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4.1 Introduction

In this chapter, the basic theory of feedback linearization is presented and
issues of particular relevance to process control applications are discussed.
Two fundamental nonlinear controller design techniques — input-output lin-
earization and state-space linearization — are discussed in detail. The theory
also is presented for linear systems to facilitate understanding of the non-
linear results. Extensions are presented for disturbances and multivariable
processes. Advanced topics such as dynamic feedback linearization, time
delay compensation, constraint handling, robustness, and sampled-data Sys-
tems are also discussed.

A survey of process control strategies and applications shows that: (1) a
variety of nonlinear controller design techniques are based on input-output
linearization; (2) few experimental studies of these techniques have been
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150 CHAPTER 4. FEEDBACK LINEARIZING CONTROL

presented; and (3) many important problems remain unsolved. To illustrate
design and implementation issues, feedback linearizing controllers are devel-
oped for three representative processes: a continuous stirred tank reactor, a
continuous fermentor, and a pH neutralization system. This chapter differs
from existing reviews [68, 82, 89, 94, 98, 99, 126, 134] of feedback lineariza-
tion by providing a balanced discussion of theoretical and practical issues of
interest to process control engineers.

Nonlinear Process Model

As discussed in previous chapters, there are several types of finite-dimensional,
nonlinear process models. In this chapter, we will focus on continuous-time,
state-space models of the form,

& = f(z)+g(z)u (4.1)
y = h(z)

where: z is an n-dimensional vector of state variables; u is an m-dimensional
vector of manipulated input variables; y is an m-dimensional vector of con-
trolled output variables; f(z) is an n-dimensional vector of nonlinear func-
tions; g(z) is an (n x m)-dimensional matrix of nonlinear functions; and
h(z) is an m-dimensional vector of nonlinear functions. The single-input,
single-output (SISO) case where m = 1 will be emphasized to facilitate
understanding of the basic concepts. The model (4.1) will be modified as
necessary to describe more complex nonlinear processes, such as those with
measured disturbances or time delays.

Feedback Linearization vs. Jacobian Linearization

Consider the Jacobian linearization of the nonlinear model (4.1) about an
equilibrium point (ug, zo, yo):

Of (o) 4 99(z0)

T = % 9 W0| (& —20) +g(wo)(u —uo)  (4.2)
Y-y = %(x—m)

Using deviation variables, the Jacobian model can be written as a linear
state-space system,
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& = Ax+ Bu (4.3)
B = OF

with obvious definitions for the matrices A, B, and C. It is important to
note that the Jacobian model is an exact representation of the nonlinear
model only at the point (zp,up). As a result, a control strategy based on
a linearized model may yield unsatisfactoy performance and robustness at
other operating points.

In this chapter, we present a class of nonlinear control techniques that
can produce a linear model that is an ezact representation of the original non-
linear model over a large set of operating conditions. The general approach
— typically called feedback linearization — is based on two operations: (1)
nonlinear change of coordinates; and (2) nonlinear state feedback. We focus
on local feedback linearization (i.e. the coordinate transformation and con-
trol law may be only locally defined) to avoid complications associated with
the global problem.

After feedback linearization, the input-output model is linear,

£ = Af+Bv (4.4)
o= CE

where: £ is an r-dimensional vector of transformed state variables; v is an
m-dimensional vector of transformed input variables; w is an m-dimensional
vector of transformed output variables; and the matrices A, B, and C have
a very simple canonical structure. If r < n, an additional n—r state variables
must be introduced to complete the coordinate transformation. The integer r
is called the relative degree and is a fundamental characteristic of a nonlinear
system.

Feedback Linearization Approaches

Most feedback linearization approaches are based on input-output lineariza-
tion or state-space linearization. In the input-output linearization approach,
the objective is to linearize the map between the transformed inputs (v) and
the actual outputs (y). A linear controller is then designed for the linearized
input-output model, which can be represented by (4.4) with r < n and w =
y. However, there is a subsystem that typically is not linearized,
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n=q(n,§) (4.5)

where 7) is an (n-r)-dimensional vector of transformed state variables and g is
a (n-r)-dimensional vector of nonlinear functions. Input-output linearization
techniques are restricted to processes in which these so-called zero dynamics
are stable.

In the state-space linearization approach, the goal is to linearize the map
between the transformed inputs and the entire vector of transformed state
variables. This objective is achieved by deriving artificial outputs (w) that
yield a feedback linearized model with state dimension r = n. A linear
controller is then synthesized for the linear input-state model. However, this
approach may fail to simplify the controller design task because the map
between the transformed inputs and the original outputs (y) generally is
nonlinear. As a result, input-output linearization is preferable to state-space
linearization for most process control applications. For some processes, it is
possible to simultaneously linearize the input-state and input-output maps
because the original outputs yield a linear model with dimension r = n.

Static and Dynamic State Feedback

Feedback linearization produces a linear model by the use of nonlinear co-
ordinate transformations and nonlinear state feedback. Coordinate trans-
formations are described in Chapter 3; nonlinear state feedback is discussed
below. In some applications, the control objectives can be achieved with a
nonlinear static state feedback control law of the form,

u = a(z) + B(z)v (4.6)
where a is an m-dimensional vector of nonlinear functions and 3 is an m x m
matrix of nonlinear functions. For some processes, it is not possible to satisfy
the control objective with a static controller and a dynamic state feedback
control law must be employed,

¢ 7(,¢) +6(z, Qv (4.7)
u = a(z,C)+ Bz, Qv

where: ( is a g-dimensional vector of controller state variables; v is a g-
dimensional vector of nonlinear functions; and ¢ is a ¢ x m matrix of nonlin-
ear functions. Specific forms for the nonlinear controller functions (a, 3,7, §)
will be presented thoughout the chapter.
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4.2 Input-Output Linearization

4.2.1 Linear System

An input-output linearizing controller is designed for the SISO version of
the linear system (4.3). This exercise illustrates the basic controller design
procedure employed in the nonlinear case. Recall from Chapter 3 that the
system can be transformed into the following normal form via a linear change
of coordinates [¢T,nT]T = T,

& = &
& = &
(4.8)
& = RE+Sn+ku
n = P{+Qn
y = &
where r is the relative degree. The static state feedback control law,
gt By (4.9)

k

changes the r-th equation in (4.8) to: & = v. The transformed input v is
designed to stabilize the £ subsystem,

v=—arlr —ap_1br—1 — - — s (4.10)

In the original coordinates, the complete control law has the form,

-CA'x — a,CA™ g — -+« —@iCx
@ = CA1p (4.11)
The proposed control law yields the following characteristic equation for

the £ subsystem:

s +aps 14 dons+a; =0 (4.12)

Nominal stability of the £ subsystem, and therefore boundedness of the out-
put, is ensured if the controller tuning parameters «; are chosen such that
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(4.12) is a Hurwitz polynomial. As discussed in Chapter 3, the closed-loop
system is internally stable (i.e. the n variables are bounded) if and only if
the eigenvalues of the matrix @) are in the open left-half plane. Hence, the
proposed controller design technique is restricted to linear systems which are
minimum phase.

4.2.2 Controller Design

In this section, an input-output linearizing controller is designed for the
SISO version of the nonlinear system (4.1). Extensions of the basic controller
design procedure for disturbances and multivariable processes are discussed
in subsequent sections.

Illustrative Example

In order to illustrate the basic concepts, we first consider the following two-
dimensional nonlinear system:

1 = fi(z1,22) + g1(@1, 2)u
T2 = fo(z1,72) (4.13)
y = o

This model form can describe, for example, an irreversible reaction occuring
in a constant volume, stirred tank reactor where z; is the reactor tempera-
ture, 3 is the reactor concentration, and u is the coolant temperature [162].

If the nonlinear function g; is non-zero in the operating region of interest,
the static state feedback control law,

n = Lol (4.14)

gl(xlﬁwZ)

changes the first equation of (4.13) to: #; = v. Thus, the control law
ezactly linearizes the map between the transformed input v and the output .
Consequently, a linear controller can be designed to satisfy control objectives
such as setpoint tracking. It is important to note that the zo dynamics
remain nonlinear. As discussed in the next section, asymptotic stability of
these zero dynamics is a necessary condition for nominal closed-loop stability.
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General Design Procedure

We now consider the design of an input-output linearizing controller for
the n-th order nonlinear system (4.1). This problem was originally posed
and solved by Isidori and Krener [84, 105]. Recall from Chapter 3 that
the system (4.1) can be transformed into normal form via a diffeomorphism
(€T, nT]T = ®(x) if the relative degree r is well defined. The ¢ coordinates
are defined as,

& = ®k(x) =L 'h(z), 1<k<r (4.15)

and nx = ®,4x(z), 1 <k < n—r, where Ly®,(z) = 0. The normal form
can be written as:

q = &
L = &
(4.16)
& = b(&n) +aén)u
o= q(n)
y = &
The static state feedback control law,
= )

changes the r-th equation of (4.16) to: & = v. As a result, the map be-
tween the transformed input v and the output y is ezactly linear. Thus, a
linear state feedback controller can be synthesized to stabilize the & subsys-
tem. For instance, the pole placement design (4.10) yields the characteristic
polynomial (4.12) for the linear subsystem. When expressed in the original
coordinates, the two control laws have the following form:

v — L%h(z)

LyL7  h(z) 1

y = —arL’}—lh(m) - ar_lL;_Qh(m) — - —arh(z) (4.19)
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Hence, the complete static state feedback control law can be written as:

—L%h(z) — oy Ly h(z) — -+ — a1h(z)
LyL’ h(z)

U=

(4.20)

Integral Control

In most process control applications, the objective is to maintain the output
at a non-zero setpoint despite unmeasured disturbances and plant/model
mismatch. Consequently, the nonlinear controller (4.20) should contain an
integral term that penalizes deviations between the output (y) and its set-
point (ysp). The modified input-output linearizing controller can be written
as,

. —L%h(z) — aTL;}_lh(x) — ot [ysp — h(@)] + ap f§ [ysp — h(z)]dT
- LyL} h(z)

(4.21)
where ap is an additional controller tuning parameter associated with the
integral term. The integral control law (4.21) yields the following character-
istic equation for the £ subsystem:

ST o™+ +ogs+ag=0 (4.22)

By choosing the controller parameters o; in terms of a single tuning param-
eter €, the following closed-loop transfer function is obtained for setpoint
changes if y(0) = ysp(0) [67]:

y(s) et 1

€T‘

ysp(s) (es + 1)r+1

(4.23)

4.2.3 Nominal Stability

In this section, nominal stability of the closed-loop system resulting from
input-output linearization is discussed. For simplicity, we focus on asymp-
totic stabilization rather than the more difficult problem of asymptotic set-
point tracking [82]. We will assume, without loss of generality, that zo = 0 is
an equilibrium point. The objective is to find conditions which ensure that
the origin is a locally or globally asymptotically stable equilbrium point of
the input-output linearized system.
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Consider the closed-loop system comprised of the nonlinear system (4.1)
and the input-output linearizing controller (4.20). The closed-loop system
has the following representation in the transformed coordinates,

§ = A¢
n = q&n) (4.24)
y = &

If the controller tuning parameters «; are chosen such that the characteris-
tic polynomial (4.12) is Hurwitz, then the linear state variables £ converge
exponentially to the origin for any initial state £(0) for which the control law
(4.17) remains well defined (i.e. a # 0).

