.113)
and
RAL = A (3.2.114)
Thus substituting Egs. (3.2.103) and (3.2.114) into Egs. (3.2.1), one obtains
x = (RAL — BG,O)x (3.2.115)
Now if we choose the control matrix G, to be
G. =B 'RK (3.2.116)
where K is a diagonal proportional controller matrix
k, 0
k,
K= . (3.2.117)
0 k,
and choose the output matrix C = L, then Eq. (3.2.115) becomes
x = R(A — K)Lx (3.2.118)
By noting that
y =Lx (3.2.119)
Eq. (3.2.118) takes the form
¥y = (A - K)y (3.2.120)
and clearly (A — K) is a diagonal matrix, so the outputs have no interaction and
V= a,e(""'"')’ i=1,2 000l (3.2.121)
In addition the closed-loop solution to the state equations takes the form
x = é o etk - (32.122)
i+1

where @; is a constant determined from the initial conditions. Note that by
adjusting k; we can make the closed-loop eigenvalues as large and negative as we
wish, and there is no interaction between the y;,. Adjusting the ith controller
constant k; affects only the ith mode. This means we can control the modes of
the process, and even though there is state interaction, the output y has no
interaction. The disadvantages of this control scheme are that only proportional
control is possible, freedom is needed to choose C = L, and experience seems to
indicate that tuning is a problem [10]. The block diagram for the control scheme
is shown in Fig. 3.10.

i Bt b SR

R s S i i
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Proportional Modal Output y
controllers 5| compensator |3 Erg‘is: +Bu X3 transformation >
K B-! R (&

Figure 3.10 Block diagram for modal feedback control.

In the case where there are more states than controls, it is possible to apply
modal control to the first m eigenvectors (where m is the number of control
variables) with zero output interaction [12].

Example 3.2.14 Let us illustrate the concepts of modal control through
consideration of the simple CSTR of Example 3.2.5, in which the reaction
A — B — C is taking place. It is desired to control the outlet concentration
of A and B through manipulation of feed concentrations c,;, cg. In
dimensionless form (see Example 3.2.5) the modeling equations become

d

Zh=— (1 +Dayx, + (3.2.123)
dx,

7 = Dax, — (1 + Da;)xz + u, (32124)

where we recall that x, and x, are the dimensionless forms of ¢, c; and u,, ©,
are dimensionless feed concentrations. The Da, are the Damkdohler numbers for
each of the reaction steps. Let us suppose that both x, and x, are available as
outputs, so any output of the form

y =Cx (3.222)
is possible.
Now if we apply simple single-loop proportional feedback control on

the states (where we assume the problem has been scaled to let x, = 0 be
the set point)

uy = —kyx,
Uy = —kpx, (3.2.125)
then the system equations are
d
St == (1+Da + kyx, (3.2.126)
d
=2 = Dayx, — (1+ Day + ky)x, (3.2.127)

Even though k,, may be used to control x,, there is a strong influence of x,
on the state x,.
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Let us now apply modal control to the problem. We begin by determin-
ing the eigenvalues and eigenvectors of the state matrix A, where

M ’ (3.2.128)
i Da, — (1 + Da,) -
Thus
—(1+Da, +A 0
TERT N A =0
Da, — (1 + Da; + )
(3.2.129)
yields
A2+ (2 + Da, + Day)A + (1 + Da;)(1 + Da,) =0 (3.2.130)
or

Now from standard references on matrix algebra (e.g., [1]), one obtains
the right and left eigenvectors as the nontrivial solutions to
(A=-ANDx=0 (3.2.132)
which from standard solutions to homogeneous algebraic equations be-
comes the nontrivial columns of the adjoint of (A — Al); i.e.,

' (1 + Da; +A) 0
di(A — AI) = 3.2.133
adj( ) ~Dg, -1 5 T 3y | AT
so that for
Da, — D
A, = — (1 + Da,)) r,=[ a‘_Da a’} (3.2.134)
1
0
A,=—(1+ Da r, = 3.2.135
2= -(+Dw) =l | (3:2.139)

Similarly, the left-hand eigenvectors (or eigenrows) are the nontrivial
rows of adj (A — Al); i.e., for

A, =—(1+Da) I =[D:'] (3.2.136)
Da,
A,=—-(1+Da) L= [ Da, - Da3] (3.2.137)

Now because each eigenvector is uniquely determined only up to a multi-
plicative constant, one can divide r;, and r, by Da,(Da, — Da,) to make the
matrix of right- and left-hand eigenvectors orthonormal [i.e., satisfy

RSN CSERE
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Eq.(3.2.111)]. Thus

1
Da, ?
R= .3 i (3.2.138)

Da, — Da; Da, — Da,

L=|Dx . 3.2.139
" | Da, Da, — Da, (3210

and one may verify that LR = I. Now if we let C = L and choose G, from
Eq. (3.2.102), then

y, = Dayx, (32.140)
y, = Dayx, + (Da, — Da;)x, -
and the feedback control law becomes
u = —RKILx (3.2.141)
where
ky 0
RKL =| Da,(ky, — ky;) " (3.2.142)
Da, — Da, 2
or
dx,
ik (1 + Da, + k)x, (3.2.143)
dx

Da, — Da,

where one may note that the outputs given by

ky — k
—2= Da,(l + —"———i)x, — (1 + Da; + ky)x, (3.2.144)

% = — (1 + Da, + k), (3.2.145)
V) o _(14+Day+k 3.2.146
T ( a3 22 (3.2.146)

show no interactions.

Let us now discuss the features of modal feedback control for this
problem. First of all, the outputs [Eq. (3.2.140)] can be controlled indepen-
dently without any interaction, and this is an advantage if a meaningful
output set point could be devised. However, this is not a problem, because
in general y, = Lx, and x, = Ry,; thus one may change back and forth
with no difficulties.
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Another advantage of the controller matrix [Eq. (3.2.128)] is that if &,
and k,, are chosen so that
k,, — ky; = Da; — Da, (3.2.147)
then Eq. (3.2.144) shows that the state interactions can be eliminated
entirely. This is not generally a property of modal control, but is due to the
particular structure of this example problem.

Because the matrix A must be known and all the states accessible, modal
control design in the transform domain is a little artificial. However, one may
obviously use it if one desires [10]. For a more complex example of modal
control, see the paper by Davison and Chadha [13].

Further Design Techniques

There are a whole host of multivariable controller design techniques available
(see [10] and [14] for an overview). These methods, usually implemented in an
interactive mode with a computer, allow the iterative design of the feedback
gains until good multivariable controller response is obtained. In addition to
optimal control (to be discussed in the next section) and the modal control and
noninteractive control design procedures already discussed, other proposed
methods include:

1. The commutative-controller technique [10]
2. The inverse Nyquist array technique [10, 14]
3. The characteristic locus technique [10]

The reader is urged to consult these references for the details of the design
procedure. A very nice series of case studies showing the performance of some
of these designs when applied to the control of a double-effect evaporator may
be found in Ref. [15].

3.3 OPTIMAL CONTROL THEORY AND PRACTICE*

Another major class of lumped parameter controller design methods involves
optimal control. We shall begin our discussion of optimal control theory with
the consideration of optimal open-loop control policies. The general class of
problems we wish to consider can be represented by the nonlinear modeling
equation

20 . w) 0515y (33.1)

* Part of the material in this section is adapted from Ref. [16]. Reprinted by permission of John
Wiley & Sons, Inc.
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where x(¢) is an n-dimensional vector of the state variables and u(z) is an
m-dimensional vector of control variables which we wish to choose optimally.

The initial and terminal conditions will depend on the physical nature of the
problem. If we specify only the initial state, then

An example of such an initial condition would be to specify the initial composi-
tion charged to a batch chemical reactor. Thus, if we were to fix the initial
conditions only, the result would be a straightforward initial-value problem.

In other practical systems we may also desire to specify the final state

x(4) = x; (3.3.3)

(an example of which would be the requirement that the final product be of a
given composition in the batch reactor); then we have a two-point boundary-
value problem. Thus, we must find an optimal control u(s) which also causes
x(t) = x,.

Other possible conditions may require that some components of x be
specified at the initial time and others at the final time. Alternatively, one may
wish that some transversality conditions

w(x(1)) =0 (3.3.4)

be satisfied at the final time. In physical terms, such a transversality condition
may mean that rather than requiring a given final state of the process, we may
wish to specify some relationship between the final states. This might correspond
to the situation where there are tradeoffs possible in the final product specifica-
tions for a chemical reactor or other process.

In order to specify what is meant by optimal, we must select an objective
functional* Iu(?)],

[u(n)] = G(x(1)) + f YF(x, u) dt (3.3.5)
0

which we wish to maximize or minimize. We shall see that Eq. (3.3.5) is
sufficiently general to allow the treatment of a wide class of practical problems.
Although the definitions of G(x(#)) and [§F(x, u) d¢ have been given im-
plicitly above, it may be helpful to illustrate the form that these functions can
take for a given application.
If we were to consider the control of a batch chemical reactor, then the first
component of the objective functional might take the following form: ‘

G(x(1)) =[x(1) - x,]T[x(tf) = %] (3.3.6)

where x; is a vector describing the desired end composition; thus in this instance

* It is perhaps helpful to make clear that our objective is a functional (the transformation of a
function into a value for I) rather than a function (the transformation of a parameter into a value
for I).
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the function G(x(#)) is just the square deviation from the desired end cogxposi-
tion. The second term in the objective [§F(x, u) df, might be used to describe the
sum of the loss of reactant or product due to side reactions, the cost of control
action (e.g., steam input), etc.; thus we may write

1
f t’F(x, u)dt = C, f f( rate of reactant) &t
o 0

loss
+C. f t’( et product) dt + C, f t’(cost of control) dt
Wy loss 0
3.3.7)

Here C,, C,, and C; are the appropriate cost factors. It is noted that the
influence of the modeling Eq. (3.2.1) appears implicitly in the three integrals
appearing on the right-hand side of Eq. (3.3.7).

For this example, the chemical compositions, together with the temperature,
would constitute the state variables, whereas the heating rate, together with the
rate of addition of catalyst or reactants, would constitute the control variables.

As an alternative form that

forfF(x, u) dt

might take, let us leave x(#) in Eq. (3.3.3) unspecified and use the objective
functional to force x to a given, desired final value. For example, the minimiza-
tion of

ftf(x — x,)dt
0

will cause x to approach x, in a very short time and will minimize the integral
squared error.
In some optimal control problems, there also arise constraints of the form

gx,u) <0 (3.3.8)
h(x, u) =0 (3.3.9)

and there are techniques for handling these.! However, because of the
tremendous complexity that constraints of this form add, and because a great
many practical problems only involve constraints of the form

u, <u<u* (3.3.10)

we shall only be concerned with upper and lower bounds on our control for the
present.