For the moment, assume the nonlinear state variables n converge asymp-
totically to the origin. Recall that the original state variables are related to
the transformed state variables as [¢T,nT]T = ®(z). Further assume that
the diffeomorphism ® is well defined in the region of interest. In this case, ®
is smooth and invertible, and can be chosen such that ®(0) = 0. As a result,
asymptotic convergence of ¢ and 7 to the origin implies asymptotic conver-
gence of z to the origin. Thus, the origin is a locally asymptotically stable
equilibrium point if: (1) the n state variables are locally asymptotically sta-
ble; and (2) the diffeomorphism and input-output linearizing control law are
locally defined. The origin is a globally asymptotically stable equilibrium
point if these conditions hold globally. Hence, the stabilization problem is
effectively reduced to finding conditions which guarantee that the 7 state
variables converge asymptotically to the origin.

Local Stability

We first present a necessary and sufficient condition for the input-output
linearized system to be locally asymptotically stable. Because the £ state
variables converge to zero, the second equation of (4.24) becomes,

1n=4q(0,n) (4.25)

in the limit as t — oco. Equation (4.25) is known as the zero dynamics
and is the nonlinear analog of linear system zeros. Nonlinear systems with
asymptotically stable zero dynamics are said to be minimum phase. Local
asymptotic stability of the zero dynamics is clearly a necessary condition for
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the feedback linearized system (4.24) to be locally asymptotically stable. It
has been shown that this condition also is sufficient [27, 123].

Global Stability

It is tempting to conjecture that global asymptotic stability of the zero
dynamics is a sufficient condition for the feedback linearized system (4.24)
to be globally asymptotically stable. The argument for this proposition
proceeds as follows. The & state variables can be forced to zero arbitrarily
fast by approriate selection of the controller tuning parameters a;. Once the
& variables converge to zero, the closed-loop trajectories are described by the
zero dynamics (4.25). Because the zero dynamics are globally asymptotically
stable by assumption, the 7 state variables converge to zero and the closed-
loop system is globally asymptotically stable.

In fact, this argument is correct if the relative degree 7 = 1 [26, 27].
However, the argument does not hold in general if r > 2 due to the so-called
“peaking phenomenon” [159, 160]. A high gain linear feedback can cause
the linear state variables ¢ to become very large before they decay to zero.
These “peaking” variables act as destabilizing inputs to the zero dynamics.
As a result, considerably more restrictive sufficient conditions are required
to ensure that the system (4.24) is globally asymptotically stable if r = 2.
Peaking cannot occur — and the closed-loop system therefore is globally
asymptotically stable — if either of the following conditions are satisfied:

1. The only linear state variable entering the zero dynamics is the output
y =& [118, 148].

2. The zero dynamic satisfy a Lipschitz growth condition [27, 160).

Although neither condition may hold in practice, the authors have not en-
countered any process models with stable zero dynamics that cannot be
asymptotically stabilized via input-output linearization.

4.2.4 Disturbance Decoupling

The input-output linearization technique presented above does not explic-
itly address process disturbances. In this section, conditions under which
the output can be completely decoupled from disturbance variables are pre-
sented. This problem was originally posed and solved by several investigators
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using differential geometric analysis tools [37, 75, 85]. For simplicity, we em-
ploy an alternative formulation based on relative degrees [40]. Consider an
SISO nonlinear system with a single disturbance d,

g = f(z)+ g(=)u+p(z)d (4.26)
y = h(z)

where p(z) is an n-dimensional vector of nonlinear functions. The controller
design technique presented below is easily extended to processes with mul-
tiple disturbances [40].

The disturbance decoupling problem is to find (if possible) a diffeomor-
phism and a nonlinear static state feedback control law such that: (1) the
map between the transformed input and the output is linear; and (2) the
output is completely unaffected by the disturbance. It is useful to define a
relative degree for the disturbance that is analogous to the relative degree r
associated with the manipulated input u. The disturbance d is said to have
relative degree p at the point zg if:

i L,,L’}h(a:) = 0 for all z in a neighborhood of zp and all £k < p — 1.
2. LpL5 'h(zo) #0.

If p < r, the disturbance affects the output more directly than does the
manipulated input and disturbance decoupling cannot be achieved with a
static state feedback control law. Consequently, a necessary condition for
the solution of the disturbance decoupling problem is that p > r. Under
this condition, the difftomorphism in Section 4.2.2 transforms (4.26) into
the normal form,

B = &
& = &

(4.27)
& = b n) +al&n)u+s(&n)d

q(§,n) +t(&,n)d
y = &

=
Il
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where: s(€,m) = Lpoc—lh [®-1(¢,m)] and ti(€,m) = Lp®rik [271(Em)], 1 <
k<n-r.

Assume that an on-line measurement of the disturbance is not available.
If p > r, the function s = 0 and the linearizing control law (4.17) completely
decouples the output from the disturbance. The transformed input v can be
designed as usual. The requirement that p > r is often called the disturbance
matching condition. Because the disturbance acts as an input to the zero dy-
namics, stability analysis is more difficult than in the disturbance-free case.
Sufficient conditions for local asymptotic stabilization have been presented
[25, 164].

Note that the control law (4.17) does not decouple the output from the
disturbance if p = r. It is possible to achieve disturbance decoupling in this
case if the disturbance d is measured and a feedforward/feedback control law
is employed. The so-called disturbance decoupling problem with measurement
is solved by the following nonlinear control law:

= V= b(fﬂ?) — 3(§>ﬂ)d
a(§,m)

This feedforward/feedback control law changes the r-th equation in (4.27)
to: & = v. As a result, the input-output map is linear and the output is
decoupled from the disturbance. When expressed in the original coordinates,
the decoupling control law has the form:

u

(4.28)

LY Lih(z) — Ly} h(z)d

LgL;—lh(x) )

The transformed input v is designed as before. A more general solution to
the disturbance decoupling problem with measurement has been proposed for
the case p < r [40]. However, the resulting control law contains derivatives of
the disturbance up to order r — p. Because process measurements usually are
corrupted with high frequency noise, this approach is difficult to successfully
implement in practice.

4.2.5 Input-Output Decoupling

We now extend the input-output linearization approach to multiple-input,
multiple-output (MIMO) processes. This extension is often called input-
output decoupling because the input-output response is both linearized and
decoupled. More precisely, the input-output decoupling problem is to find
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(if possible) a diffeomorphism and a state feedback control law such that:
(1) the map between the transformed inputs v and controlled outputs y
is linear; and (2) the i-th output y; is decoupled from all inputs v; for
i # j. In this section, we will only consider static state feedback control
laws [53, 85, 133, 138]; input-output decoupling based on dynamic state
feedback is discussed elsewhere [44, 132].

The Decoupling Matrix

It is useful to represent the MIMO nonlinear system (4.1) as,

m
i o= f(@)+3 9@y (4.30)
j=1
wm = hle 4=12....,m
The nonlinear system is said to have vector relative degree {ri,ra,...,mm}

at the point xg if:

1. Ly;Lkhi(z) = 0 for all 1 < i,j <m, for all k <r; — 1, and for all z in
a neighborhood of xg.

2. The m x m decoupling matrix

LgL7? 'ha(z) - Ly, L} 'ha(x)
A(z) = : ; (4.31)
LglL;m—lhm(w) LgmL?’”_lhm(w)

is nonsingular at the point zy.

The integer 7; represents the smallest relative degree of the i-th output
with respect to any of the m inputs. Nonsingularity of the decoupling ma-
trix A(z) may be viewed as the MIMO generalization of the condition that
LgL;_lh(wo) # 0. It is a necessary and sufficient condition for the solution
of the input-output decoupling control problem with static state feedback.
A constructive proof of sufficiency is provided below; necessity is proven
elsewhere [82, 133].
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Normal Form

We develop a MIMO generalization of the normal form introduced in Chapter
3. The sum of the individual relative degrees is defined to be: r = 7| + - - - +
Tm. Because A(z) is nonsingular, the diffeomorphism [¢7, 77T = ®(z) can
be constructed by choosing the first r coordinates as,

& = i (x) = Lk hi(z) (4.32)

wherel1 <k <rjand1<i<m. Itis always possible to find n —r additional
coordinates n?' = [®,,,(z),... , ®n(z)] such that,

®7(z) = [@%(m),...,éil(w,...,<1>1n<w>,...,<1>:':n<ac>,<1>r+1<w>,...,«bn(w)]
(4.33)
is invertible at the point zy [82]. If the vector fields g;(z), go ([@)s 5 5 pemlE)
are involutive (see Section 3.2.6), it is possible to choose the additional coor-
dinates such that Lg;®,4i(z) =0foralll1 <i<m—randforall< 7 <m.
In general, the involutivity condition is not satisfied and the normal form
is,

& =&
(4.34)

o= &)+ (€, ),
§=1

o= qEn) + > pi(,n)u,
j=1

yi:§1

where 1 < ¢ < m. The functions aij(§,n) are elements of the decoupling
matrix A expressed in terms of the transformed coordinates; the functions
b; are defined as,

bi(6,m) = Lijhi [271(€,m)] (4.35)
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the vector ¢ is defined as in the SISO case; and the vectors p;(§,n) are
defined as,

ng¢r+1 [‘I’—l(ﬁaﬂ)]
pi(&m) = E (4.36)
Ly; @y [271(€,m)]
The r;-th equations in the normal form can be collected and written as:
£
Lo | =0(Em) + A(Gnu (4.37)

=
Controller Design

Because the decoupling matrix is nonsingular by assumption, the static state
feedback control law which achieves input-output decoupling can be derived
directly from (4.37),

u= A" n) [v - b, n)] (4.38)

where v is an m-dimensional vector of transformed input variables. This
control law — which can be interpreted as the MIMO generalization of the
input-output linearizing control law (4.17) — changes (4.37) to:

& vt
;'fn o
As a result, the input-output response is both linear and decoupled,
g = &
& = &
(4.40)
i,

T4

v = &
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where 1 < ¢ < m. Each input v; can be chosen as in the SISO case:

= =t~ 16y — -~ o] (41

When expressed in the original coordinates, the decoupling control law (4.38)
has the form,

u=—-A"Y2)b(z) + A (2)v (4.42)

where A(z) is the decoupling matrix (4.31) and the m-dimensional vector
b(z) has elements L hy(z).

Nominal Stability

The input-output decoupling control law generally provides only partial lin-
earization of the closed-loop system. An expression for the remaining (n—r)-
dimensional nonlinear subsystem can be derived from (4.34) and (4.38),

1 =q(&n) — P(&n) A (&n)b(E,n) + P(€,n)A™ (£, n)v (4.43)

where the definition of the matrix P follows directly from (4.34). If each
input v; is designed as (4.41), the nonlinear subsystem can be written as
1 = (&, n). The zero dynamics are obtained by setting £(¢) = 0 for all ¢t > 0:

1= q(0,n) (4.44)

As in the SISO case, local asymptotic stability of the zero dynamics is a
sufficient condition for local asymptotic stability of the closed-loop system
[27). By contrast, this condition is not necessary for MIMO systems [83].
Sufficient conditions for an input-output decoupled system to be globally
asymptotically stable are presented elsewhere [27, 148, 160].

4.3 State-Space Linearization

4.3.1 Linear System

The state-space linearization approach is applied to the SISO linear system
(4.3). Although feedback linearization obviously is unnecessary in the lin-
ear case, this exercise illustrates the basic concepts of the nonlinear design
procedure. First, we attempt to determined an output function,
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j=Cx (4.45)

such that the relative degree with respect to ¢ is equal to the system order:
r = n. The variable § is called an artificial output because it generally is
different than the controlled output y in (4.3). The artificial output can be
derived by solving the following set of n linear equations for the vector o,

¢[B AB - A"2B A'B|=[0 0 - 0 B] (446

where 3 is a non-zero value. A solution exists if and only if the matrix
[B AB --- A"B] is full rank; i.e. if and only if (A, B) are a controllable
pair [28]. In this case, the solution is not unique because CA" !B can be
any non-zero value.

We now derive the control law assuming that an artificial output has
been determined. Consider the following change of coordinates:

%,
CA
f=mlw= . x (4.47)
A1
It is easy to show that the linear system has the following normal form
representation in the transformed coordinates,

& = &
& = &
(4.48)
én = RE+ku
y = &

where R = CA™T~! and k = CA" 1B. The static state feedback control
law,

y = v

: (4.49)
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changes the last equation in (4.48) to: &, = v. The input v is designed to
stabilize the transformed system:

v = —apéy — an—l'fn—l = 2w — iy (450)

In the original coordinates, the controller has the following form,

B —CArg — anCA™1g — ... _ a;Cz

‘ (4.51)
CAr-1B

u

The transformed system has the following closed-loop characteristic equa-
tion:

"+ans" 4+ tags+a; =0 (4.52)

Nominal stability of the transformed system — and therefore the original
system — is guaranteed by choosing the controller tuning parameters a;
such that the characteristic polynomial is Hurwitz. Recall that nominal sta-
bility for the input-output linearization approach is ensured only if the linear
system is minimum phase. On the other hand, the state-space linearization
approach has the following disadvantages: (1) the linear system must be
controllable; and (2) it may be difficult to satisfy output tracking objectives
since the relationship between the actual output and the transformed state
variables is: y = CT~1¢£. We will see that these distinctions also hold in the
nonlinear case.

4.3.2 Controller Design

The state-space linearization problem is to find (if possible) a diffeomor-
phism and a static state feedback control law such that the map between
the transformed input and entire vector of transformed state variable is lin-
ear. This problem was orginally posed by Korobov [92]; a complete solution
for the single-input case was provided by Brockett [24]. An alternative solu-
tion that facilitates the construction of the linearizing transformations also
has been developed [81, 157]. In this section, the solution of the state-space
linearization problem for single-input systems is presented; the multivariable
case is discussed elsewhere [80, 86, 87]. An extension of the controller design
procedure for disturbances is discussed in a later section.
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Illustrative Example

For simplicity, we first consider the two-dimensional nonlinear system (4.13).
In this case, an artificial output which yields a relative degree » = 2 can be
determined by inspection: § = h(z) = z5. If the diffeomorphism ¢ = &(z)
is chosen as,

& = h(z) =2 (4.53)

& = Lgh(z) = fo(z1,72)

the system has the following normal form representation:

& = &
§ = L3A[®7HE)] + LeLsh[d~1(O)]u (4.54)
i = &

Assuming Ly L fﬁ is non-zero in the region of interest, the static state feed-
back control law,

_ v - Lihe1(9)]
LyLsh[®1(8)]

(4.55)

yields: ég = v. Thus, the map between the transformed input v and the
transformed state vector ¢ is linear. The input v can be used to design a
linear controller for the feedback linearized system. It is important to note
that the map between £ and the actual output y generally is nonlinear.

General Design Procedure

We now consider the n-dimensional nonlinear system (4.1). For the moment,
assume that an artificial output § = h(z) that yields r = n has been de-
termined. The existence and construction of such an output are discussed
below. Consider the coordinate transformation:

& = Bulz) =LK h(z), 1<k<n (4.56)

In the new coordinates, the system has the following normal form represen-
tation:
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(4.57)
& = b)) +a(®u
9 = &

where a(§) = LyL} 'h[®71(€)] and b(§) = L}A[®(£)]. If the function
a # 0 throughout the region of operation, the static state feedback control
law,

_v—b(g)
a(®)

changes the n-th equation of the normal form to: &, = v. As a result, the
map between the transformed input and each of the transformed state vari-
ables is linear. A linear state feedback controller can be synthesized for the
state-space linearized system. For instance, the pole-placement design (4.50)
yields the closed-loop characteristic polynomial (4.52). When expressed in
the original coordinates, the complete control law is:

u (4.58)

—L?i}(m) - anL’}*liL(x) — - —ayh(z)
LyL} " h(x)

u =

(4.59)

Artificial Output Determination

The controller design procedure presented above demonstrates that the ex-
istence of an artificial output that yields a maximal relative degree (r = n)
is a sufficient condition for the solution of the state-space linearization prob-
lem. Although not shown here, this condition is also necessary [82]. We
now present necessary and sufficient conditions for the existence of such
an output. The proof of sufficiency provides a constructive procedure for
determining a suitable output function.

Because the relative degree must equal the system order, it follows that
the output function A(z) must satisfy:
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L "he) =0, 12k<n—1 (4.60)
LyL3 ' h(z) #0

The determination of h(z) from these conditions requires the solution of
a set of partial differential equations that include derivatives up to order
n — 1. However, the conditions can be rewritten as a set of first-order partial

differential equations using the Lie bracket operator introduced in Chapter
3 [82]:

L1 (@) =0, 1<k<n-1 (4.61)

adf

Lyt @) #0

Using the Frobenius theorem (see Chapter 3), it can be shown that a solu-
tion to these equations exists — and therefore the state-space linearization
problem is solvable — if and only if the nonlinear systems is [157]:

1. Controllable — the matrix [g(m) adpg(z) --- ad’}-lg(m)] has rank n.

2. Integrable — the vector fields g(z),adsg(z),... ,ad’}‘_2 g(z) are involu-
tive.

Note that a set of vector fields {X;(z), ..., Xp(z)} is involutive if there exists
scalar functions d;;(x) such that:

b
adx; Xj(z) = > ijr(@) Xp(z), 1<i,j<p, i#] (4.62)
k=1

If the system is two-dimensional, the integrability condition is always satis-
fied [82] and only the controllability condition must be checked. Using the
theory discussed in Chapter 3, it is easy to show that the two-dimensional
system (4.13) is controllable if LyL fiz(av) # 0.

Practical Issues

A potential disadvantage of the state-space linearization approach is that
the artificial output § generally is different than the controlled output y. As
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a result, y usually is a nonlinear function of the transformed state variables:
y = h[®~1(&)]. In this case, it is difficult to design a state-space linearizing
controller to satisfy output tracking objectives because desirable 9 behavior
does not necessarily imply desirable y behavior. State-space linearization
therefore is most appropriate for stabilization problems in which the con-
trolled output is not specified a priori.

For instance, consider the incorporation of integral action into the state-
space linearizing control law (4.59). By analogy to the input-output lin-
earization approach, the following control law is proposed:

—L}h(z) — an L7 h(2) = + oy [ys,, - ﬁ(a;)] +ao i [ysp - h(z)] dr
a LyL% 'h(z)

(4.63)

This control law guarantees that § — Ysp as long as the closed-loop system
is asymptotically stable. However, offset-free tracking of y will be achieved
if and only if h(zg) = ﬁ(mo), where g is the equilibrium point correspond-
ing to ysp- A linear state/output map can be ensured by reformulating
the control objectives in terms of an output that is a linear combination of
the ¢ state variables. However, this approach is difficult or even impossible
to employ in practice. In general, the state-space linearizing controller must
provide simultaneous linearization of the input/state and state/output maps
to have output tracking capabilities. Unfortunately, the necessary and suffi-
cient conditions for complete linearization are considerably more restrictive
than those for state-space linearization [35, 121].

Additional disadvantages of the state-space linearization approach are
that the existence conditions may be difficult to verify and the partial dif-
ferential equations (4.61) may be difficult to solve analytically. It is not
possible to achieve complete linearization of the input/state map if either
of the existence conditions is not satisfied. However, some degree of par-
tial linearization usually can be achieved. For example, in the input-output
linearization approach an r-dimensional subsystem is linearized. In some
applications, it may be desirable to maximize the dimension of the linear
subsystem. Maximal linearization can be achieved by constructing an out-
put function which yields the highest possible relative degree. Necessary and
sufficient conditions for the solution of this problem are available [105, 122].
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4.3.3 Nominal Stability

Nominal stability analysis for the input-output linearization approach is
complex due to the presence of a nonlinear subsystem (the zero dynam-
ics) in the closed-loop system. By contrast, the state-space linearization
approach yields complete linearization of the state equations. As a result,
zero dynamics are not present and nominal stability analysis is much sim-
pler. This is the single most important advantage of state-space linearization
as compared to input-output linearization.

Consider the closed-loop system comprised of the nonlinear system (4.1)
and the state-space linearizing controller (4.59). In the transformed coordi-
nates, the closed-loop system can be written as,

£ = A¢ (4.64)
g = &

where the matrix A has the characteristic equation (4.52). If the control law
is well defined (i.e. LgL;ﬁ_lﬁ # 0), then the state variables ¢ converge expo-
nentially to the origin for any initial condition ¢ (0) as long as the controller
tuning parameters «; are chosen such that (4.52) is a Hurwitz polynomial.
Because the diffeomorphism ®(z) is invertible and satisfies ®(0) = 0, expo-
nential convergence of £ to the origin implies asymptotic convergence of the
actual state variables z to the origin.

4.3.4 Disturbances

An extension of the state-space linearization approach for nonlinear systems
with disturbances is presented below. This problem is discussed in a series of
papers by Calvet and Arkun [29, 30, 32, 33]. For simplicity, we consider the
SISO nonlinear system (4.26) with a single disturbance. However, similar
results are available for processes with multiple disturbances (30].

As in the disturbance-free case, we attempt to find an artificial output
g= iz(:z:) which yields a relative degree r equal to the system order n. Such
an output exists if and only if the controllability and integrability conditions
in Section 4.3.2 are satisfied. If an artificial output can be constructed, the
relative degree p for the disturbance d can be defined as in the input-output
linearization approach (Section 4.2.4). Note that the relative degrees will
always satisfy p < r. The artificial output function fz(m) is used to construct
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the diffeomorphism (4.56). For a general value of p, the nonlinear system
(4.26) will have the following normal form,

& = &
ép—l = &
ép = &1+ (p(E)d (4.65)

én—l = é-n T+ Cn—-l(g)d
& = (&) +a(®u+ a(&)d
g = &

where a(§) and b(§) are defined as in the disturbance-free case, and (x(£) =
L,®, [271(8)].

Disturbance Decoupling

The normal form shows that the disturbance cannot be completely decou-
pled from the artificial output § with a state feedback control law. In fact,
it is easy to prove that the disturbance decoupling problem (without mea-
surement) cannot be solved for any output that is a linear combination of
the transformed state variables. Most importantly, the state-space approach
does not provide a systematic framework for deriving decoupling control
laws for the actual output y. This is a significant disadvantage of state-
space linearization as compared to input-output linearization, which yields
disturbance decoupling if the relative degree of the actual output is less than
p-

However, the disturbance decoupling problem with measurement can be
solved if the matching condition p = n holds. In this case, the following
feedforward/state feedback control law is employed:

_ v =b(§) —G(§)d
u =
a(§)
This control law changes the final equation in the normal form (4.65) to:
&n = v. Hence, the transformed system is completely linear and the input v

(4.66)
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can be designed as usual. When expressed in the original coordinates, the
feedforward /feedback controller is:

~

LU Lth(z) — L?L}’—lﬁ(w)d
LyL} "h(z)

(4.67)

However, this control law generally does not provide disturbance decoupling
with respect to the actual output.