In many practical problems, one may wish to choose 4 (e.g., the batch time)
optimally as well. As seen in the next section, this presents no theoretical
difficulties.

t For example, see the text by Bryson and Ho [6].
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Necessary Conditions for Optimality

In this section we shall derive in a formal manner the necessary conditions for
optimality for the lumped parameter system (3.3.1). This section is important not
only for the useful final result, but also because the essence of variational
methods is introduced in the derivation.

Let us consider the system with n state variables x,(f), m control variables
u(), j=1,2,...,m, and with dynamic behavior described by the ordinary
differential equations*

id’tf -dfx,v)  20) - x, (3.3.11)
We wish to find the control vector u(#), 0 <7 <1, such that the objective
functional given by Eq. (3.3.5) is maximized.! Suppose that we have a set of
nominal values for the control variables

(1)
an =|

0

which we- think may be'optimal. Let us express any other control as a perturba-
tion about u(?),

u(t) = (¢) + du(r) (3.3.12)

and represent the state x(7) resulting from u(z) as a perturbation about the state
X(t) caused by the control u(#); that is,

x(2) = x(¢) + 8x(¢) (3.3.13)

By checking the value of 7 in Eq. (3.3.5) for all perturbations du(¢), we could
determine whether u(?) is optimal. However, there are variations §x(¢) which are
produced by the perturbations du(z), so that one must consider whether Eq.
(3.3.11) is satisfied. If the perturbations du(¢) are chosen small enough, that is, if

[du(?)] < e

then a first-order expansion about () would be adequate to represent the
system. Thus we linearize Egs. (3.3.11) and (3.3.5) about the nominal controls u

* It is straightforward to show (e.g., [2]) that any set of higher-order ordinary differential
equations can be reduced to a set of first-order equations such as Egs. (3.3.11).

1 Itis perhaps helpful to note that if we wished to minimize the objective 7 in Eq. (3.3.5), it is only
necessary to maximize — I. This is due to the happy relationship

I:J(i‘!)l = o (=0
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to obtain Egs. (3.3.14) and (3.3.15), respectively:

409 (35)ox+(35)ou  ox0) = 5%, (33.14)

81 = ITu(s) + du(r)] - I[8(1)]

( )sx(,)+f”[( )s +(%)_8u] dt
+[F(tf) +—5;f(tf)] o1, (3.3.15)

where the notation ( ) reminds us that the partial derivatives are evaluated
along the nominal trajectory u(?), X(¢).

The last term in Eq. (3.3.15) arises because we may wish to choose
optimally; thus variations 8% are allowed as well as variations du(?).

Let us now adjoin to the objective functional the linearized constraint [Eqgs.
(3.3.14) and (3.3.15)] by using the n-dimensional adjoint variables (i.e., time-
dependent Lagrange multipliers) A(¢?). If we require that Eq. (3.3.14) be satisfied
everywhere, then the subtraction of

[ ,‘r(,)[ A(D) (g—’f‘).& . (%)Su] =0  (33.16)

from Eq. (3.3.15) yields

oI = (3—5).81((9) +[F(t,) + —aigf(tf)].&f

+f"[(a——F+AT%)8x

+ (35 Al )811] dt — f AT(s )d(ax) dt BaLT)

By integrating the last term by parts, we obtain
8I = [F(t,) +— f(t_,)] 81, + AT(0)6x, + [(% ) J\T(t,)] 8x(1)

y([(0H dAT oH
+fo [[( - ).+ > Js +(a )au] dt (3.3.18)
where H (sometimes called the Hamiltonian) is defined by
H = F(x, u) + ATf(x, u) (3.3.19)

Equation (3.3.18) represents the influence of variations du(f) on 81, both
directly and through 8x(7). In order to express the direct influence of du(?) alone,
let us define the heretofore arbitrary functions A(#) such that they satisfy
o

dt ox /.

(3.3.20)
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In effect, this allows the influence of the system equations [Eq. (3.3.11)] to be
transmitted by A(f) and is felt in (8H /9u), which carries A(7).

The remaining terms outside the integral in Eq. (3.3.18) will depend on the
boundary conditions of the physical system. Let us first consider the case where
4, is specified (so that 8z, = 0), x, is fixed, and x(#) is unspecified. In this case
the variation 8x, = 0, and dx(#) is completely arbitrary. However, the condition

K = (g—f) (3.321)

will shift the influence of §x(¢) to A(¢) and cause it to arise in (dH /du) . Notice
that Eq. (3.3.21) completes the definition of A(f) when combined with Eq.
(3.3.20). If only some of the components of x(t) are unspecified, then Sx(t) =0
for those specified, and Eq. (3.3.21) holds for those unspecified. Similarly, if
some components of x, were to be unspecified, then A,(0) = 0 would hold for
those components.

If in addition we wish to choose t; optimally, then the first term in Eq.
(3.3.18) remains. Now if all the x(4;) are unspecified, then Eq. (3.3.21) must
hold, and in addition

H(y) = F(z) + %f-f(z,) (3.22)

must vanish when # is chosen optimally.
In the case where some of the x,(¢) are fixed at X, then by a Taylor series
expansion
x4 + 8t) = x(4) + (f(1)) 8y, = %(1) = x, (33.23)

as shown in Fig. 3.11. Thus the difference between x(t) and x(f) to a
first-order approximation is given by

8x,(4) = x(1) — %(5) = — (f(r)) &, (3.3.29)
and again we see that
H(t) = F(1) + AT(t)1(1,) (3.3.25)

-

8x, (1)
X Yi(t) e

x{1)

th—————————

t

B e T p—

Figure 3.11 The expansion of x,(r) about 4.
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must vanish for # to be optimal. Notice that in this case the A,(#) associated with
fixed x;(#;) are unspecified, while those associated with unspecified x,(t) are
given by Eq. (3.3.21).

Having removed the boundary condition terms from Eq. (3.3.18), we obtain

B - fo "[(%—f)_au(z)] dt (3.3.26)

and we now see the direct influence of variations du(z) on 8I. A necessary
condition for optimality of u(#) is that 8/ < 0O for all possible small variations
Su(?). It is clear from Eq. (3.3.26) that the only way this can be true is that

dH
(‘éﬁ'),” 0 (3327)
at every .

Suppose that some components of u(#) include segments along the con-
straints u*, u*. Obviously, variations 8%,(#) can only be negative at the upper
bound u#* and only positive along lower bounds #*. An examination of Eq.
(3.3.26) shows that a necessary condition for optimality at upper and lower
bounds is

for (1) = u* (3—5) >0
' o (3.3.28)
. oH
and for u(t) = u* (-a_u,) <0

Equations (3.3.28) can be reduced to the requirement that H have a local
maximum at the constraints.
The results derived here may now be summarized as follows:

Theorem 3.1: Weak maximum principle In order for a control u(?), u, < u(?)
< u*, to be optimal in the sense that it maximizes the objective I in Eq.
(3.3.5) while satisfying the system Eqgs. (3.3.11), it is necessary that Eq.
(3.3.27) be satisfied for unconstrained portions of the path and H as defined
by Eq. (3.3.19) be maximized along constrained portions of the control
trajectory.

Thus, given
% = f(x, u) x(0) = x, (3.3.11)
and
()] = G(x(1)) + fo “F(x, u) dt (3.3.5)

the necessary condition for u(#) to maximize

u(9)]
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is that
oH
' s 0 (3.3.27)
on the unconstrained portion of the path and
H = F(x, u) + ATf(x, u) (3.3.19)

be a maximum on the constrained portion of the path. Here H is the
Hamiltonian defined by Eq. (3.2.19), and A is the time-dependent Lagrange
multiplier, which is defined by

dAT oH
e (3.3.20)
and g
. G
A(ty) = F (3.3.21)

for those state variables unspecified at = #,.

In addition it is necessary that the Hamiltonian H(¢) remain constant
along the optimal trajectory, and that H(¢) take the constant value of zero
when the terminal time # is unspecified [see Eq. (3.3.25)].

A much stronger version of these necessary conditions, whose derivation is
available elsewhere [17, 2] is summarized in the following theorem.

Theorem 3.2: Strong maximum principle In order for a control u(¢) (con-
strained to lie in some constraint set {2) to be optimal for the problem given
by Egs. (3.3.5) and (3.3.11), it is necessary that H be maximized by u(¢)
almost everywhere.

This much stronger result can also be shown sufficient for optimality under
certain convexity assumptions. For further details, see the work of Lee and
Markus [2].

The results developed in this section are very similar to those arising from
dynamic programming or the classical calculus of variations. While the relation-
ship can be made quite explicit, we shall not pursue the discussion further here.
The reader is referred to Dreyfus [18] and Leitman [19] for a treatment of these
relationships.

Example 3.3.1 Consider the radiant heating of a small billet or slab having a
uniform temperature distribution so that the modeling equations are

%tz, -C(T*=T% TO)=T, (3.3.29)
where T, is the radiant source temperature bounded by T, < 7, < T*, and
T, is the initial temperature. Let us determine the optimal source tempera-

ture T,(¢') so as to bring the billet to temperature 7, in minimum time while
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minimizing the heat losses. This objective can be expressed as
p
& I T(¢ = 7 . n4 % ;
min /[ T,(1)] = 5+ C["T,()* at (3.3.30)
where tf' is left free and C denotes the relative value of heat losses to
operating time.