Stabilization of the Quasi-Linear System

In most process applications, the disturbance is unmeasured and/or the
matching assumption p = n does not hold. In this case, the state-space
linearizing control law (4.58) yields a quasi-linear system,

£ = At +Bu+((&)d (4.68)
g = C¢

where the definitions of A, B, C, and ( follow directly from the feedback
linearized version of the normal form (4.65). The objective is to design a
linear controller that stabilizes the quasi-linear system (and therefore stabi-
lizes the original nonlinear system). A controller synthesis procedure based
on Lyapunov stability theory has been proposed [32, 33]. The technique is
based on two rather restrictive assumptions: (1) the disturbance matching
condition p = n holds; and (2) the nonlinear vector function { satisfies a
nonlinear growth condition. The first assumption can be relaxed, but this
generally results in poor performance. The interested reader is referred to
the original papers [32, 33] for further details.

4.4 Advanced Topics

In this section, several advanced topics on feedback linearizing controller
design are discussed. We focus on the input-output linearization approach
because it usually is more useful for process applications. Results are pre-
sented for the state-space linearization approach as appropriate. For the
sake of brevity, we omit several important topics such as approximate feed-
back linearization [63, 104], adaptive feedback linearization [88, 149], and
non-minimum phase compensation [64, 161].
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4.4.1 General Nonlinear Systems

We extend the input-output linearization approach to general nonlinear sys-
tems that are not necessarily affine in the manipulated input:

& = JlEn) (4.69)
y = h(=z)

This problem is important because some processes are naturally described by
non-affine models. Two alternative controller design strategies are presented
[67, 163]. The first technique employs the non-affine nonlinear system (4.69)
directly, while the second approach is based on an eztended system that is
control affine. Although not discussed here, similar results are available for
the state-space linearization approach [134, 157].

Controller Design Based on the Original System

In this case, the input-output linearizing controller design is based directly
on the non-affine system (4.69). We define the Lie derivative of the scalar
function h(z) with respect to the vector function f(z,u) as:
9
Leh(z,u) = La(;—)f(m,u) (4.70)

Higher-order Lie derivatives are defined as,

ALk h(z,
Lih(z,u) = _f—am(i) fz,u) (4.71)

where: L‘}h(m, u) = h(z). The system is said to have relative degree r at the
point (zg,up) if:

1. %L’}h(m, u) = 0 for all z in a neighborhood of g, all u in a neighbor-
hood of ug, and all k < r.

2. 2 L%h(zo,u0) # 0.

It follows that the first © Lie derivatives do not depend explicitly on the
input: L’Jih(x,u) = L’;h(m), 0<k<r-1

The diffeormorphism [¢7,7T]T = ®(z) that places the nonlinear system
(4.69) in normal form is constructed as follows. The £ variables are chosen
as,
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& = Bu(e) = Lj"h() (4.72)

where 1 < k < r. The n variables can be chosen as,

e = Prk(z), 1<k<n-—r (4.73)

such that their time derivatives are independent of u: L FOrik(z,u) =
L;®, x(x). When expressed in the new coordinates, the nonlinear system
has the following normal form representation,

& = &
& = &
(4.74)
& = r(&nu)
0 = q&n)
y = &

where r(§,n,u) = Lh [@1(¢,m),u] and the (n—r)-dimensional vector ¢ has
components gi(€,n) = L@k [271(&,)].

The input-output linearizing control law is obtained by solving the fol-
lowing nonlinear algebraic equation for the input u:

r(&m,u) =v (4.75)

If this equation is solvable, the input-output response is linearized as the
r-th equation in the normal form (4.74) becomes: £, = v. The transformed
input v is designed as in the control affine case. When expressed in terms of
the original state variables, the controller equation is:

thiz,u) =v (4.76)

In most cases, this equation will not have an analytical solution and therefore
it must be solved on-line at each sampling point. For a solution to exist at
the point (xg,vp), the following two conditions must be satisfied:

1. There exists a ug such that L’}h(mo,uo) = 1.
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2. & L% h(zo,u0) # 0.

The second condition holds since the system is assumed to have a well defined
relative degree; the first condition may not hold. If both conditions are
satisfied, the implicit function theorem (Chapter 3) guarantees the existence
of a locally defined static state feedback control law,

u="¥(z,v) (4.77)
where the implicit function ¥ satisfies Lh [z, ¥(z, v)] =¥

Controller Design Based on an Affine System

In this case, the input-output linearizing controller design is based on an
extended system that is control affine. A new manipulated input w is defined
as w = 4, and u is viewed as a state variable. By defining the extended state
vector as Z = [zT u]T, the nonlinear system (4.69) can be represented as,

i = f@)+g@w (4.78)
y = h@)
where:
far=| s @=|1] @=rm  amw

Due to the introduction of the integrator, the relative degree of the extended
system is equal to r + 1, where 7 is the relative degree of the original non-
affine system.

Because the extended system (4.78) is control affine, the input-output
linearizing controller can be designed in the usual manner. The resulting
control law has the following form when expressed in terms of the actual
input wu:

v— L’}}Hﬁ(m, u)
LgL%h(z,u)

.=

(4.80)

A dynamic state feedback control law of the form (4.7) can be obtained by
defining the controller state variable as ¢ = u:
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L% h(z, () 1
TIFR@, Q) | L@, 0)
w = ¢

v (4.81)

The transformed input v can be designed to place the closed-loop poles:
= —ar+1L’J%B(m,u) - arL;—'lﬁ(m) — - — azh(z) (4.82)

4.4.2 Time Delay Compensation

Many nonlinear processes contain time delays due to transportation lags
and measurement delays. In this section, an extension of the basic input-
output linearizing design strategy for time delay systems is presented [73,
102]. A similar technique has been developed for the state-space linearization
approach [79]. The SISO nonlinear system is assumed to have the form,

&z = f(z)+g(@)u(t—0) (4.83)
y = h(z)

where @ is a known, constant time delay associated with the manipulated
input. Note that a time delay in the output can be handled simply by com-
bining an input-output linearizing controller and a linear output predictor
(e.g. Smith predictor) [73].

Motivation

We demonstrate that an input-output linearizing controller for the time de-
lay system (4.83) requires future values of the process state variables. The
system can be placed in the following normal form using the standard change
of coordinates:

(4.84)



178 CHAPTER 4. FEEDBACK LINEARIZING CONTROL

& = b(&n) +alénu(t —90)
n = q&mn)
y = &

The input-output linearizing control law is:

_ _ U(t) — b(fa 77)
u(t —6) = = (4.85)

Hence, the current input u(¢) must be computed as:
u(t) = v(t +8) — b[E(t + 6),n(t + 6)]
al§(t + 6),m(t + 6)]

When expressed in the original coordinates, the linearizing control law has
the form:

(4.86)

v(t +60) — L}h[z(t + 0)]
LyL’ " hlz(t + 6)]

ult) = (4.87)
This control law cannot be implemented directly because z(t+6) and v(t+6)
are not known at time ¢.

Controller Design

The following strategy is employed to make the linearizing control law (4.87)
implementable. First, the future state vector (¢t + 6) is replaced by the
estimate &(t 4+ |t). The calculation of &(t + 6|t) is discussed below. In
addition, the future input v(t + ) is replaced by the estimate o(t + 6|t),
which is computed as:

o(t +0Jt) = —ar L R[E(t + 01t)] — -+ — arh[E(t + 0[t)] + w(t)  (4.88)

Note that (4.88) is identical to (4.19) except that Z(t + 6|t) has been substi-
tuted for z(t) and the signal w(t) has been introduced. As discussed below,
w(t) is the output of a linear time delay compensator. The overall control
law can be written as,

w(t) — SRt ap L h{2(t + 0]t)]

e = Ly Ly "hlz(t + 6]t)]

(4.89)
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where a1 = 1.

Under the assumption that &(t + 6|t) = x(t +6) for all t > 0, it can
be shown that the controller tuning parameters aj can be chosen to yield
the following closed-loop transfer function in the absence of plant/model
mismatch [73]:

y( s) - €r 6—05

w(s) (es+1)"
A linear controller is designed for the transfer function (4.90) by considering
w as the manipulated input. The following control law provides time delay
compensation and integral action:

(4.90)

—r r
w(s) _ € (es j— 1)0 (4.91)

ysp(s) - y(s) (es + Ll ey
This controller can be implemented as a linear Smith predictor [150]. By
combining (4.90) and (4.91), it is easy to show that the overall transfer

function for setpoint changes is,

y(s) _ e
ysp(s)  (es+1)

where € is the controller tuning parameter.

(4.92)

Predictor Design

The remaining task is to compute the one-time-delay-ahead estimate of the
process state vector £(t + 6|t). The following prediction formula has been
proposed [73],

t+6
gt+0t) = z(t) + /t [F[E(r1t)] + gl&(r|t)]u(r — 6)] dr + (4.93)
Ma(t) — £(t]t — Ta)

where A and T} are tuning parameters and the predictor is initialized with
the plant state Z(t|t) = z(t). The filter parameter A accounts for modeling
errors; it should be maintained in the range 0 < A< T%. It is chosen near the
upper limit if there is little plant/model mismatch and near zero if significant
modeling errors are present. The term Z(t[t — T,) in the prediction (4.93) is
calculated as,
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E(tlt — Tg) = =(t — Ty) + /;T [f1E(]t — Ta)] + gl2(r|t — Ta)]u(r — )] dr

(4.94)
where &(t — Ty|t — T;) = z(t — T). If the model is perfect and the predictor
is initialized as £(0) = z(#), it can be shown that perfect state predictions
are obtained when A =1 [73].

4.4.3 Constrained Nonlinear Systems

Many processes have constraints on input and output variables. In this
section, we present an input-output linearization strategy for constrained
nonlinear systems [109]. The basic idea is to map the original constraints into
constraints on the feedback linearized system. The resulting linear system is
controlled with a linear model predictive controller with explicit constraint
handling capability. For the sake of brevity, we do not discuss alternative
constraint compensation schemes based on feedback linearization [30, 91,
131, 152].

Constraint Mapping

The controller design is based on the SISO nonlinear model (4.1) with the
following constraints:

Umin S U £ Umagy Almin < Au < AUumaz, Ymin <Y < Ymaz (4-95)

The objective is to transform these constraints into constraints on the feed-
back linearized system. First, the linear subsystem is discretized to facilitate
the linear model predictive controller design,

Ek+1) = Ay€(k) + Bav(k) (4.96)
y(k) = C&(k)

where A, is an r x 7 matrix, By is an r x 1 vector, and C is an 1 x r
vector. The eigenvalues of Ay are on the unit circle, but the pair (44,B4) is
controllable.