SoLuTION Let us define the variables
=Ty, x=T u=T! t=Cyt

X, =T, uy=T: u*=T* g
so that our problem becomes
. y
min { 7{u] = [“T1 + Cu(t dt} 3331
min {7[u] = [ ] (3331)
subject to
dx
7l x* o %(0) = x, x(4) = x, (3.3.32)
and '
uy <u < u* (3.3.33)

We can now define the Hamiltonian
H=1+Cu(t) +Mu—-x)=1-M*+ A+ C)u (3.3.34)
and adjoint variables A(¢) by
dA

BB s A B
7 4 x (3.3.35)
From the fact that H is linear in w, it is clear that
u* f A+C<O0
u(t) = ] Uy su s u* if A +C=0 (3-3.36)
Uy f A+C>0

because this is the only policy which minimizes H and thus satisfies the
maximum principle. We note at this juncture that had our objective been to
maximize rather than minimize H, then Eq. (3.3.36) would have taken the

following form: %1
Uy, if A+C<O0
u() =Juy<u<u* if A+C=0
u* if A+C>0

Let us now deduce the exact optimal policy. If u, < u < u* somewhere
on the optimal policy, say, the region 0 < ¢ < t, in Fig. 3.12a (which
indicates a slow increase in source temperature with time until the final
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Figure 3.12 Possible optimal control
policies for the billet reheating prob-
lem: (a) gradual increase of u from
u, to u*; (b) stepwise increase from
the lower bound to the upper bound;
and (¢) optimum at the upper bound.
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value is reached), then from Eq. (3.3.36), A+ C=0 and dA\/df =0 on
Q <t < t;. However, Eq. (3.3.35) does not allow this, because d\/dt =0
implies A = 0, a contradiction because C 5= 0. Thus the policy shown in Fig.
3.12a (as \?vell as any other policy where u, < u < u*) is not optimal.
Examination of Eq. (3.3.35) shows that A + C can change sign only
once. and that is when AO) + C > 0 and A(0) < 0. This would produce the
f‘optlmal” policy shown in Fig. 3.125. However, the fact that H must be
identically zero along the optimal trajectory when 4 is unspecified, leads to

O el .
- C+A

Clearly if A <0 and A + C > 0, then U, < 0 which is physically impossi-
ble. Therefore, the policy given in Fig. 3.126 cannot be optimal. The policy
u = u, is not optimal because for the temperature to increase, u,; > x*
must be true; however when u = u,, then both A > 0 and A + C > 0 are
satisfied everywhere, and u,, = — 1/(A + C) + Ax*/(A + C) and
Uiy £ &% :

The only remaining possibility for the optimal policy is shown in Fig.
3.12¢, in which the radiant heat source is kept at its maximum value until
the billet reaches the desired temperature. In this case both A < 0 and
A + C <0 for all times. All that remains is to evaluate Eq. (3.3.29) with
T, = T* in order to determine the actual minimum time.

(3.3.37)
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Although this problem may be a simple one, it shows that in some cases the
optimal control may be deduced without performing any calculations.

Computational Techniques

There are a large variety of computational methods available for determining
the optimal open-loop and closed-loop control policy. Some of the methods are
based on numerically satisfying the necessary conditions of optimality derived in
the last section, while others involve more direct search algorithms. In this
section we shall discuss a few of the more commonly used algorithms.

Control vector iteration procedures for open-loop optimal control synthesis
are very similar in philosophy to techniques used for parameter optimization
[16]. Basically one makes use of Eq. (3.3.26).

oI = fo "[ S (%—f) Sui(t)] ar (3.3.38)

i=]

Suppose that #(?) is not optimal, so that dH /9y, # 0; how can we determine a
correction 8u,(?) so as to improve [ (i.e., cause 8/ > 0)? It can be shown [2] that
choosing u(f) corrected in the gradient direction at each time ¢ produces the
greatest local improvement in /. Thus on selecting

Su (1) = s( %’ui) g 30 (3.3.39)
one obtains
i m aH )2
8l =g — ) dt >0 3.3.40
‘[0 igl( oy, ) ( )

which guarantees 87 > O for ¢ small enough that the linear approximation is not
violated.

These results can be incorporated in the following modified gradient
method:

1. Guess u(#),0 <t < 4.

2. With this value of u(?), integrate the state Egs. (3.3.1) forward in time to
produce x(¢), 0 < ¢ < 4.

3. With these values of X(7), u(¢), integrate the adjoint Egs. (3.3.20) backward in
time, 0 < ¢ < L

4. Correct u(?) by Egs. (3.3.39) where ¢ is chosen arbitrarily. Evaluate I for this
new control u(z).

5. If I[u(#)] > I[u(#)] double & and repeat step 4: If I[u(¢)] < I[u(¢)], halve ¢ and
repeat step 4. Do this until a concave function /(¢) is formed (see Fig. 3.13).

6. Fit a quadratic I(e) to these results and predict the optimal value of &, i.e.,

Eopte
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Figure 3.13 Determination of the optimal ¢ by a quadratic approximation.

7. Let

hew = aH

e = old 4 eopl(ﬁ)_ (3.3.41)
and return to step 2.

8. Iterate until convergence is attained.

Experience has shown that these methods will lead to rapid progress in the first
few iterations, but tend to become very slow as the optimum is approached.
Even though convergence to the optimum can be proved theoretically, the rate
of convergence can be so slow that the exact optimum is never found in a finite
number of iterations. For this reason, several second-order methods have been
proposed (e.g., [20-21]) which are similar to those for parameter optimization. In
addition, conjugate gradient procedures have been developed [22, 23] which
showed improved convergence properties over the standard gradient methods.

As an illustration of the application of control vector iteration techniques,
let us consider an example of chemical reactor control.

Example 3.3.2 Let us consider a batch chemical reactor in which we can
control the reaction temperature exactly* and in which we wish to carry out
the following reaction:

A% B85 ¢ (3.3.42)

We consider the kinetics and the temperature dependence of the rate
constants known, and our objective is to find the optimal temperature
control policy, for a fixed batch time, which will maximize the production of
the intermediate B. We note that this is one of the classical batch reactor
control problems and that the general scheme given by Eq. (3.3.42) is of
considerable practical importance in a number of chemical processing
operations, e.g., the oxidation of hydrocarbons or the chlorination of
aromatics. In all these cases we may wish to maximize the production of an
intermediate and thus wish to prevent the reaction from going to comple-
tion.

* In many practical situations such close temperature control is, in fact, quite feasible.
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In order to define the problem, let us assume that the reaction is of
second order with respect to the first step and of first order with respect to
the second step. Thus the material balance on the reacting species may be

written as
dc, H
Tt = —kl(T)Cl 01(0) =10 (3343)
dc, 3
i ki(T)ci — ky(T)e, ,(0)=0 (3.3.44)
where

ey =[A] c=[B] Kk(T)=Ape 5% =12
Let us consider that the temperature is bounded by
T ST(H) £T* (3.3.45)
The object is to find the open-loop temperature control 7(f) which maxi-

mizes the amount of species B present after 1 h of reaction. Thus our
objective becomes

nTl(a;;( [1=c)1)] (3.3.46)

The additional parameters of the system required to define the problem are
given as follows:

Ao = 4000.0 L/ (mol)(s)
Ay =62 X 10°/s
E, = 5000 cal/ (g)(mol)
E, = 10,000 cal/ (g)(mol)
T, = 298°K
T* = 398°K

batch time: 1 h

SoLutioN For this problem, the Hamiltonian is

H =, — A\)k\(T)c} — Mky(T)c, (3.3.47)
where the adjoint variables A, A, are given by
dA oH
Tzl e 2 = MDk(T)e, A (1) =0 (3.3.48)
dx, OH
@ = g~ MR A1) =1 (3-349)
and the gradient 9H /3T is
oH 1

T [z = \)E ke — Eqky( T)c,] (3.3.50)
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The modified gradient algorithm was applied to the problem from two
different initial guesses of T(¢). The resulting optimal temperature program
is shown in Fig. 3.14 together with some of the intermediate iterations.
Figure 3.15 shows the optimal yield c,(1) as a function of the number of
iterations—for two initial guesses of the temperature program. As can be
seen, the same optimal temperature program is found in both cases within
three to four iterations. An inspection of the graph shows quite clearly that
the optimal policy would produce very marked improvements in the yield of
the desired intermediate species B. This improvement is found to be ~ 30
percent and 300 percent compared with operation of constant temperatures
corresponding to the initial guesses of 398 °K and 298 °K, respectively. This
example is thus an illustration of situations in which optimal control may
produce significant improvements in performance.

Another approach to the problein of numerically solving the necessary

conditions of optimality is to convert the control problem to a two-point
boundary-value problem (TPBVP) through the elimination of the control vari-
able. These are called indirect or direct substitution methods. The first step in
such a procedure is to eliminate the control vector u(z) by solving Eq. (3.3.27)

400

360

T(°K)

Initial guess 1

First iteration

Second iteration

Second iteration

Optimum

320
First iteration
B Initial guess 2
280 | | 1 | 1
20 40 60
Time (min)

Figure 3.14 The optimal temperature program in Example 3.3.1.
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for u(?) explicitly:

u (1) = g(x, A) i=12....,m (3.3:51)
It is clear that this may not always be possible; however, it can be done for
simple problems. If Eq. (3.3.51) is then substituted into Egs. (3.3.11) and (3.3.20),
the result is a set of 2n equations

% =1,6A)  x(0) = %, (33.52)

a
TN - (%)
with split boundary conditions.* This problem, having boundary conditions at
two values of the independent variables [a two-point boundary-value problem
(TPBVP)], has a solution which produces the optimal values of x(z), A(7). When

these are substituted into Eq. (3.3.5 1), one obtains the optimal control u(?).
What has been effected by the elimination of u(?) is the trading of a
trajectory optimization problem for a TPBVP. TPBVPs are notoriously difficult

(3.3.53)

* The boundary conditions for A(#) given here assume that all the x(1) are unspecified. In some
instances we may end up with two sets of boundary conditions for Egs. (3.3.52) and none for Egs.
(3.3.53), as will be illustrated by the example given at the end of the end of the section. However,
these problems, too, are two-point boundary-value problems.
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to solve, even numerically, and thus most of the techniques associated with this
approach are techniques for solving TPBVPs. Let us discuss several types of
these techniques. .

One technique for solving TPBVPs is the method of boundary-condition
iteration. This approach tries to find, by some iterative procedure, the missing
boundary conditions x(f) or A(0) so that Egs. (3.3.52) and (3.3.53) can be
integrated together in the same direction of time. For simple scalar cases a
mapping can be done of guessed values of A(0) versus the resulting values of
A(t)car — (0G/ 0x),, as sketched in Fig. 3.16. Obviously this graphical technique
will not work well for multivariable problems. However, a number of techniques
have been proposed for solving these problems [24] by perturbation methods or
by minimizing the error in the boundary conditions by a direct search.

There is a basic difficulty with the boundary-condition-iteration approach
which often arises in practical problems. The numerical integration of Egs.
(3.3.52) and (3.3.53) in the same direction is very often unstable. The reason for
this behavior is that the state equations are usually stable when integrated
forward, but unstable in the reverse direction. Similarly, the adjoint equations
are usually unstable when integrated forward, but stable in the reverse direction.
This can cause great numerical difficulties which are quite independent of the
choice of the proper boundary conditions. Nevertheless, the method has been
used successfully for some problems. The reader is urged to refer to standard
references (e.g., [24 to 26]) for further methods of solving TPBVPs.

Let us illustrate the direct-substitution—boundary-condition-iteration ap-
proach by considering a slight variation on the problem posed in Example 3.3.1.

Example 333 As before, let us consider the radiant heating of a small
billet, as described in Eq. (3.3.29).

‘thT =T -TY T =T, (3.3.29)
where T, is the source temperature, T, is the initial temperature of the billet,
and T, is the final desired temperature.

Our objective is to find the optimal source temperature 7.(¢) so as to
bring the billet to the desired temperature in a minimum time, while
minimizing the rate of wear of the refractory roof.

>\(’/')cﬂlc - (%\;)t 0
f

A(0) guessed A(0) exact

Figure 3.16 Solution of a two-point boundary value problem by a mapping procedure.
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The rate of wear may be expressed as
Ce™ (3.3.54)

where C, is a constant.
Thus the optimality criterion may be written as

2
in{[T()]=t+C,[" m”)dz'} 3.3.55
%,n){[,()], zfoe (3.3.55)
where, as before, /4 is left free and C, denotes the relative value of the roof

erosion to operating time.
Let us define the variables:

Xg=Ty x=T ul®)=u=T' t=Ct C=-=

x, =T, and U, = TS u* = T

where, as before, u* and u, denote the upper and lower limits of the
operating temperature, respectively.
The problem may now be written as
min[[(u) = ["1+ ce* dt] (3.3.56)
u(?) 0
subject to

dx
F ek xt x(0)=x, x() = x (3.3.57)

Let us follow the procedure set out in Egs. (3.3.51) to (3.3.53).
The Hamiltonian is given as

H=Au— x*+ Ce* + 1 (3.3.58)
Thus, from Eq. (3.3.27) we have that
dH
e 0 (3.3.27)
that is,
A+ Ce*=0
| . ln( = %) (3.3.59)
On recalling Eq. (3.3.20), i.e.,
an_ _oH
dt ~  dx
by differentiation we obtain
L PP (3.3.60)
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Thus the optimal u(¢) is defined by

dx _ , A

2 - x ln( C) (3.3.61)
x=xy, t=0

x=x t=1

and Eq. (3.3.60). Equations (3.3.60) and (3.3.61) may be solved numerically,
e.g., by the boundary-condition-iteration technique described above. The
result would then be

x = x(1)
A =A(>)
from which u = u(?) is readily obtained from Eq. (3.3.59). While in general
one would have to iterate to determine the optimal / from the condition
H(t) = 0, in this simple problem Eq. (3.3.58) may be combined with Eq.
(3.3.59) algebraically to yield
)\[ln(—%) o il 1] +1=0

This expression may be solved together with Eq. (3.3.61) from x = x, to
x = x, to yield the solution in one integration.

We note that the applicability of the direct-substitution technique depends
critically on the types of functional relationships involved. Had the rate of wear,
Eq. (3.3.54), been given by an alternative expression, such as

Rate of wear = Cje” (3.3.62)
then H would have taken the following form:
H = Au - x*) + Cexp(u'/? ‘ (3.3.63)
thus
%15- =0=A+;Cu%*exp(u'/?) (3.3.64)

Clearly, Eq. (3.3.64) cannot be solved explicitly for ». While one could proceed
with solving the problem for certain parametric relationships between u and A,
this is likely to be cumbersome in the majority of cases.

An alternative approach which uses direct search methods is termed control
vector parameterization. For open-loop control, one could represent u,(¢) by a set
of trial functions ¢, (#), that is,

s

u(r) = 2. a,0,(1) (3.3.65)

Jj=

and use parameter optimization techniques to determine the optimal set of
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coefficients g;;. A second approach, which allows a type of optimal closed-loop
control, involves generating u; in a feedback form, i.e., by expanding in a set of
trial functions of the state variables

4
u(1) = 2 bij‘i’ij(xp B b 000 0) (3.3.66)
j=1

and determining the optimal constants b,,. Limited computational experience
[16, 27] has shown that this feedback control scheme has much better conver-
gence properties than the open-loop version. However, the resulting feedback
controller parameters may not be generally optimal; they have been computed
for only one initial condition. To be a good set for controller design, they must
give good feedback controller performance for a wide range of initial conditions.

Both of these parameterization approaches have the advantages that no
adjoint equations need to be solved, and standard parameter optimization
techniques such as those discussed in [16] can be used to determine the
coefficients. An even greater advantage, as demonstrated in Fig. 3.17, is the
ability of the technique to optimize complex process models by allowing a
parameter optimization scheme to select the experiments to be performed on this
model. This avoids having to modify existing process models in order to perform
optimal control calculations—a significant practical advantage.

The principal disadvantage of parameterization methods is that the func-
tional form of the optimal control must be specified in advance. This requires
much more physical insight than is needed for the previous methods discussed.
In the absence of a physical feeling for the general shape of the optimal control,
a very general functional form [Eq. (3.3.65)] must be used and the optimization
performed with respect to a large number of coefficients. On the other hand, if

Control vector
parameterization
Inputs u(r) = 2a;; 9,; (1)
u(t) Coefficients
a;
Existing Standard
complex parameter
process optimization
model program
A
UOutputs x(¢)
Profit
functional
calculation ! (a‘.,.)
\ Figure 3.17 The use of control vector para-
Objective () meterization with an existing complex

function process model.
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one has good reason to suspect a particular form of the optimal policy (e.g., a
falling temperature profile in Example 3.3.2), then a simple functional form with
only a few coefficients should be adequate. A word of caution is in order,
however: surprises do arise from optimal control studies (that is why we do
them), and in practical problems one should use several types of functional
forms to ensure that the functional form chosen is, in fact, general enough.
Several other parameterization approaches have been reported and seem to have
some merit. See Ref. [27] for a discussion and comparison of these methods.
Let us illustrate this method with an example problem.*

Example 3.3.4 Consider the problem of determining the optimal start-up
control scheme for a nonlinear CSTR in which the exothermic, first-order
reaction A — B is taking place. The modeling equations take the form

% - %(c, — ) — kgeCE/RD: 0 <t <y,
dar 1 —AH s
_‘}T=Z(7}—T)+(——é—)k0e( E/RDe —au(T~-T,) 0<t<y

P

where ¢ is the reactant composition, 7 the reactor temperature, and u the
reactor jacket heat-transfer coefficient, which is influenced by adjusting the
coolant flow rate. In this problem, the control variable # is bounded by
u, < u < u* and can be parameterized in time by letting

u=uy + (u* — uy) é (=)' H(: - b) + é a(t — by)'

J=1 i=1
where H(t) is the Heaviside step function
1 > O}
#a {0 t<0
This expression for u(?) allows as many as six switches between the upper
and lower bounds on u, followed by a smooth cubic trajectory whose shape
is determined by the g;. This produces an epen-loop start-up program.
Alternatively, one can parameterize in a feedback controller form
u(t) = u; + K\(c — ¢;) + K(T - T)

and search for the two parameters K, K.
The objective to be minimized is

I=10°["[(c = ¢’ +2 X 107(T = T, + 10~°(u — u)*] s
0

where ¢, = 0.408, T, = 330°K, and u, = 370 represent the set-point values
for composition, temperature, and control.

For both schemes, the control variable parameterization procedure then
searches for the parameters (g, b, for time parameterization or X, K, for

* This example is taken from Ref. [27] and adapted with permission of the Canadian Journal of
Chemical Engineering.
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Figure 3.18 Optimal stirred tank reactor start-up [27]; (a) Hamiltonian gradient method ([, =
987,502); (b) open-loop time parameterization (I, = 987,955); (c) closed-loop state feedback
parameterization (I, = 987,436).

state feedback) which minimize the objective I. The resulting control trajec-
tories are shown in Fig. 3.18 and compared with the optimal control found
from Hamiltonian gradient techniques based on the maximum principle.
Note that the value of the objective is almost identical for the three methods
even though the control policy varies slightly. The resulting concentration
and temperature responses, seen in Fig. 3.19, indicate that the start-up
procedure is quite good from a practical point of view.

Let us now discuss briefly the advantages and disadvantages of these
various computational approaches. The control vector iteration procedure has
the advantage that it can be applied with little algebraic manipulation to even
the most complex problems. In addition, because the state equations are solved

1.0 360

o8}
s - > 4340
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- 3
£ os} { 3
§ 2
g :
3 1320 &
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-
0'2 A A i I 300
0.0 4.0 8.0 12.0 16.0 20.0
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Figure 3.19 CSTR concentration and temperature responses to optimal start-up control [27].
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exactly at each stage, each iteration produces a feasible solution. This has the
attraction that one may stop at any iteration with a suboptimal, but reasonably
good, usable solution.

The direct-substitution procedures have the disadvantage that a fair amount
of algebraic manipulation is required to produce the TPBVP, and then sophisti-
cated procedures are needed for solution. The complexity of these methods
makes them difficult for the novice to apply. One advantage of the boundary-
condition-iteration approach is that every iteration produces an optimum
solution—to the wrong problem. If x(#) is the boundary condition to be
adjusted so that Egs. (3.3.52) and (3.3.53) are integrated backward together, then
a calculated value of x(0) is produced at each iteration. Thus each iteration
produces the optimal solution for that calculated initial condition x(0). This
property would be useful if one wished to obtain the optimal policies for a
variety of initial conditions.

The control vector parameterization procedure seems to be the most attrac-
tive for the novice. Very little sophistication is required, and standard techniques
for parameter optimization may be applied. The one major disadvantage seems
to be that there is no guarantee that the parameterized optimal control will be
very close to the exact optimum unless the trial functions are chosen in a
sufficiently general way. The number of trial functions needs to be as small as
possible to minimize the number of coefficients to be optimized, and yet the
functional form must be capable of representing the exact optimum. Thus care
must be exercised in the choice of trial functions.

A final word on the practical problems of convergence is in order. As in
parameter optimization problems, trajectory optimization algorithms always
stop progressing before the exact optimum is reached. However, efficient algo-
rithms will usually stop very close to the true optimum. Thus, to ensure that the
optimum has indeed been found, one must be able to produce the same
“optimal policy” from several initial guesses. This would seem to ensure that, at
least, a local optimum has been found. One should be aware that multiple
optima are possible, and in rare cases these have been found in real problems.
Thus, even though several starting points must always be used to ensure that the
algorithm has converged, this is not an absolute guarantee that the global
optimum has been found.

Problems Linear in the Control

There are a number of classes of optimal control problems which allow special
techniques to be used. One such case is systems which have Hamiltonians linear
in the control; i.e.,

m
H = hy(x,A) + > hi(x, A)u(t) (3.3.67)

i=1
then the structure of the optimal control policy is clear without further computa-
tion. For example, if u() is constrained by u, < u < u*, then from the strong
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Figure 3.20 Bang-bang control policy.

maximum principle we see that the optimal control has the form

u* if h,>0
(1) = {u if b <0 (3.3.68)

This behavior, plotted in Fig. 3.20, is called a bang-bang control policy. The
points #,, ¢, where A,(f) changes sign are called switching times.