The next step is to map the constraints on the original nonlinear sys-
tem into constraints on the discretized linear system (4.96). The output
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constraints for the two systems are identical since the output is not trans-
formed as part of the controller design. By contrast, the constraints on the
actual input v must be mapped into constraints on the transformed input v.
This transformation must be performed at each sampling instant because the
mapping is state dependent (shown below). Moreover, the transformation
must be performed for the entire control horizon N of the predictive con-
troller. The constraint mapping is performed using the feedback linearizing
control law (4.18) and the current measurement of the process state vector
z(k):

v(k) = Lh[z(k)] + LgL’}_lh[m(k)]u(k) = b[z(k)] + a[z(k)]u(k)  (4.97)

The constraints on the first input in the control horizon, v(k|k), are calcu-
lated as,

Umin (k|k) = L‘{}S bz (k)] + alz(k)]u(k) (4.98)
Vmaz (k|k) = s blz(k)] + alz(k)]u(k)
where:

Umin < 'U/(k) < Unmag (4-99)
B ioulle —1) < wlk) - < Mtigigs + ull—1)

This optimization problem is trivial to solve since the objective function is
affine in u(k).

By contrast, computing the constraints for future inputs in the control
horizon, v(k +1|k), . ..,v(k+ N —1|k), is problematic. This difficulty occurs
because future values of the input and state variables are needed to compute
the future constraints, as indicated by the mapping (4.97). A simple way
to overcome this problem is to extend the constraints calculated for v(k|k)
over the entire control horizon. An important property of this technique is
that the implemented input,

_ v(klk) — Lihlz(k)]
LyL’; ' hlz(k)]

is guaranteed to satisfy the actual input constraints. On the other hand,
the constraints calculated for the future inputs (which are not implemented)

(4.100)
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generally will not agree with the actual constraints. This is a serious disad-
vantage since incorrect future constraints may lead to implemented control
moves that are overly conservative or aggressive. More accurate constraints
can be obtained by utilizing the control moves calculated at the previous
iteration of the predictive controller [109)].

Linear Model Predictive Controller Design

The constrained linear model used for model predictive controller design has
the form,

f(k = 1) = Adé(k) - de(k)a Umin(k) . 'I)(]C) £ 'Umaz(k) (4'101)
y(k) = Cf(k)a Ymin < y(k) < Ymaz

It is important to note that the input constraints are time varying. The
linear model is used to predict the effects of future control moves on future
values of the output. To obtain improved predictions in the presence of
plant/model mismatch, at each time step the linear model state is initialized
with the current plant state:

hlz (k)]

N 108}

’ L}”lh[m(k)]

The matrix Aq is unstable because all its eigenvalues are located on the
unit circle. Consequently, a model predictive controller design technique
specifically developed for unstable linear system is employed [130]. At each
time step, the manipulated input is generated by solving the following open-
loop optimal control problem [130],

N—
rVn(ikr; s[o(k+ N — 1|k) — v]” Z [£(k + jlk) — &]T Q6K + j|k) — &) +
r[v(k + j|k) — vs)? + s[v(k + j|k) — v(k + j — 1]k)]? (4.103)

where: &(k + jlk) is the predicted value of &£(k + j); & and v, are tar-
get values for ¢ and v, respectively; » > 0 and s > 0 are scalar tun-
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ing parameters; and @ is a positive semidefinite tuning matrix. The de-
cision vector V (k) contains N values of the manipulated input: V(k) =
[v(k|k),v(k + 1|k),...,v(k + N — 1/k)]*. Inputs beyond the control horizon
are set equal to the target value: v(k + jlk) = vs, j > N.

The targets £ and v, are calculated from the steady-state form of (4.101)
under the condition that y = ysp. The target values must lie within the
feasible region defined by the input and output constraints for the optimal
control problem to have a solution. In practice, a disturbance model is
used to shift the targets in order to eliminate offset [109]. Because all the
eigenvalues of A, are located on the unit circle, a necessary condition for the
optimization problem to have a solution is that the state variables are driven
to their target values by the end of the control horizon: &(k + N|k) = &.
Thus, the optimization problem must be solved subject to the following
constraints:

Vmin(k) < v(k+ j|k) < Vmas(k), 0<j<N-1
Ymin < CE(k + jlk) < Ymaz, J 21 (4.104)
§(k‘ o Nik) =&

If necessary, input and /or output constraints can be relaxed to ensure that
the optimization problem is feasible [109, 145]. The optimal control problem
(4.103) can be manipulated to yield a quadratic program that can be solved
with standard software [130].

4.4.4 Robust Controller Design

We discuss robust controller design techniques based on the input-output and
state-space linearization approaches. This is a very important topic because
modeling errors usually preclude exact cancellation of nonlinear terms. The
SISO nonlinear system is assumed to be described by the nominal nonlinear
model (4.1) with state dependent perturbations:

z = f(z)+Af(z)+[g9(z) + Ag(z)]u (4.105)

y = h(z)

Note that the perturbations Af(z) and Ag(z) are not known. Available
controller design techniques differ according to the structure matching con-
ditions and growth conditions imposed on the perturbations. Less restrictive
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matching conditions generally require more restrictive bounds to be placed
on the perturbations.
Input-Output Linearization Techniques

First we define relative degrees for the state dependent perturbations. The
perturbation Af(z) is said to have relative degree vy at the point zo if:

1. LAfL’}h(w) = 0 for all z in a neighborhood of zo and all k < ¢ — 1.
= |
2. LAfL}f hizp) # 0.

The relative degree -, for the pertubation Ag(z) is defined analogously.
For the moment, assume that the structure matching conditions yf 2> and
g > r are satisfied. Using the standard change of coordinates, the uncertain
system (4.105) has the following normal form representation,

G = &
b = &
(4.106)

& = b(&n) + AbE,n) + [a(&,n) + Aa(é, )] u

o= q(&n) +rEn) +sEnu

y = &

where the functions a, b, and q are defined as usual and:

Aa€n) = LagLy'h[e7 (& m)]

Ab(e,) = LasLyh [<I> L(g ] (4.107)

r(&,m) = Laj®ryk [@_1(5,77)] , 1<k<n-—r
sk(&n) = Lag®rik [@_1(5,77)] , 1<k<n-r

Under the more restrictive matching conditions that yf > r and vy, > r, the
perturbations do not appear in the r-th equation in the normal form. As
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a result, the standard input-output linearizing control law (4.20) yields a
stable closed-loop system if the perturbed zero dynamics are asymptotically
stable [119].

On the other hand, plant/model mismatch should be considered explic-
itly in the controller design if 74 < r and/or 74 < r. Several Lyapunov-based
design techniques have been proposed for this important case. Kravaris and
Palanki [100] assume the existence of scalar functions Af*(z) and Ag*(x)
that satisfy the matching conditions:

LasLi'h(z) = g(2)Af*(z),  Ag(e) = g(z)Ag*(z) (4.108)

These conditions are rather restrictive as they require that the peturbations
be expressed in terms of the input vector g(z). Behtash [22] considers similar,
but slightly less restrictive, matching conditions. Arkun and Calvet employ
the following matching conditions,

Af(z) = Afi(z) + Afa(z), Ag(z) = g(z)Ag"(2) (4.109)

where A fi(z) is a matched uncertainty and A fo(z) is an unmatched uncer-
tainty with relative degree vy, = r. A stabilizing input-output linearizing
controller is design by solving an algebraic Riccati equation. Liao et al.
decompose both perturbations into matched and unmatched parts:

Af(z) = g@)Afi(z) + Afa(z), Ag(z) =g(z)Agi(z) + Aga(z) (4.110)

Restrictive bounds must be placed on the unmatched uncertainties A fa(x)
and Agy(z) to guarantee closed-loop stability.

State-Space Linearization Techniques

Su et al. [158] have shown that the state-space linearization approach pos-
sesses some degree of robustness to modeling errors. The analysis does not
require matching conditions, but it is assumed that the plant and model
are “close” in a topological sense. Controller design techniques that explic-
itly address plant/model mismatch usually employ: (1) matching conditions
on both Af(z) and Ag(z); or (2) no matching condition on Af(x), but
Ag(z) = 0. The first group of robust controller design techniques are based
on the following matching conditions:
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Af(z) = g(@)Af*(2), Ag(z) =g(x)Ag"(2) (4.111)

In this case, the standard change of coordinates places the nonlinear system
(4.1) in the normal form,

& = &
£ = &
(4.112)

& = b(&m) + AbEn) + [a(€,n) + Aa(é,n)]u
79 = &

where the nonlinear functions Aa and Ab are defined as in (4.107) with
r = n. Spong [155] uses Lo-optimal control theory to synthesize a stabiliz-
ing controller for the feedback linearized system, while Ha and Gilbert [59]
employ a Lyapunov-based design strategy.

Several robust controller design techniques are based on the alternative
matching condition Ag(z) = 0. In this case, the perturbation Af(z) is al-
lowed to be arbitrary at the expense of assuming exact knowledge of the input
vector g(z). Spong and Vidyasagar [156] have proposed a design strategy in
which the stable factorization approach is applied to the feedback linearized
system. A Lyapunov design technique based on the solution of a algebraic
Riccati equation has been developed by Calvet and Arkun [31]. Doyle and
Morari [49] have proposed a robust controller design strategy based on conic
sector bounds and approximate state-space linearization.

4.4.5 Discrete-Time and Sampled-Data Systems

Feedback linearizing controller design for discrete-time and sampled-data
nonlinear systems is discussed below. In many ways, the results parallel the
continuous-time results presented throughout this chapter. However, the
operations used to construct the discrete-time controllers are quite different.
In addition, discrete-time and sampled-data systems offer unique possibilities
(e.g. deadbeat control) and complexities (e.g. sampling) not encountered
in the continuous-time case. For simplicity, we focus on SISO models of the
form:
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z(k+1) = Flz(k),u(k)] (4.113)
y(k) = hlz(k)]

Because most processes are inherently continous, the function F' usually is
obtained by discretizing a continuous-time model or identified directly from
process data. The discrete-time model is not assumed to be control affine
because: (1) exact sampling generally does not yield an affine model; and
(2) an affine model usually does not simplify the controller design task.

Discrete-Time Systems

For the moment, we neglect the effects of sampling and discuss the feedback
linearization of inherently discrete-time systems. Sampled-data systems are
considered below. For the sake of brevity, we focus on the input-output lin-
earization problem [110, 127]. Similar results are available for disturbance
decoupling [55, 134], input-output decoupling [56, 134], and state-space lin-
earization [110, 134].

The composition of the scalar function h(z) and the vector function
F(z) is defined as: hoF(z) = h[F(z)]. Higher order compositions are de-
fined recursively: hoFi(z) = hoF'"![F(z)], where hoF°(z) = h(z). The
composition operator plays the same role as does the Lie derivative in the
continuous-time case. The discrete-time system (4.113) is said to have rela-
tive degree r at the point (zo,uo) if:

1 Wa(k—)-hoFi[:c(k),u(k)] = 0 for all (z,u) in a neighborhood of (zg,uo)
and all 1 <r —1.

2. gy hoF7 [@o, uo] # 0.
By definition of the relative degree we can write,

hoF'[z(k),u(k)] = hoFi[z(k)], 1<k<r-—1 (4.114)

since these functions do not depend explicitly on the input u(k).