There is another special situation which occurs when A, = 0 over some
interval of time. An examination of Fig. 3.21 shows us that A = 0 over
t, <t < t,. Since this causes the control to vanish from H in that interval, it is
not clear how we can determine the optimal value of u(f) over ¢, <t < t,. The
control over this interval is called a singular arc, and these especially difficult
problems are called singular control problems. Whenever one encounters a
problem such that the Hessian matrix

3°H
ou?
is singular over some interval 7, <t < t,, then one has encountered a singular
optimal control problem and must exercise special caution. The reader is

referred to [6] and [28] for a deeper discussion of these problems and the
techniques available for their solution.

A + o0nh,

(3.3.69)

Figure 3.21 Control policy with a singular arc.
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Optimal State Feedback Control of Linear Systems—Linear Quadratic
Problem

Let us now consider a special classical problem in optimal control theory—the
linear-quadratic problem—which leads to an optimal state feedback control law.
There have been numerous papers written on this problem (see [6] and [29]). The
problem may be posed as follows: We assume that the state of the system x can

be represented by the linear differential equation
% =Ax + Bu  x(#,) = x, (3.3.70)

and that it is desired to control the system at the set point* x, = 0 without
excessive control action. The quadratic objective functional is

I=3x"Sx|, + %f'f(xTFx + u’Eu) dt (3.3.71)
fo

where A(7), B(#) are system matrices, S, F(7) are symmetric, positive semidefi-
nite weighting matrices, and E(7) is a symmetric positive definite matrix.

Now if optimal control theory is applied to this problem, one obtains as the
Hamiltonian

H =3(x"Fx + u"Eu) + A"(Ax + Bu)

with conditions

AT = — % A(1) = Syx(1) (3.3.72)
%—’: ~0 (33.73)
Equation (3.3.73) becomes
Eu+ B'A=0
or
u=—E"'B’A (3.3.74)

Thus Egs. (3.3.70) and (3.3.72) become

x = Ax — BE"'B7A x(1o) = X,
) (3:3.75)
A= —Fx — ATA A(t) = Sx(1)
Now this linear TPBVP can be solved in several ways. However, the solution
can be conveniently represented by the form

A(f) = S(0)x(1) (3.3.76)

which has been termed the Riccati transformation [29)]. Here S(¢) is a symmetric
positive definite n X n matrix. Substitution of Eq. (3.3.76) into Egs. (3.3.75)

* If we wish to achieve any nonzero state set point x = x,, then defining X = x — x, will convert
the problem to this form. See Example 3.3.5 below.
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yields
%X = Ax — BE"'B7Sx (3.3.77)
(Sx + Sx) = —Fx — A7Sx (3.3.78)
The elimination of x by substituting Eq. (3.3.77) into Eq. (3.3.78) yields
(S +SA + A7S — SBE"'B”S + F)x(1) = 0 (3.3.79)

Now for Eq. (3.3.79) to hold for all nonzero x(7), the coefficient matrix of x()
must vanish, yielding the Riccati equation
ds
dr
for S(#). Note that the boundary conditions on S follow directly from a
comparison of Egs. (3.3.76) and (3.3.72). By making use of Eq. (3.3.74), one
obtains the state feedback control law

u(?) = —K(2)x(¢) (3.3.81)

= -SA-ATS+SBE"'B’S-F S()=S, (3.3.80)

where
K(t) = E"'B7S(¢) (3.3.82)

To summarize, a proportional state feedback controller with time-varying
gain has been derived which will control the system [Eq. (3.3.70)] so that the .
objective [Eq. (3.3.71)] is minimized. Some points to note are:

1. The time-varying gain K(7) can be determined offline [by solving for S(7)
beginning at ¢ = ] because K(#) does not depend on x(7) or u(?).

2. If we let 4, > o0, and A, B, F, E are constant, then S(#) becomes a constant
and is the solution of

SBE " 'B’S —SA - ATS-F =0 (3.3.83)
Thus K(?) is also a constant. In this case the controller is a constant-gain
proportional controller.

3. The precise physical meaning of the objective [Eq. (3.3.71)] is somewhat
vague. Clearly the quadratic weighting of the state leads to desirable con-
troller performance when 7 is minimized; however, the quadratic weighting of
the control has less justification, particularly if controller power is not costly.
Sometimes the quadratic weighting can be used in place of explicit control
constraints in order to yield a feedback controller, but it is difficult to say in
what sense this is optimal. Additionally, weighting E too large causes the state
performance to decline, and weighting E too small causes the control u(z) to
take on extremely large values. The crucial limitations of this controller are
that E must stay positive definite and x, u must be unconstrained.

4. If one makes the objective functional [Eq. (3.3.71)] more general to include
cross terms between the state and the control, one can write Eq. (3.3.71) as

= L7 l Y r T F(t) N(’) X
I=3x"Sx|, + 3 f' (x7, uT) NG} B } [u] dt  (3.3.84)
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In this case it is straightforward to show that the feedback control law takes
the form of Eq. (3.3.81), where

K(1) = E"'(N” + B7S) (3.3.85)
and
S _ _SA - ATS + (SB + N)E"'(N + B”S) — F
dt
(3.3.86)
S(¢) = S;

This more general form will be useful in the derivation of nonlinear optimal
feedback controllers.

Example 3.3.5 Determine the optimal feedback control law for a process
described by Eq. (3.3.70) with the objective to minimize

Img(x - xd)TSj(x - xd)l;, + ‘;‘j:t/[(x = xd)TF(x - X,)

+ (u—u) E(u - ud)] dt (3.3.87)

where x,, u, correspond to a desired steady-state position.
Let us define

X =x—x, i=u-—u, (3.3.88)
then Eq. (3.3.87) takes the form of Eq. (3.3.71) in the variables %, @t and Eq.

(3.3.70) becomes
0

L ST +M (3.3.89)

dt

However, the last two terms in Eq. (3.3.88) vanish because they represent a
steady state. Therefore we have the control law

i =—K(0)x (3.3.90)
where K() is given by Eq. (3.3.82). In terms of the original variables, this is
u(t) = u,; — K(0)(x — x,) (3.3.91)

Example 3.3.6 Let us consider the CSTR in which an isothermal multicom-
ponent chemical reaction is being carried out. The chemical reaction system
is

ki Kk
A=2B->C
ky
with the rates of reaction given by
ro=kic, — kycp
ry = kicg

where k), k,, k; are constants.
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The modeling equations for this system take the form

dc
V_dt—[" = F(CAf = &) — Pkt =~ kycg) c4(0) = ¢4
dc '
V—dt_l” = F(CB/ —cp) + V[kch = (ky + k:)cu] c(0) = cpy

It is desired to control c,, cz as close as possible to a desired set point ¢,
Cpa by adjusting cz. At the same time, there is a target steady-state value of
Cgp» 1.€., €y, Which we would like to achieve as well. The feed concentration
of ¢, is considered fixed.

By defining the dimensionless variables

t'F Cpf Cy Cp
| = — = —— xl = — x2 = ——
V Cqp Cqp Caf
K,V k,V kyV
Dal=T Da2=—i— Da3=—1;,—

one obtains the model

d.

% = 1 — (1 + Da,)x; + Da,x,

dx,

—‘7 = Dax, — (1+ Da, + Da3)x2 + u

Now let us define the quadratic objective
11
4 = %j(;f[(xl = xld)z + a(x, — x2d)2 + B(u — “4)2] dt
where x,,, x,,, u, satisfy the steady-state equations
0=1-(1+ Da,)x,, + Da,x,,
0 L Dalxld =t (l + Daz + Da3)X2d + ud

By defining X, = x; — x,,, ¥, = x, — X, # = u — uy, one obtains the
linear quadratic problem having a model

dx, . 5

—— = — (1 + Da;)*%; + Da,x,

dt

dx, . . ;
> 1 Da,x, — (1 + Da, + Day)%, + 4

and an objective to be minimized
4
I=%f0’(if + aX} + Bi?) dt

The solution then can be found from Egs. (3.3.91), (3.3.82), and (3.3.86),
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where
. =~ {1 4 Da;) Da, B=O
Da, — (1 + Da, + Da,) 1
1 @
F = E=
[0 a B
Thus
Su S,
§ =
[SZI Sy

is given by the solution of

: |
Sll =2S|l(l + Dal)_2Sl2 Dal +§Sl22— 1 S“(tf) =O

S, = —S,, Da, + S,,(2 + Da, + Da, + Daj)

1
— 85, Da, + ﬁslzszz Su(y) =0
: 1
S, = 2S55(1 + Da, + Da;) — 2§, Da, + —

B S222 - a S22(tf) ol

and S,; = §),. Also, K(?) is
1
K(z) = E [SI2S22]

Thus the final controller is of the form
u(t) = u; — {Kl(t)[xl(t) = xld] + Kz(’)[xz(’) = xu]}
Note that the Riccati equations for S;,, S5, and S,, may be solved offline
and K (7), K,(?) stored in the computer for real-time use.

To illustrate the performance of the linear quadratic controller for this
problem, computational results shall be presented for the parameter values:

Da, = 3.0 Da, = 05 Da;=10 x,= 03 x4y = 04 u,;=10
x,(0) = 1.0 x,(0) = 0.0 = 2.0 a=10 B =025

Solving the Riccati equations for S(#) by solving backward from S, =0
gives the time-dependent controller gains K,(#), K,(¢) shown in Fig. 3.22.
Notice that K, and K, are constant over much of the time period and only
change significantly as ¢ approaches #. The linear-quadratic optimal feed-
back controller response is shown in Fig. 3.23, where it is seen that the
controller does cause the system to approach the desired set points x,, =
0.3, x,, = 0.4 rather closely within the time period 0 < ¢ < 2. Also note that
B has been chosen large enough so that u(f) does not violate the physical
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1.0 —~
K,
2
3
o0
3
3 0.5
g K,
<
0 et Figure 3.22 Optimal time-depen-

dent controller gains for Exam-
ple 3.3.6.

Figure 3.23 Linear-quadra-
tic optimal feedback con-
troller performance for
Example 3.3.6.

constraint #(z) > 0. For values of B too small, #(#) can become negative,
violating this constraint, while for B too large, little dynamic control action
is possible because K,(?), K,(¢) remain close to zero. Thus for good optimal
linear-quadratic controller design, one must tune the weighting parameters
(such as a and B here) in order to obtain the desired controller response.