If the relative degree is well defined, a diffeomorphism [¢7 (k),nT (k)]T =
®[z(k)] that places the system in normal form is constructed as follows. The
& vaiables are chosen as,

(k) = hoFi tz(k)], 1<i<r (4.115)
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The remaining variables n;(k) = ®,4[z(k)], 1 <4 < n —r, can be chosen
such that @ is invertible and 57j{—k)o1>r+z-oF[a;(k),u k)] = 0. As a result, the
normal form is,

Gk+1) = &(k)
Lk+1) = (k)
(4.116)
&k+1) = alf(k),n(k), u(k)]
nk+1) = gl§(k),n(k)]
y(k) = &(k)
where:
alg(k),n(k),u(k)] = hoF"[@7 (£(k),n(k)), u(k)] (4.117)

Glé(k),n(k)] = @ryioF[@7 (E(K),n(k)), 1<i<n-—v

Note that the functions ¢; do not depend on u(k) by construction.
The input-output linearizing control law is obtained by solving the fol-
lowing nonlinear algebraic equation for u(k),

al§(k),n(k), u(k)] = v(k) (4.118)

where v(k) is the transformed input. This equation can be solved locally
if the conditions of the implicit function theorem are satisfied (see Section
4.4.1). When expressed in terms of the original state variables, the linearizing
control law is:

hoF"[z(k),u(k)] = v(k) (4.119)

If the transformed input is chosen as v(k) = ysp(k), output deadbeat control
is obtained [120]: y(k + 7) = ysp(k). Alternatively, the linear controller can
be designed as,

_ g4(2) N — s
e e <o P ) [ysp(2) — y(2)] (4.120)
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where g4(z) is the desired closed-loop transfer function. A simple choice for
9d iS,

l-a
z) = —— 4.121
9u#) = T (4.121)
where the tuning parameter « represents the closed-loop pole. Note that the
linear control law has integral action. For this design, the nominal closed-
loop transfer function for setpoint changes is:

o) _ - 1-a (4.122)

Ysp(2) 1—az!

As in the continuous-time case, closed-loop stability can be ensured only if
the zero dynamics,

n(k +1) = q[0,n(k)] (4.123)

are asymptotically stable.

Sampled-Data Systems

Feedback linearizing controller design becomes considerably more complex
if the effects of sampling are considered. We briefly describe the poten-
tial difficulties and proposed solutions. Monaco and Normand-Cyrot [128]
demonstrate that exact sampling always produces a discrete-time system of
relative degree one. They also show that if the continuous-time system is
minimum phase and has relative degree r, sufficiently fast sampling always
yields a discrete-time system with: (1) stable zero dynamics if r = 1; and
(2) unstable zero dynamics if r > 3. As a result, a discretized input-output
linearizing controller is likely to provide satisfactory performance if r = 1,
but it may produce unexpected results if r > 2. Glad [54] also considered
sampling effects in developing output deadbeat controllers for sampled-data
systems. The r > 3 case is handled by employing a multi-rate sampling
strategy in which the control move is implemented each sampling period but
the state is only measured every r sampling periods.

It has been shown that state-space linearizability of a continuous-time
system can be destroyed by sampling [57]. Arapostathis et al. [14] demon-
strate that sampling can impose severe restrictions — in addition to the
standard controllability and involutivity conditions — on the structure of
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the continuous-time system. For two-dimensional systems, state-space lin-
earizability of the sampled-data system implies that the continuous-time sys-
tem can be completely linearized by coordinate transformations alone. To
overcome these difficulties, several state-space linearization techniques based
on multi-rate sampling have been proposed. Grizzle and Kokotovic [57] con-
sider implementing the control move each sampling period while measuring
the state every N sampling periods, where N > 2.

4.5 Process Control Strategies and Applications

A variety of nonlinear controller design strategies have been developed for
process applications. Many of these techniques are based, either implicitly
or explicitly, on exact linearization of the input-output response. In this
section, these linearizing control strategies are reviewed and critically eval-
uated. Applications of feedback linearizing control techniques to process
systems also are discussed. The applications are categorized in terms of the
unit operations involved; a representative list of references is provided in
each case. Additional applications are described in other review articles on
feedback linearizing control [68, 89, 94, 99, 126].

4.5.1 Process Control Techniques
Techniques for Processes of Relative Degree One

Generic model control [111, 113], internal decoupling [16, 17] and reference
system synthesis [19] are nonlinear controller design techniques developed
specifically for process control applications. We outline the generic model
control (GMC) design strategy and show that GMC is an input-output lin-
earization technique for processes of relative degree one. Similar analyses of
the internal decoupling and reference system synthesis techniques are omit-
ted for the sake of brevity.

Consider the SISO nonlinear system (4.1) The rate-of-change of the out-
put can be written as:

Y = L¢h(z) + Loh(z)u (4.124)

Assume that the desired rate-of-change is,

it
Ja = k1 (ysp — y) + ko /0 (ysp — y) dr (4.125)
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where k; and kg are controller tuning parameters. The goal is to determine
a control law such that y = g4 for all ¢ > 0. If the relative degree r = 1,
then the function Lgh(z) # 0 and the following state feedback control law
achieves the control objective:

. kl(ysp - y) + ko f()t (ysp i y) i = th(l')
u = Lyh(2) (4.126)

The closed-loop system is input-output linearized,
t
Y =ki(ysp —y) + ko /0 (ysp —y) dr (4.127)
and has the following transfer function for setpoint changes if y(0) = y,,(0):

y(s)  kis+ko
Ysp(s) 2+ kis+ ke

(4.128)

The tuning parameters k; and k2 are used to place the closed-loop poles.
Note that the GMC control law (4.126) and the input-output linearizing
control law (4.21) are identical when r = 1.

Globally Linearizing Control

Globally linearizing control (GLC) [95] is a controller design strategy devel-
oped for nonlinear process applications. We show that GLC is an input-
output linearization technique for processes of arbitrary relative degree.
Consider the SISO nonlinear system (4.1). By definition of the relative
degree, the first r derviative of the output are:

>~
S
£
|

Lh(z), 1<k<r-1 (4.129)
y" = Lih(z) + LyL ' h(z)u
The state feedback control law is chosen as,

_ 9= B, Lhh(z) — B LT h(z) — - — Boh(x)
v BrLyL  h(z)

(4.130)

where ¥ is a new input and i are controller tuning parameters.
It follows from (4.129) that the proposed control law yields a linearized
input-output response:
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ﬂry(r) s ,Br—ly(r_l) +--+ Py =70 (4131)

A proportional-integral controller is designed for the feedback linearized sys-
tem,

U= ke {(yw -y + ;1;/; (Ysp — ¥) dT] (4.132)

where the gain k. and integral time 77 are additional controller tuning pa-
rameters. The complete GLC control law obtained by combining (4.130) and
(4.132) yields the following closed-loop transfer function for setpoint changes

if y(0) = ysp(0):

ks + ke
y(s) _ T . (4.133)
ysp(s) ﬂrSH_l - ,Br—lsr A= o (ﬂO -+ kc)s -+ #

The tuning parameters S, k., and 77 are used to place the closed-loop poles.

The GLC control law is closely related to the input-output linearizing
control law (4.21). In fact, the two control laws are identical if 3, = 1 and
the tuning parameters of the input-output linearizing controller are chosen
as:

k
Qo = _Ca al = IBO < kca ag = ﬂk‘—l) 2 < k % 4 (4134)
TL
Although not discussed here, extensions of the GLC technique for measured
disturbances [40], multivariable processes [101], and discrete-time systems
[151] parallel those presented earlier for the input-output linearization ap-
proach.

Nonlinear Internal Model Control Techniques

Internal model control (IMC) is a powerful controller design strategy for lin-
ear process models [129]. Two distinctive characteristics of IMC are: (1) the
controller design is based on the inverse of the process model; and (2) the
error between the plant and model outputs is used as a feedback signal. Sev-
eral nonlinear controller design techniques which include these two features
have been proposed for process applications [51, 69, 137]. In this section, we
discuss a particular nonlinear IMC technique [69] and provide comparisons
with the input-output linearization approach.
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As in the linear case, the nonlinear IMC control law is comprised of
a model inverse controller C' and a robustness filter F. For the moment,
we assume F' = 1 and design the controller C' to optimize the nominal
performance measure,

min || ysp(t) — y(2) || (4.135)

where || - || represents a desired norm. The feedback signal to C is e =
Ysp — Y + §, where y is the plant output and § is the model output. In the
absence of modeling errors, e = y;, and the plant output can be written
as y = MClysp, where M represents the process model. As a result, the
controller design problem can be reformulated as:

min || (1 - MC)ysp(t) || (4.136)

If the system is initially at rest and y(0) = ys,(0), the performance criterion
is identically zero for any norm and setpoint trajectory when C is chosen to
be the right-inverse of the model (see Chapter 3),

by - Lhh(3)

4.137
LgL’}‘lh(j) ( )

where & are the model state variables.

The model inverse controller C' is not suitable for implementation be-
cause: (1) “perfect” control requires unreasonably large control moves; (2)
the controller is not “proper” in the sense that it requires derivatives of the
setpoint; and (3) the perfect model assumption is not satisfied in practice.
As aresult, C' is augmented with the following nonlinear filter F:

o) = —aTL;_lh(zE) - ar_lL}_Qh(ai) — - —a1h(Z) + aqe (4.138)

The filter output v(") replaces the signal yg,) in the nonlinear control law
(4.137). If the system is initially at rest and y(0) = Ysp(0), the controller
parameters ay can be chosen to yield the nominal closed-loop transfer func-

tion:

y(s) _ 1
ysp(s)  (es+1)

(4.139)
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The controller tuning parameter € can take values in the range 0 < € < co.
The nonlinear IMC technique possesses similar stability, perfect control, and
zero offset properties as linear IMC [129]. In fact, the linear and nonlinear
IMC design strategies yield identical controllers when applied to a stable,
minimum-phase linear model.

The nonlinear IMC controller can be interpreted as a variant of the input-
output linearizing controller (4.21). Despite the similarities, the nonlinear
IMC technique offers several unique features including:

1. A control structure in which the difference between the plant and model
outputs is used as a feedback signal for the nonlinear controller.

2. Implicit integral action that is a result of the IMC control structure.

3. An output feedback controller implementation because the nonlinear
controller uses state variables generated by the model.

The third feature represents a significant advantage of the nonlinear IMC
strategy as compared to the input-output linearization approach, which is
based on full-state feedback. However, the nonlinear IMC technique employs
the model as an open-loop observer and therefore it is restricted to open-loop
stable processes.