From the previous example one may note that the linear-quadratic formula-
tion produces a proportional state feedback controller. From classical control
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theory one recognizes that proportional controllers lead to offset when there are
set-point changes or load changes in the process; thus, it would be desirable to
formulate the optimal feedback control problem so as to allow integral control
action which would eliminate these offsets. There are several possible ways of
doing this.

One method of including integral action is to include du/dr terms in the
objective functional so that Eq. (3.3.71) becomes

I=1xTSi, + 3 J “TFx + 4TEd) dt (3.3.92)
0

where the state equation (3.3.70) must be differentiated to yield (for constant
matrices A, B)

X = AX +Bu
Then the problem may be reformulated by letting
w
v(t) =1 w, =X W, =X W= [—--1-} (3.3.93)
W,
so that
Gl DL Il O s (3.3.94)
0. A B

and the objective becomes
S, 0 :
I = 1 wi| L w + lf’j{wr RIS vTEv} dt (3.3.95)
2 0.0 - 2 0:0
' =1

By applying the feedback control law [Eq. (3.3.82)] to this reformulated problem,
we obtain

- —K(w = —[K,; Kz][.:.:_‘-] (3.3.96)

2

which, upon integration, takes the form
u(t) = —Kx(1) - [ (K, - K,)x(¢) dt (3.3.97)
o

which has somewhat complicated integral action. If one allows # — o, then K|
and K, are constants and the feedback control law is

w(t) = —Kx(1) - K, f (1) dt (3.3.98)
o
an “optimal” proportional-integral controller.*
One may justifiably question the physical meaning of minimizing the time
derivative of the control action in Eq. (3.3.92) and how this relates to reducing
offset in the state variables. At the moment this relation is unclear.

* Through a slightly different transformation of states, derivative action may be obtained as well
(see [30]).
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A second means of incorporating integral action into the controller [31, 32]
is to augment the state variables to include p new variables z(¢) where
z = C*x (3.3.99)
are those state variables for which integral action is desired. Thus the new state
% of dimension n + p is
X

&%= [] (3.3.100)

z

When the objective functional is also modified to accommodate the new state
variable, i.e.,

[=188x + % [ (& +uEw) (3.3.101)
0

the linear-quadratic optimal control law takes the form
= K= -Kx-Kz=—-K;x - ch*fx dt (3.3.102)

which naturally includes integral action. Note that necessarily p < m, that is, the
number of state variables for which integral action is desired cannot be larger
than the number of control variables.

Another derivation of proportional and integral “optimal” feedback control
is given in Sec. 5.4, where stochastic control is discussed. There integral action
arises naturally as a means of dealing with random process disturbances.

Optimal Linear-Quadratic Feedback Control of Nonlinear Systems

It is possible to extend the results of the linear-quadratic problem to nonlinear
systems so as to produce an optimal feedback control law. Let us consider the
nonlinear optimal control problem given by the modeling equations

dx

- f(x, u) x(2,) = Xq (3.3.103)
and the control objective functional
[u()] = G(x(1)) + f YF(x, u) dt (3.3.104)
L]

Now if one expands the objective functional to second-order about a nominal
control and state trajectory u(z), X(#) while adjoining the state constraints, the
variation in 7 is

o1 = (32), ax() + 3070 55 axts) - 70 (1)

2
+A7(2,) 6x(10) + ft"[(aa—{l{) Su + -;—Sur(—aa‘g) Su + (—aaLx{) 8x
i : _ .

2 . 2 T
+18x7( : 121) ox + 8xT( 2 4 ) Su + o 8x] dt (3.3.105)

2 Ix dx du dr
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where it is useful to recall that
X =x—X du=u—ua and H=F+A'f

Now let us suppose our nominal trajectory u(z), X(¢) satisfies the first-order
necessary conditions for open-loop optimality, i.e.,

mmt Bor-lE] -l e

where we assume x(7,) is specified (x(%,) = X,) and x(Z) is unspecified. Thus X(7),

u(¢) are the open-loop optimal controls for a particular initial condition x(z,) =
X,- In this case Eq. (3.3.105) has only the remaining terms:

y 0%H 0%H 0°H
81—f,0[28"(au )8u+8x(axa )a +58x (axz).Sx}dt

+Lox T(tf)(a G), 5x(1) (3.3.107)

Now let us note that if we change the initial condition x(7,), the entire
nonlinear open-loop optimal control policy must be recalculated, because unlike
linear problems, in which superposition may be used to quickly adjust for
changes in initial conditions, nonlinear optimal control problems depend nonlin-
early on the initial conditions. However, it is possible to develop a perturbation
approach to solve this problem. If we consider the system equations linearized
about the open-loop optimal policy X(z), u(¢z) for a fixed initial condition
x(#y) = X, we obtain the perturbation equations

d(8x(2))

dt (ax)s +(‘g:;).8“ 8x(2o) = %o (3.3.108)

which represent the system behavior for initial conditions in some domain close
to the nominal value X,, ie., for |8x(#)| < e. The degradation in the system
performance due to the deviations is given by Eq. (3.3.107). Thus Egs. (3.3.107)
and (3.3.108) represent a linear-quadratic optimal control problem whose solu-
tion du*(f), 6x*(¢) represents the optimal feedback corrections to the nominal
open-loop control. This is illustrated graphically for a single control—single state
process in Fig. 3.24. There the nominal open-loop optimal control trajectory
X(#), u(?) originating from X,, and the perturbation feedback corrections Su(?),
dx(#) resulting from another initial disturbance x,, are shown.

The solution to the perturbation feedback control law follows directly from
the results of the last section if we define

A0=(2) so=(Z) wo-(2Z)
H

E(t)=(%). N(t)=(£:au). o (Z—q) (3.3.109)
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t t I

Figure 3.24 Optimal perturbation feedback control of a nonlinear system.

and use the results of Egs. (3.3.84) to (3.3.86). Thus
du(r) = —K(¢) 6x(¢)
where
K(z) = E"'(NT + B”S)

or

u(z) = u(s) + K()[x(1) — x(¢) ]

(3.3.110)

(3.3.85)

(3.3.111)

The implementation of such a feedback control scheme could be carried out

as follows:

1. Calculate and store a set of optimal open-loop control policies ©(¢), X()
corresponding to a very coarse grid of nominal initial conditions X,.
2. Also precalculate and store the controller gains K(¢) for each nominal initial

condition.

3. The on-line control can then be carried out by identifying the closest nominal
initial condition in the stored grid and using that corresponding K(¢) in the

control law {Eq. (3.3.111)].

Let us illustrate this technique with the following example.

Example 3.3.7 Consider the simple problem of the control, by cooling-rate
manipulation, of the temperature of a continuous-stirred tank reactor
(CSTR) in which a zero-order reaction is taking place. The mathematical
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model for the reactor temperature is

rC, V%T; = pCpF(Tf — T) + (—AH)Vkee E/RT — Q' (3.3.112)
7(0) = T,
Let
Tf 4 pCp TfF RTf : pCpFT}
Ty T,
Xo = — xX; ==
A
so that the dimensionless model equation is
% af=yba@™ iy e (3.3.113)
Our objective is to minimize the objective functional
o) % 2 2
I= 5fo [(x = x,)* + au?] ar (3.3.114)

by designing an optimal feedback controller.

Let us assume that the open-loop optimal control policy #(¢), x(¢) has
been determined for a given initial condition, X, by a control vector
iteration procedure:

1. Guess u(?).
2. Integrate Eq. (3.3.102) from x, to x; to yield x().
3. Integrate

d\ aye /% )

— = —(x=x)) +A[l ——— 3.3.115

= — =+ A1 - 2 (33.115)
backwards from A(f) = 0.

4. Correct u by

u"v = yold 4 ea—H- e<0
Ju
where
H =%[(x - x) + auz] + A1 = x + ae V" — u)
and
%’;1 - g & (3.3.116)

and go back to step 2.

Let the result of this iterative calculation be denoted x(¢), #(f). Repeat this
open-loop optimal control calculation for a grid of x, values over the
expected range of disturbances.
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Now we can compute the linearized “matrices”

=) (13

Thus S(7) satisfies

ds ay _ /;)
—— T o — + B Y. o
B 2s( | e

2
[ ay” _2ay\ _,z|, K S§?
1+}\_____e‘l
(x' )?3) ]+a

S(4) =0
or recognizing from Eq. (3.3.105) that A = aii, one obtains

2 2 9 -
B -t Bl |5 Sy ] B o 2 e
a x4 X

S(z) = (3.3.117)

K(2) = — % (3.3.118)

Thus the optimal feedback controller is

u(t) = u(t) — K()[x(¢) — x(1)] (3.3.119)

3.4 NONLINEAR MULTIVARIABLE CONTROL

Although most of existing control theory only applies to linear systems with
constant coefficients, the great majority of practical process control problems
involve nonlinear systems. Thus there is a need to explore the useful theory for
nonlinear multivariable control problems. For systems described by nonlinear
differential equations, the general form of the modeling equations is

d—’t‘ iz d) %) =% (3.4.1)

y = h(x, u) (34.2)
where, as in the previous section, x(¢) is an n vector of states, u(f) is an m vector
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of controls, d(?) is a k& vector of disturbances, and y(#) is an / vector of measured
outputs. Clearly when

f=Ax +Bu+1Id (34.3)
h=C (3.4.9)

the nonlinear system [Egs. (3.4.1) and (3.4.2)] reduces to the linear problem
treated in the last section.

General strategies of nonlinear multivariable controller design seem to fall
into two major categories:

1. Linearization of the nonlinear equations so that the linear design procedures
(such as those described in Secs. 3.2 and 3.3) may be applied.

2. Special-purpose methods which may be applied directly to the nonlinear
system.

Both approaches to control system design have their merits and shall be
discussed in more detail in what follows.

Linearization

The easiest and most common approach to the design of control schemes for
nonlinear multivariable systems is to linearize the modeling equations and apply
standard linear design procedures. Although this approach is straightforward, it
is useful to outline the essential features.

Rigorous conditions for controllability, stabilizability, etc., for nonlinear
systems have been derived only for rather limited special cases (e.g., [2]).
However, in most cases a good practical answer to such questions may be found
through linearization of the nonlinear equations (3.4.1) and (3.4.2) and applica-
tion of the linear theory to these linearized equations. The details of this
approach are best illustrated by an example.