4.5.2 Process Control Applications

Chemical Reactors

Feedback linearizing control strategies have been applied to a wide variety
of chemical reactor models. The most commonly used model describes the
irreversible, exothermic reaction A — B, occurring in a constant volume,
continuously stirred tank reactor [66]:

Y, = 9 _ _ _E
Oy = V(CAf Ca) koexp< RT) Ca (4.140)
: q (—AH) < E ) UA
T = ={T¢—T Sl o el _
V( 't )+ 20, koexp T Ca+ VoG, (T.-T)

The severe static and dynamic nonlinear behavior of this model are well
documented [162]. The coolant temperature T, or feed flowrate g is usually
employed as the manipulated input, while either the reactor concentration
C4 or temperature T is chosen as the controlled output. Other commonly
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Table 4.1: Applications to Chemical Reactors

References Approach Focus
[95] IOL basic controller design
1] IOL global feedback stabilization
[19, 40] IOL disturbance decoupling
[42] IOL input-output decoupling
[67] IOL general nonlinear processes
[73, 102] IOL time delay compensation
(8, 109, 91] I0L constrained processes
[3, 12, 15, 100] I0L robust controller design
[151, 154] IOL discrete-time models
[23, 51, 71, 136] IOL internal model control
[50, 143] IOL approximate feedback linearization
(48, 96, 169] I0L non-minimum phase compensation
[13, 21] IOL adaptive feedback linearization
[107, 125] IOL differential/algebraic models
[41, 97, 108, 170] I0L output feedback control
[11, 76, 89] SSL basic controller design
[7] SSL global feedback stabilization
[30, 32, 33] SSL feedforward /feedback control
[79] SSL time delay compensation
[49, 90] SSL robust controller design
[50] SSL approximate feedback linearization
[117] SSL output feedback control

used reactors models differ from (4.140) by including coolant jacket dynamics
and/or by considering more complex reactions. A summary of applications
of feedback linearization to chemical reactors is presented in Table 4.1. For
each reference, the table contains the controller design approach employed
(input-output linearization (IOL) or state-space linearization (SSL)) and the
major focus of the paper.
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Biological Reactors

Feedback linearizing controllers have been developed for several types of
biological reactor models. The most commonly used model describes the
growth of a single cell population from a single, rate-limiting substrate in a
continuous stirred tank reactor [4]:

X = wX,9X-DX (4.141)
§ = —0(X,8)X -D(S;-S)

Typically, the specific growth rate p is modeled by a Monod relation,

WX, 8) = u(S) = g (4.142)

and a constant yield expression is used to describe the specific substrate
consumption rate o:

o(X, 8) = ——pu(S) (4.143)
Yx/s

Bioreactor models of this form can exhibit significant static and dynamic
nonlinear behavior [69]. The dilution rate D or feed substrate concentration
S is usually employed as the manipulated input, while the cell concentration
X or substrate concentration S is often chosen as the controlled output. A
summary of applications of feedback linearization to bioreactor models is
presented in Table 4.2.

Other Processes

Several other types of processes can benefit from feedback linearizing control
as a result of their strongly nonlinear behavior. Important examples of such
processes include polymerization reactors, high purity distillation columns,
and weakly buffered pH neutralization systems. A summary of applications
of feedback linearization to models of these processes is shown in Table 4.3.

Experimental Studies

As compared to simulation studies, relatively few experimental applications
of feedback linearizing control have been presented. However, the num-
ber of experimental studies has increased significantly over the past several
years. As shown in Table 4.4, input-output linearization techniques have
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Table 4.2: Applications to Biological Reactors

References | Approach Focus

[20, 38, 70] IOL basic controller design
[140] IOL input-output decoupling
[69] IOL internal model control

[70, 116] IOL approximate feedback linearization

[45] IOL non-minimum phase compensation
[46] IOL adaptive feedback linearization

[52, 70, 78] SSL basic controller design
[77] SSL multiple-input processes

Table 4.3: Applications to Other Processes

References Process Approach
[34, 36, 61, 126, 144] distillation column IOL
[6] distillation column SSL
(62, 112] evaporator IOL
[147] heat exchanger IOL
[5] heat exchanger SSL
(68, 74, 106, 137, 166, 168] pH neutralization IOL
(2, 43, 93, 101, 103, 124, 165] | polymerization reactor IOL
[9, 10] polymerization reactor SSL
[114, 135] storage tank IOL
[141] supercritical extractor IOL

been applied to a variety of processes including biological reactors, distilla-
tion columns, pH neutralization systems, and polymerization reactors. By
contrast, we have found no experimental applications of the state-space lin-
earization approach.
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Table 4.4: Experimental Studies
Reference Process Focus
[139] bioreactor input-output decoupling
[142, 146] bioreactor adaptive input-output linearization
[18, 39] distillation column input-output linearization
[115] distillation column disturbance decoupling
[47] distillation column input-output decoupling
[167, 171] pH neutralization input-output linearization
(58, 72] pH neutralization adaptive input-output linearization
[152] polymerization reactor input-output linearization
[153] polymerization reactor input-output decoupling

4.6 Case Studies

4.6.1 Continuous Stirred Tank Reactors in Series

Process Model

The process consists of two constant volume reactors in which an irreversible,
exothermic reaction A — B occurs. The effluent stream from the first reactor
serves as the feed stream for the second reactor. The reactors are cooled
by a single coolant stream flowing cocurrently with the reaction stream.
Neglecting coolant dynamics, the process model consists of four nonlinear
ordinary differential equations [67]:

: q
Ca = +(Cas—Ca1) - ~
A1 i (Caf — Ca1) — koCarexp ( RT1>
q (—AH)koC a1 ( E >
Ty = (T -1 T e
! T (Fp—Tu)+ oC,  CP\TRR
p b, 1yl T (Tey = Th) S
pCpV1 qCchpc
o O O — _E
CA2 = ‘/2 (CAI CAQ) kOCAQGXp ( RT2>
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Table 4.5: Nominal Parameters for the CSTR Model

Variable Value Variable Value
q 100 L/min ko 7.2 x 1010 min~!
Cays 1 mol/L £ 1x10*K
Ty 350 K —AH | 4.78 x 10* J/mol
Tor 350 K Py Pe 1000 g/L
Vi, Va 100 L Co. Chne 0.239 J/g’K
hAi, hAs | 1.67 x 10° J/min-K

. q . (—AH) k‘oCAQ < E ) ch’pc
7 o= Ly \Z2H)kebas B
2 Va (T - T3) pCh xp RT, pCyVa Qe

UA2 UAl
X |1-— - T —To+e — T.r—T
[ i ( QCchpc>:| |: ! ’ » ( QCchpc> ( f 1):|

We have used standard notation [162] where the subscripts 1, 2, ¢, and f
denote the first reactor, second reactor, coolant stream, and feed stream,
respectively. Nominal parameters for the model are shown in Table 4.5.
The objective is to control the effluent composition from the second tank
(C42) by manipulating the coolant flow rate (g.). Note that the model is
not control affine when u = q.. If the state variables and controlled output
are defined as,

g = [ Caa Th Cax To ] , y=Ca (4.145)

the model has the form of the general nonlinear system (4.69). As a result,
the nonlinear controller design is based on the input-output linearization
techniques discussed in Section 4.4.1.

Controller Design

For the purpose of comparison, three controllers are designed: a conventional
proportional-integral (PI) controller; a static input-output linearizing con-
troller; and a dynamic input-output linearizing controller. The PI controller
is tuned for setpoint changes, yielding k. = 350 L?/mol-min and 7; = 0.25
min. The nonlinear controllers are designed by assuming that all four state
variables are available for feedback. The static nonlinear controller design
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Figure 4.1: Open-loop response for + 10% change in g [67].

is based on the original nonlinear model (4.144), which has relative degree
r = 2. The control moves of the static controller are generated by solving
a nonlinear algebraic equation of the form (4.76) at each sampling instant.
The dynamic nonlinear controller is designed using an extended model of the
form (4.78), which has relative degree r = 3 in this case. For both nonlinear
controllers, the transformed input v is chosen to yield a nominal closed-loop
transfer function of the form (4.23) where € = 0.25 min. The expressions for
the two nonlinear controllers are rather complicated, and therefore they are
not presented here.

Simulation Results

The open-loop composition responses in Figure 4.1 demonstrate that the
model exhibits highly nonlinear behavior. The disturbance rejection per-
formance of the three controllers for + 5% unmeasured disturbances in the
feed composition (Cysy) is shown in Figure 4.2. The nonlinear controllers
cannot completely decouple the disturbance from the output because C4;
has relative degree p = 1. The static nonlinear controller provides excellent
performance and is clearly superior to the other controllers for both distur-
bances. Note that the PI controller provides more effective rejection of the
+ 5% disturbance than does the dynamic nonlinear controller.

The controllers are compared for unmeasured feed temperature (') dis-
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Figure 4.2: Closed-loop response for C4s disturbances of —5 % (top) and

+5 % (bottom) [67).

turbances of + 25 K in Figure 4.3. Because Ty has relative degree p = 3,
the static nonlinear controller provides perfect disturbance decoupling and
therefore it outperforms the other controllers. The dynamic nonlinear con-
troller provides vastly superior performance as compared to the PI controller
for the — 25 K disturbance. The responses of the two controllers are compa-
rable for the + 25 K disturbance. These results indicate that a disturbance
can be rejected most effectively if the difference between the relative de-
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Figure 4.3: Closed-loop response for ¢ disturbances of —25 % (top) and +5
% (bottom) [67].

grees of the manipulated input and the disturbance is small. This difference
is always smaller for the static controller than for the dynamic controller.
Consequently, we propose that the manipulated input and controlled out-
put of an input-output linearizing controller should be chosen such that the
relative degree r is minimized. This proposition provides another argument
against the state-space linearization approach, which results in a maximal
relative degree.
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4.6.2 Continuous Fermentor
Process Model

The process consists of a constant volume reactor in which a single, rate
limiting substrate promotes biomass growth and product formation. By
assuming constant yields, a process model with three nonlinear ordinary
differential equations can be obtained [4],

X = —-DX+u(S,P)X
— D(S; - S) — =~ u(S, P)X (4.146)
Yx/s
P = —DP+[au(S,P)+ 81X

where: X, S, and P are the biomass, substrate, and product concentrations,
respectively; D is the dilution rate; Sy is the feed substrate concentration;
and Yx/g, @, and 3 are yield parameters. The specific growth rate p is
modeled as,

um(1~%)5

5=
T Km+S+%

(4.147)
where: i, is the maximum specific growth rate; and P, K, and K; are
constant parameters. Nominal operating conditions are shown in Table 4.6.

The control objective in many continuous fermentations is to maximize
the steady-state biomass production. This can be a difficult task since pa-
rameters such as the maximum specific growth rate u,, and cell-mass yield
Yx/s may exhibit significant time-varying behavior. It can be shown [69]
that near optimal steady-state performance can be achieved by manipulat-
ing the dilution rate D and regulating the biomass concentration X at a
constant value. A nonlinear model of the form (4.1) can be obtained by
choosing:

=B, =X 8P|, g=X% (4.148)

Controller Design

Three controllers are designed: a PI controller; an input-output linearizing
controller based on full state feedback; and a nonlinear IMC controller that
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Table 4.6: Nominal Operating Conditions for the Fermentor Model

Variable Value Variable Value
Yx/s 04 g/g o 2.2g/g
B 0.2h7! P 0.48 h~!
B 50 g/L Ko 1.2 g/L
K; 22 g/L S 20 g/L
D 0.202 h~! X 6.0 g/L
S 5.0 g/L P 19.14 g/L

requires only a biomass concentration measurement. The PI controller pa-
rameters are determined initially by applying IMC tuning rules [129] to a
first-order linear model obtained from the open-loop responses in Figure 4.4.
The IMC closed-loop time constant is chosen as one-third the open-loop time
constant. The controller parameters are fine-tuned for setpoint responses,
yielding k. = 0.07 L/g-h and 77 = 4.5 h.

The nonlinear controllers are designed by noting that the relative de-
gree r = 1 since Lyh(z) = —z1. The input output linearizing controller is
synthesized as described in Section 4.2.2:

.. DBl (4.149)

—x1

2 1 ¢
U = [ysp = -711] -+ ;5/0 [?Jsp E 1’1] dr

£
Using the design procedure in Section 4.5.1, the following nonlinear IMC
controller is obtained,

_ U= &, B3)E (4.150)
=By .

. 1, 1 -
v = ——Z1+ —(ysp — 21 + 1)

€ €
where the tilde represents a variable obtained from the process model. Both
nonlinear controllers are tuned with e = 1 h, which is approximately one-
third the open-loop time constant for the — 10% dilution rate change in
Figure 4.4.
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Figure 4.4: Open-loop response for = 10% change in D [69].