Example 3.4.1 Let us consider the isothermal CSTR described in Example
3.2.6 except that here the reaction 4 — B is second-order and the reaction
B — C is 3-order. In this case the modeling equations are

dc
V71t4 = Fley, ~ ¢g) — Viyel (34.5)
dcg 2 1/2
Pregh m F(cg, — ¢p) + V(kici — kscy (3.4.6)
and may be put in the form of Egs. (3.4.1) and (3.4.2) by defining
¢ c e
. NN NSRS, ey
Cliy C il Chy Ca
kicy V kv 0
Da, = —15,—— Da3 R AT t= 7 (347)

F(CA“,)I/Z
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Thus the nonlinear model becomes

d

bl WREE SN O (3.4.8)
@

d

22 = Dayx? - x, — Day(x)"* + 1, (3.4.9)

Let us linearize these equations around the steady state defined by u,, = 1,
u,, = 0 and make use of deviation variables X; = x; — x;,, @, = u; — u,,
i = 1, 2. Expanding Egs. (3.4.8) and (3.4.9) in a first-order Taylor series, one
obtains the linearized model

dx,

5 == (1 + 2 Da;x, )%, + %, (3.4.10)
dx Da
772 = (2 Da,x,,)%, — (1 + % ——f/z)iz + i, (3.4.11)
(x2)
where x,,, x,, are solutions to the steady-state equations
0= —x,, — Da,x}, + 1

3.4.12
0 - Dale_, S xz_, e Da3(x2,)1/2 ( )

The linearized equations (3.4.10) and (3.4.11) may now be written in the
form of Eq. (3.2.1), where

[ - (1 +2Dayx,,) 0

A= 1 Da (3.4.13)
L (2 Dalxl.y) - ( 2 (xb)?/z)

B = '(1) (1)] (34.14)

and the test for controllability [Eq. (3.2.60)] applied. This requires that the
controllability matrix

1 0: —(1+2Dax,,) 0

L=[BAB] =y 1!  2Dap, ‘(”%( a)lixz)
: X2s

have rank 2. Clearly this is satisfied for all steady states. Thus we may say
that this nonlinear system [Eqgs. (3.4.8) and (3.4.9)] is controllable.

Example 3.4.2 Let us now determine the controllability of the problem in
the previous example when we define u, = cz/c,  and 4, = ¢, /c, , ie.,
we have only one control and one disturbance. In this case the nonlinear
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equations are

d
_d’% = —x, — Da,x? + d, (3.4.15)
d

_;72 = Da,x? — x, — Day(x,)"/? + u, (3.4.16)

When one linearizes around the steady state defined by d,; = 1, u,, = 0, the
linearized equations take the form of Eq. (3.3.1), with A given by Eq.
(3.4.13) and

B [ (1)] (3.4.17)
The controllability matrix [Eq. (3.2.60)] becomes
0: 0
Lc=[BEAB]= 1': s 1+l_%_
’ 2 (x)"?

which clearly has only rank one. Therefore the nonlinear system [Egs.
(3.4.15) and (3.4.16)] is not controllable.

One should note that these two examples are completely similar in structure
to Examples 3.2.5 and 3.2.7, and the conclusions regarding controllability are the
same for both the linear and nonlinear systems. This emphasizes the fact that
the dominant factor determining controllability is the system structure, not
whether the system is linear or nonlinear. Thus, in practical problems, one may
usually use “linearized” controllability tests with confidence.

As a final comment, one should note that we linearized about a steady state
to produce linear constant coefficient linearized equations. Had we linearized
about some nominal time-varying path x,(#) (such as might be necessary in
batch processes or other processes not having a steady state), then the linearized
equations would have had time-varying coefficients and a nonautonomous test
of controllability [Eq. (3.2.68)] would have been necessary.

Having linearized the nonlinear system and tested for controllability as
illustrated above, one may now directly apply one of the multivariable controller
design procedures discussed in Secs. 3.2 and 3.3. To illustrate, we shall apply
modal control to a nonlinear example.

Example 3.4.3 Let us design a modal feedback controller for the nonlinear
CSTR described in Example 3.4.1. Notice that this is a nonlinear analog to
the linear system discussed in Example 3.2.14. The nonlinear model is given
by Egs. (3.4.8) and (3.4.9), while the linearized state equations are given by
Egs. (3.4.10) and (3.4.11) and the output equation is

y = Cx (3.4.18)

where C must be chosen to provide modal decoupling. Analyzing the matrix
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A, Eq. (3.4.13), one sees that the eigenvalues of the linearized system are

A, = —(1+2Da,x,,)
1 Da,
T, | P .. (3.4.19
’ [ 2 (xb)‘”] :

and by noting the similarity to Example 3.2.14, one may immediately write
down an orthonormal set of right and left eigenvectors of A:

i 1 2 Dayx,, — (1/2)[Day/ (x2)*]
2 Doy, — 5 ? D_a‘lx" 1
(x2)
(3.4.20)
2 Da,x,, 0
g, - 1 Da, (3.4.21)

2 Da,xls 2 Dalx” = '2— (x—)-‘-/—z
2s

Recalling the modal design procedure of Sec. 3.2, the feedback controller
must take the form

, it = —B 'RKy (34.22)
where B is given by Eq. (3.4.14), K is a proportional controller given by
- k, O
0 ks

and the outputs are given by

y = Lx (3.4.23)
In component form the controller design is
¢ k .
ty = —Wal.:x_hy' = —kn%,
- 1
U,

) 2Dax, - (1/2)[Da3/ (x25)1/2] [kuy: — kxnys]

2(ky, — kp)Da;x,,

= % — k%, (3.4.24)
2 Dax, - (1/2)[D33/ (xzs)l/z]
where the outputs must be chosen as
y; = 2 Da,x, X,
1 Da "
y, =2 Da;x, %, +|2Dayx,, — 5 —— |% (3.4.25)

2 (xb)lﬂ 2
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Although this modal feedback control does decouple the outputs of the
linearized system, the actual system is nonlinear, with closed-loop dynamics

given by

—Ll= —x, —Dax?+1- k,(x, — x,) (3.4.26)

—2 = Da,x} — x, — Day(x,)'”’

2(kyy — kyy)Dayx,,
2Da;x, — (1/2)[Da3/ (xzs)l/z

] () = x35) = kgl x, = x5,)

(3.4.27)
y1=2Dapx(x; — xy,)
1 Da
ya = 2 Dax,(x, — xy,) +|2 Da;x;, — '2‘—?/3 (x; = xy)
(x2)
(3.4.28)

The controller performance can be illustrated by simulation of these nonlin-
ear equations. Some results may be seen in Figs. 3.25 and 3.26 for the
parameters Da, = 1.0, Da, = 2.0, u4,, = 1.0, and u,, = 0, which from the
solution of Eq. (3.4.12) yield x,, = 0.618, x,, = 0.0308. The initial condi-
tions are x; = 1.0, x, = 0. Two cases were run: Case 1 with k;, = 0.5,
k,, = 1.5, and Case 2 with k;; = 5.0, k,;, = 10.0. The state variables are
shown in Fig. 3.25, while the output variables are plotted in Fig. 3.26. Note

1.0

08— \

0.4 —

0.2 Case 2

0.0 s T oo
0.0 0.5 1.0 1.5 2.0
Time

Figure 3.25 Modal control of a nonlinear chemical reactor. Case 1: ky; = 0.5. ky; = 1.5; Case 2:
k|| - 50, k22 = 10.0.
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0.8

0.6

0.4

0.0 0.5 " 1.0
Time

Figure 3.26 Modal control of a nonlinear chemical reactor. Case 1: k;; = 0.5; ky, = 1.5. Case 2:
ki, = 5.0; ky, = 100.
that the controller performs well in both cases even though the design is
based on the linearized equations. As might be expected, the larger con-
troller gains provide faster system response.

Feedback Controller Parameterization

Although there are many special-purpose nonlinear system controller design
procedures, most of these have very limited applicability and usually result from
accumulated experience with a special type of nonlinear system. There is,
however, one approach, termed feedback controller parameterization, which can
be applied directly to any nonlinear system and has been found to perform well
[27, 33].* The basic approach has been described previously in Sec. 3.3, and
Example 3.3.4 illustrates things for a single control variable.
By defining a feedback control law

u=gybh) (3.4.29)

with a specific structure and undetermined parameters b, one can search for the
optimal set of parameters which minimizes some objective functional such as

I =G(y(1)) + fo YF(y(1), u(z)) dt (3.4.30)

Even though in principle there will be a different optimal set of parameters for
each system initial condition, experience has shown that this dependence is often
weak, and in practice one can determine a global set of optimal controller
parameters. It is perhaps best to illustrate this type of control scheme by an

example.

* In the control literature this approach is sometimes referred to as “specific optimal control.”
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Example 3.4.4 Let us apply feedback control parameterization to the design
of a multivariable proportional controller for the isothermal CSTR system
treated in Example 3.4.1. We shall assume that set points are on both x, and
x,, and we wish a state feedback controller of the form

i =K(x - x,) (3.4.31)
where
K % (3.4.32)
k21 k22

is the multivariable proportional controller having four parameters k; to be
chosen optimally. The objective to be minimized is

k= fO"[(xx = x, Y+ a(x, — x,)" + B(i,)*] dt (3.4.33)

where the last term arises because it is expensive to feed species B to the
reactor to achieve good control. The controls u,, u, are bounded by
0<u,<20,0<u,<10.

The control system synthesis involves the following steps:

1. Guess the elements of K.

2. Solve Egs. (3.4.8), (3.4.9), (3.4.31), and (3.4.33).

3. Send the resultant value of I to a parameter search routine and receive a
new set of elements of K.

4. Return to step 2 and iterate.

For the parameters a = 2, 8 = 5, Da, = 1.0, Da, = 2.0, u,, = 1.0, u,, = 0,
x;, = 0.618, x,, = 0.0308, the optimal values of K found from the initial
state x; = 1.0, x, = 0 were

_[30 035
5 [0.2 2.0]

while from the initial state x, = 0.0, x, = 0.0, the optimal proportional
controller gains were

—[35 04
- [ 0 2.0]
Note that there is little variation in K even though the initial start-up
conditions are vastly different. The control system performance may be seen
in Fig. 3.27. Clearly this design procedure is effective for this problem.

One disadvantage of this design procedure is that one must perform a
complete dynamic simulation in order to compute I at each iteration of the
parameter search. Because 50 to 100 iterations are not atypical, large-scale
problems could require long computing times. As yet there does not appear
to be sufficient practical experience with this design procedure to determine
if this is a serious limitation.




126 ADVANCED PROCESS CONTROL
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Figure 3.27 Parameterized feedback controller performance. Case 1: x,(0) = 1.0; x,(0) = 0. Case 2:
x,(0) = 0; x5(0) = 0.