Simulation Results

The open-loop biomass concentration response shown in Figure 4.4 demon-
strate that the fermentor exhibits significant static and dynamic nonlinear
behavior. In Figure 4.5, the three controllers are compared for an unmea-
sured step disturbance of — 12.5% in the maximum specific growth rate (um).
The input-output linearizing cannot provide complete decoupling because
the disturbance relative degree p = 1 and pu, is unmeasured. However, the
linearizing controller yields superior regulatory performance as compared to
the PI and nonlinear IMC controllers. This result is expected since the lin-
earizing controller has access to the entire state vector. On the other hand,
the nonlinear IMC controller yields vastly improved disturbance rejection as
compared to the PI controller despite the fact that both controllers only use
a measurement of the biomass concentration.

The controllers are compared for a — 20% step disturbance in the cell-
mass yield (Yx/s) in Figure 4.6. The input-output linearizing controller
yields perfect disturbance decoupling because it has access to the entire
state vector and p = 2. By contrast, the nonlinear IMC controller uses state
estimates from the model and therefore it cannot provide exact decoupling.
However, the IMC controller yields superior performance as compared to
the PI controller. The estimated state variables used by the IMC controller
also are shown in Figure 4.6. Despite the significant errors caused by the
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Figure 4.5: Closed-loop response for — 12.5% disturbance in p,, [69].

unmeasured disturbance, the IMC controller provides satisfactory control.

Figure 4.7 shows the responses of the controllers responses for the same
Yx/s disturbance when there is a stuctural error in the specific growth rate.
The growth rate used for nonlinear controller design is a simple Monod
expression:

Km

= BB 4.151
= Kn+S L

The PI controller response is identical to that shown in Figure 4.6 since
the modeling error does not affect the process. By contrast, the nonlinear
controller responses are changed significantly. The response of the nonlinear
IMC controller is actually improved, while the input-output linearizing con-
troller is no longer able to provide complete decoupling. In fact, the IMC
controller outperforms the linearizing controller in this case. Additional
simulation results [69] show that the nonlinear IMC controller is superior
to the PI controller and compares favorably to the input-output linearizing
controller based on full-state feedback.



4.6. CASE STUDIES 207

6.05 T i T
6.00 =
Foge ¥ g
\ -
?9 5951 o -]
x \ . “
\ P
‘ e - - - PI Control
590 RO P I/O Linearizing Control [
v 5 —— Nonlinear IMC
\ P
5.85 Ll ' L
0 20 40 60 80
A [t gaepegmer= 27
26
1-X (plant) | 425
2 — X (model)
g 3-P (plant) |~ 24 o
C 4 —P (model) [ _| 53 Cg
> L ikt £ T
—21
20
L 19
60 80

Time (h)

Figure 4.6: Closed-loop response for — 20% Yx/s disturbance [69].

4.6.3 pH Neutralization System
Process Model

The process consists of an acid (HNOj3) stream, buffer (NaHCO3) stream,
and base (NaOH) stream that are mixed in a stirred tank. The chemical
equilibria is modeled by introducing two reaction invariants [58] for each
inlet stream,
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Figure 4.7: Closed-loop response with modeling error for — 20% Yx,g dis-
turbance [69].

Wi = [H—i—]Z —[OH7); — [HCOg]i —2[CO3); (4.152)
W = [HzCO3]i + [HCOg]z + [CO?]Z

where 1 = 1 for the acid stream, i = 2 for the buffer stream, and ¢ = 3 for
the base stream. By combining mass balances on each of the ionic species
in the system, the following differential equations for the effluent reaction
invariants can be derived [60]:

. 1 1 1
Was = A_h(Wal — Waa)a1 + E(WaZ — Waa)g2 + E(Wa:’, — Waa)gs
(4.153)
Wy = i(W — W) +i(W — W) +i(W — Wis)
e = (W ba)a1 + —5 (W b4)2 + 77 (Wes b4)q3

where: ¢q1, g2, and g3 are the volumetric flow rates of the acid, buffer, and
base streams, respectively; A is the cross-sectional area of the mixing tank;
and h is the liquid level.

The effluent pH is determined from W,4 and Wjy using the following
relation,
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Table 4.7: Nominal Operating Conditions for the pH System

Variable Value Variable Value
Wa1 0.003 M Wi oM
Waz -0.03M Wia 0.03 M
Waes | —-3.05x1073M Wi 5x 107° M
Ka 4.47 x 1077 Kao 5.62 x 10711
A 207 cm? n 0.607
& 11.5 cm qQ 16.6 ml/s
q2 0.55 ml/s g3 15.6 ml/s
Wa | -432x107*M W 5.28 x 107* M
h 14.0 cm pH 7.0

1+ 2 x 1gpH-pK>
pH—14 —pH
Waa + 10 107 + Wi —rm; =0 (4154)

where pK; and pK» are the base-10 logarithms of the equilibrium constants
associated with HoCO3 and HCOj3 disassociation, respectively. Because the
pH probe is located downstream from the mixing tank, there is an unmodeled
time delay of approximately 10 s associated with the pH measurement. The
liquid level is modeled as,

C1
h= 1 @1 + a2+ g3 — Co(h + 2)"] (4.155)

where C), is the valve coefficient, n is the valve exponent, and z is the vertical
distance between the bottom of the mixing tank and the outlet of the effluent
stream. On-line measurements of the liquid level and effluent pH are avail-
able, while the reaction invariants must be estimated. Nominal operating
conditions are shown in Table 4.7.

The objective is to control the pH despite unmeasured acid and buffer
flow rate disturbances by manipulating the base flow rate. It is important to
have an accurate estimate of the buffer flow rate because it determines the
buffering capacity of the systems. A nonlinear state-space model is obtained
by defining:

.’L’T = [ Wa4 Wb4 h ] 5 u = qgs, y IpH, d= q2 (4.156)
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The resulting model has the form,

z = f(z)+g(x)u+plx)d (4.157)
de,g} = 0

where the definitions of the functions f(z), g(z), p(z), and ¢(z,y) follow
directly from the process model. Note that the output equation is an implicit
function of the output (y); that is, a closed form representation y = h(z)
cannot be determined. As a result, a modified technique is proposed for the
design of the input-output linearizing controller.

Input-Output Linearizing Controller Design

The input-output linearizing controller is designed by taking the time deriva-
tive of the output equation and rearranging,

§=—¢; (z,9)e:(¥)[f () + 9(z)u + p(z)d] (4.158)
where:
—pK
Cf(y) = [ 1 1+1})2—I%1X—1£j—11(;3/3p1<2 0 ]
¢y(z,y) = In(10) [10y—14+10—y] 4 (4.159)

10PK1~y 4 10v—PK2 4 4 (10pK1—y) (10y—pK2)
(14 10pPK1—y 4 10v-PK2)?

In(10) | z2

Because the term c;'(z,y)c,(y)g(z) that multiplies u is non-zero for all

operating points of interest, the model is said to have relative degree r = 1.
The input-output linearizing control law is:

v+ ey (@,9)ca (y)[f () + p(2)d]
—cy ' (2,y)ca (y)g(2)

The transformed input v is chosen as,

U=

(4.160)

t
v =2 ysp — y] + ‘5_2/0 [ysp — yldT (4.161)
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where € is the controller tuning parameter. In the absence of plant/model
mismatch, the control law yields the closed-loop transfer function (4.23) with
r = 1. The controller is tuned with € = 1 min, which is approximately one-
half the time constant for the open-loop responses in Figure 4.8. To facilitate
experimental implementation, the control law is discretized with At = 15s
[72].

State and Parameter Estimation

The input-output linearizing controller requires full state feedback. In prac-
tice, the reaction invariants cannot be measured and therefore they must
be estimated from available on-line measurements. A closed-loop nonlinear
observer with exponentially stable error dynamics (see Chapter 6) does not
exist since the Jacobian linearization of the model is unobservable at every
equilibrium point [72]. As an alternative, an open-loop nonlinear observer
that does not require observability is employed. Because the differential
equations for the reaction invariants are decoupled, the invariants can be es-
timated sequentially [72]. Invariant Wj, is estimated in an open-loop fashion.
An estimate of W,y is generated from the estimated Wp4 and the measured
pH using the output equation.

The proposed controller does not explicitly account for buffering changes.
As shown below, unstable behavior is obtained if the buffer flow rate drops
significantly below the nominal value. Under these conditions, the process
gain increases dramatically and some type of on-line adaptation is neces-
sary to achieve satisfactory performance. A straightforward approach is to
treat the buffer flow rate as an unknown parameter that is estimated with
a recursive least-squares algorithm. The parameter estimator receives mea-
surements of the pH and level, as well as reaction invariant estimates from
the open-loop observer. A detailed derivation of the estimator is presented
elsewhere [72].

Experimental Results

Open-loop pH responses for the sequence of base and buffer flow rate changes
in Table 4.8 are shown in Figure 4.8. Note that the actual run time is plotted
and therefore the plots do not begin with zero time. The response in Figure
4.8(a) shows that the system exhibits significant static nonlinearities with
respect to manipulated input changes. The pH response for buffer flow rate
changes is shown in Figure 4.8(b). Significant static nonlinear behavior is
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Table 4.8: Standard Inlet Flow Changes

Time (min) || g1 (ml/s) | g2 (ml/s) | g3 (ml/s)
0 16.6 0.55 15.6
30 15.1 1.2 13.6
60 18.1 2.0 17.6
90 16.6 1.0 15.6
120 = 0 =
150 = 0.55

observed, especially when g2 — 0 ml/s. The pH response for base flow rate
changes is similar to that obtained from the process model, while significant
deviations are observed between the simulated and experimental responses
for buffer flow rate changes [65].

As discussed in [72], non-adaptive and adaptive versions of the input-
output linearizing controller easily outperform a PI controller. However,
Figure 4.9 shows that the non-adaptive controller exhibits unstable behavior
for low buffering conditions. The sequence of buffer flow rate disturbances
is the same as that in Table 4.8 except that the flow rate is only reduced
to 0.2 ml/s at ¢ = 120 min. The non-adaptive controller produces a highly
oscillatory response as a result of the go = 0.2 ml/s disturbance at ¢t = 215
min. This unstable behavior is attributable to poor estimates of the reaction
invariants at low buffering conditions.

The performance of the adaptive nonlinear controller for the same se-
quence of buffer flow rate disturbances is shown in Figure 4.10. The con-
troller is able to provide excellent control over a wide range of buffering
conditions. Unlike the non-adaptive controller (Figure 4.9), the adaptive
controller is able to maintain the system at the setpoint even when g2 — 0.2
ml/s. The estimated buffer flow rate produced by the adaptive controller
also is shown in Figure 4.10. At steady-state conditions, the estimation error
is less than 15% of the actual value. Improved knowledge of the buffering
capacity results in more accurate estimates of the reaction invariants, which
ultimately leads to superior closed-loop performance as compared to the
non-adaptive case.

The performance of the adaptive nonlinear controller for the sequence of
acid flow rate disturbances in Table 4.8 is shown in Figure 4.11. Acid flow
rate disturbances represent a robustness test since the parameter estimator
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changes [72].
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is designed only to account for buffering changes. Note that the estimated
buffer flow rate used by the controller is set equal to the nominal value (0.55
ml/s) if the value produced by the estimator is sufficiently negative. Despite
using poor estimates of the buffer flow rate and the reaction invariants, the
adaptive controller provides superior pH responses as compared to the PI
and non-adaptive nonlinear controllers (not shown).
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