3.5 DISCRETE TIME SYSTEMS

Although the natural process model for most dynamic systems takes the form of
differential equations, there are instances when discrete time models are con-
venient to use. In this case the model is a difference equation, which for linear
systems may be written

x[(k + 1) At] = ®(k At)x(k Ar) + Bu(k A7) (3.5.1)

y(k At) = Cx(k At) (35.2)

Discrete time models are particularly useful when implementing direct digital
control (DDC) because the measurements y(k Af) are taken at discrete times
t, =kAt,k=1,2,..., and the controls are held piecewise constant over the
interval A¢. In this case the difference equations (3.5.1) and (3.5.2) may be
derived from the original differential equation

x = Ax + Bu x(0) = x, (3.5.3)
y==Cx (3.54)
where A, B, C, are constant matrices. By recalling the solution to Eq. (3.5.3),
x(1) = eMx, + ['eAC=Bu(r) dr (35.5)
()}

we may solve for x(k At) by repeated application of Eq. (3.5.5) for piecewise
constant controls to yield

x(Af) = e*¥x, + f & eawi-n 4 Bu(0)
0

x(2 Af) = eA¥x(ar) + [ 28 A a-n 41 Bu(ar) (3.5.6)
At

x[(k + 1) At] = eAdix(k Ar) + [0 YAtk a-11 4o Bu(k Ar)

k At
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Thus comparing Egs. (3.5.6) and (3.5.1), one sees that defining
@ =AY (35.7)

B fo YeAw-n 4 B (3.5.8)

gives the equivalent difference equation for implementation of DDC. By re-
arrangement of Egs. (3.5.6), the discrete analog to Eq. (3.5.5) is

x(k At) = ®x, + B kzl @~ 1"u(i Ar) (3.5.9)
i=0

The discrete equations (3.5.1) can also arise by taking the finite difference
form of Eq. (3.5.3). This leads to

x[(k + 1) At] — x(k A1)

A7 = Ax(k At) + Bu(k A¢) (3.5.10)

which by defining
D=1+ AA) (3.5.11)
B=BA: (3.5.12)

reduces to Eq. (3.5.1). For the finite difference formulation to be valid, A¢ must
be small compared with the smallest time constant of the system. By contrast,
the DDC formulation [Egs. (3.5.7) and (3.5.8)] is valid for any size At.

Although there is a full theory of discrete systems, involving difference
equations in the time domain [34] and z transforms in the transform space [35],
we shall not go deeper in this direction here. The results parallel those already
discussed for continuous systems, and the details are readily available to the
interested reader (e.g., [6, 34, 35]).
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PROBLEMS

3.1 A high-priced specialty chemical is made in a batch reactor. The reactions of interest are

K,
RSP )
REw @

where R is an expensive raw material, P is the product, and W is a waste byproduct. Both reactions
(1) and (2) are irreversible and first-order in species R. The velocity constants k, and k, are given by

k, = A~ B/RT =12
Material balances on species R and P in the batch reactor are
dR

== (ky + k)R R(0) = R,
% =kR P0)=0

W=Ry—R—P
As a control engineer you have been asked to design a temperature control program for the batch
reactor to be carried out over a 1-h batch time and which maximizes the amount of P produced at
the end of the run. The mathematics can be simplified by letting

R P E,

x,=70 X2=—R—o

.
S (4)*

so that k; = au”. With these substitutions, the optimal control problem is to choose u(z), 0 < ¢ < 1,

a
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such that x,|,., is maximized and

dx,
7 = — (u + au?)x, x,(0) =1
dx
7’2 = ux, x,(0) =0
Note that it is permissible to use u as the control variable, because

u=k, =Ae E/RT
yields a monotonic relationship between u(r) and 7(¢).

For the parameters p = 2.0, a = 0.5, 4, = 10°s™!, E, = 10,000 cal/(g)(mol), and for tempera-
ture constraints of the form 0 < u(f) < 5, determine the optimal open-loop temperature program
u(?) « T(¢) in three different ways:

(a) Apply the maximum principle in order to calculate the optimal control using a gradient
procedure. Determine the optimal program from two initial guesses of u(¢).

(b) Apply the control vector parameterization procedure to the problem by finding the optimal
set of coefficients ay, a,, a, in the expression

u(t) = ap + a;t + ayt?
Use a multivariable search routine (see Ref. [16]) to determine the optimal values of a,, a,, and a,.

Compare your results with those found by the gradient method.
(¢) Determine an optimal feedback control law of the form

u(x,) = by + byx, + byx?

by using a multivariable search routine to determine the optimal controller parameters by, b,, b,.
Compare with the results of parts (a) and (b).

3.2 A simple suspension system is to be designed for a high-speed rapid transit vehicle. A simple
laboratory model of the system is sketched in the figure below, where springs (spring constant K’)
are used to cushion the vertical motions in the absence of feedback control. However, it is desired to
design a feedback controller to improve the stability and performance of the suspension system. To
accomplish this, a force u'(r) may be applied to the bouncing system.

u' w e
\ -K's -
- <
—
—
—
—

—\WWW

ST S SR
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The modeling equations are

2
W£= -K's+ G+ u
dt
where G is the force of gravity and W is the mass of the system. By noting that at steady state
W =0)

0=—-K's,+ G

we may define normalized deviation variables and parameters

X)=s—8 xX=5§ u=

to yield the model

Based on this information:
(a)Make use of the results in Sec. 3.3 to find the optimal linear quadratic feedback control law
which minimizes

1,
1 -/;’(xf + ox? + Bu?) dt

Carry out the computations for a = 1, 8 = 0.25, K = 3, ; = 2.0, x{(0) = 1.0, x,(0) = 1.0.

(b) The traditional feedback controller for suspension systems is the shock absorber, which has
the form u = — Cx, (pure derivative action). Compare your “optimal controller” with this tradi-
tional one.

3.3 Carry out the computations to determine the near-optimal linear quadratic feedback controller
for the problem discussed in Example 3.3.7. Use the following parameters: a = 1000, y = 10,
xg = 13, X(0) = 1.5, ¢, = 2.0, and a = 0.25. After the optimal open-loop policy has been found for
x(0) = 1.5, determine the near-optimal feedback controller performance for x(0) = 1.4 and x(0) =
1.6. How does the controller perform for this highly nonlinear system?

3.4 Consider the tank network shown in the figure below. Liquid flows from one tank to the next,
with the outflow of each tank assumed to be proportional to the level in that tank. The outlet of the
second tank is split, with a fraction F exiting and the remainder pumped back to the first tank. The
modeling equations can be assumed as

dh

=tk + Bhy

dh
—de"“z'*'“":—(ﬁ"'Y)hz

It is desired to control the liquid levels in these tanks by choosing a controlled inlet flow position
(either u, or u,) as shown. As a means of aiding your choice,

(a) Determine if the controllability conditions are satisfied for «, alone (valve u, at constant flow
rate) and for u, along (valve u, at constant flow rate).

(b) Are there other practical conditions to be considered which are not treated by formal
controllability conditions, but which may influence your choice? Discuss these.

(¢) If the recycle loop were removed, modify the modeling equations, and reevaluate controlla-
bility as in part (a).
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ok

]

R =ph, 2

3.5 For the vehicle suspension problem discussed in Prob. 3.2, develop a transform-domain repre-
sentation between the measured vertical height y = x, and control force u, i.e.,

7(s) = g(s)a(s)
Determine g(s). [Hint: See Eq. (3.3.50) and the accompanying discussion.]
3.6 You have been given the multivariable control system

. s 3 1
821 uy T3 10 1% 70s
= = 1+ 10 1 + 20
¥(s) = i(s) = =l " s
72 “ 1+25s 1+5s

in the Laplace domain. Convert this to an equivalent set of ordinary differential equations of the
form

dx
E=AX+BII
y=Cx

3.7 Consider the water tank system of Prob. 3.4 with both control valves u,, u, available. Carry out
the following types of controller designs:

(a) Two single-loop proportional controllers.

(b) Modal feedback control.

(¢) Set-point compensation for the controller in part (a).

(d) Complete dynamic noninteracting control. Compare the controller responses (interaction,
offset, etc.) and the relative ease of implementation of the controllers.

As test disturbances, consider a unit step change in the 4, set point while endeavoring to keep

h, constant. Conversely, consider a unit step change in 4, while 4, is held constant. Make use of the
following parameters: a = 3, 8 = 2, y = 2. For each design, choose the more convenient system
representation (i.e., time domain or transform domain).
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3.8 Pulse testing of a distillation column yields the following dynamic model between product
concentrations y,, y, and product drawoff rates u;, u,:

¥(s) = G(s)u(s)
where
» 2 1.0 0.3
1 1 1+10s 1+ 8s
. = G =| " g, 0.5
V2 e 1+7s 1+ 5s

(a) Convert the above transform state space model to a time-domain model in the form
x = Ax + Bu
y=Cx
Is this a minimal realization in state space?

(b) Is the distillation column output controllable? Why?

(¢) Write down the block diagram and the design equations for a noninteracting proportional
feedback controller which eliminates steady-state interactions. What is the closed-loop transfer
function between y and set point y,?

39 Extend the linear quadratic optimal feedback control law of Sec. 3.3 to include optimal
feedforward control when measured disturbances are included in the model; i.e., find the optimal
feedback-feedforward control law for the system

%=Ax+Bu+Dd x(2) = %

where D is an » X k matrix and d is a k vector of disturbances. (Hint: see Ref. [15]).

3.10 Consider the nonisothermal CSTR in which the exothermic reaction 4 — B is being carried
out. The modeling equations in dimensionless form may be written

dx
Tll = —x, + Da(l — x,)e* + y,

% = — (1 + B)x, + BDa(l — x,)e* + Bu,

(a) Determine if this system is controllable when operated around the steady state x,, x,,
resulting from u,;, = u,, = 0.

(b) Design a proportional feedback control system which contains a steady-state noninteract-
ing compensator. Begin by linearization around the steady-state noted in (a).

(c¢) Simulate the reactor for the parameters Da = 0.1, 8 = 3.0, B = 19, and demonstrate your
controller performance when applied to the nonlinear system.

3.11 Consider the CSTR described in Example 3.2.5 with continuous modeling equations
dx,
dt

d

ilz = Da,x; — (1 + Daj)x, + u,
It is planned to implement P + I control relating u, to x,; — x, and u, to x,; — x, under DDC
mode with sampling time A¢. Here x, 4, x,,, are the state set points. Convert the continuous model to
the equivalent discrete model necessary for DDC design. Draw the block diagram and specify final

controller design equations.

= — (1 + Da))x, + 4,





