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In this chapter, we introduce the machinery of differential geometry and
related concepts as analysis tools for nonlinear process control systems. This
chapter will also serve as background for the nonlinear controller synthesis
material that is discussed in Chapter 5. There are several texts and review
articles which pursue the details of the differential geometric approach in
greater depth than is presented here. Notable are the texts by Isidori [18]
and Nijmeijer and Van der Schaft [25]. In the process control area, there
is a thorough treatment of the material in the tutorial article by Kravaris
and Kantor [21]; in addition, there is a good overview of general nonlinear
approaches to process control system design by Bequette [1].
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112 CHAPTER 3. NONLINEAR SYSTEMS THEORY

3.1 Introduction

Throughout this chapter, the discussion is restricted to the class of nonlinear
systems which are linear with respect to the manipulated input (control-
affine systems); more general nonlinear systems are discussed, for example,
in [25]. In the single-input single-output, time invariant case, the nonlinear
state-space model can be written as follows:

#1 = fHl@r,.. ) +nley.... 00

i — fn(.’l,‘l,... ,Il'n) +gn($1a 7‘7:71)'“’
y = h({l}l,...,xn)

where z1,...,z, are state variables, u is the manipulated input, and y is
the controlled output. For simplicity, the nonlinear functions fi,..., fa,
gi,---,9n, and h are assumed to C'*® functions; i.e., their partial derivatives
of any order exist and are continuous. This equation can be written in the
following, more compact, vector form:

& = f(z)+g(z)u
y = h(z) (3.1)

We will make frequent comparisons to the linear approximation of this dy-
namical system, for which we will employ the standard state-space notation

[4]:
& = Az +bu
¥ = &z (3.2)

3.2 Concepts from Differential Geometry

The material presented in this chapter draws largely from the field of dif-
ferential geometry. There has been an explosive growth of research in this
area over the past decade, and in this chapter we will attempt to lay the
groundwork to enable an understanding of those results. In effect, these
tools can provide both a means for nonlinear system analysis as well as non-
linear controller synthesis (the latter is the subject of Chapter 5). In the
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analysis context, these tools can be used to address questions such as: (i)
does the system have a stable inverse?; (ii) are particular states reachable
from the initial conditions?; and (iii) are outputs which result from different
inputs distinguishable? In the synthesis context, the primary issue will be
the design of a nonlinear change of coordinates and nonlinear feedback that
make the system behave in a linear manner.

3.2.1 Manifolds

A manifold is a topological space, usually denoted M, which has special
properties [27] that are useful for the results that follow. Most notably, a
manifold is locally Euclidean. Consider the mapping of a point p in some
neighborhood U of M to a point ¢(p) in some open subset of R™. The
mapping ¢ and its inverse (¢~!) are assumed to be C*® functions. We can
define a coordinate chart as the pair (U, ¢). It is often useful to represent ¢
as a set (@1,...,Pn), where ¢; : U — R is called the ith coordinate function.
The set of real numbers (¢1(p), ..., dn(p)) is called the set of local coordinates
of p in the coordinate chart (U, ¢).

3.2.2 Vector Fields

A wvector map associates a point £ = (x1,...,Z,) on an open subset of R"
with the vector:
fl(:El,... ,.’Bn)
fz(l'l, Sniga ,:Cn)
f(z1,...,z0) = : (3.3)
fm(l‘l, Bl ,.’L‘n)

in R™. A scalar map or function merely maps some open subset of R" to
R. A vector field, f(x), on R™ is the mapping which assigns to every point
p € M a tangent vector f(p) in the tangent space to M. A vector mapping,
f, is a global diffeomorphism if [18]: (i) f is invertible for all z € R", and
(ii) f and its inverse (f~!) are C* functions. If these properties are only
locally valid in the neighborhood of an equilibrium point, then f is called a
local diffeomorphism.

3.2.3 Inverse and Implicit Function Theorems

The following two theorems will prove useful in the derivations that follow.
In particular, they will find application in guaranteeing the existence of
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solutions to nonlinear algebraic equations.

Theorem 1 (Implicit Function Theorem) [18] Let A C R™ and B C
R™ be open sets. Let F : A x B — R" be a C® mapping. Let (z,y) =
(Z1y-- s Zm,Y1,---,Yn) denote a point of A x B. Suppose that for some
(Zo,90) € AX B

F(zo,y0) =0
and the matriz

ofi ... Of

ay1 Byn
oF _ | . .
oy — : S :

Ofn ... Ofn

8y1 ayn

is nonsingular at (zg,y0). Then there exists open neighborhoods Ay C A of
xo and By C B of yo and a unique C*° mapping G : Ay = By such that

F(z,G(z)) =0
for all z € Ap.

Thus, the implicit function theorem provides sufficient conditions that guar-
antee the existence of a local solution y = G(z) to the nonlinear algebraic
equation F(z,y) = 0.

Theorem 2 (Inverse Function Theorem) [18] Let A be an open set of

R"™ and F : A - R™ a C*® mapping. If [‘?9—1;] is monsingular at some
o

zo € A, then there exists an open neighborhood U C A of xo such that

V = F(U) is open in R™ and the restriction of F to U is a diffeomorphism
onto V.

The inverse function theorem provides sufficient conditions which guarantee
the existence of a locally-defined inverse function F~! for the function F.

3.2.4 The Lie Algebra

The derivative of a smooth (i.e., C*) function A(z) along a smooth vector
field f is defined to be the Lie Derivative. The notation we use is (L¢A)(p) =
(f())(A); i.e., the Lie Derivative is equal to the value of the tangent vector
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f(p) at the point p. In local coordinates, one can represent this operator in
the following manner:

Filw, - - s 8)
LiX(Z1ye..,Bn) = 83_;\1 aaT/\n) :
fn(mla TEe 7mn)
The following notation is used for repeated Lie Derivatives: L¢(LsA(z)) =

L3 X(2)-

! Consider the vector space V(M) of all smooth vector fields on a manifold
M. In addition, consider the following binary operation (product) on V' :
[V,V] =V xV — V. Assume that the binary operator satisfies the following
properties:

1. The operator is skew commutative: [v1,vs] = —[va,v1].

2. The operator is bilinear over R: [ajv;+agva, v3] = aivi,vs]+as(ve, vs],
where a1,a9 € R.

3. The operator satisfies the Jacobi Identity:
([v1, [v2, vs]] + [v2, [vs, v1]] + [vs, [v1,02]]) = 0.

In this case, the vector space V(M) is a Lie Algebra with some very inter-
esting structural properties. This binary operator on V(M) is defined as the
Lie Bracket. For two vector fields f(z),g(z) € V(M):

99 of
[H,9l@) = Zof(@) - 5r9@) (3.4
In local coordinates, this is given by:

0, 0 o) 0
g aa ) (N R A
f A,k N Il B T } (3.5)
9gn dgn dfn dfn
Gon ... Do fn 5% ng: 9n

The notation that is typically employed for this operator is as follows:
adjg(z) = g(2)
adjg(z) = [f,g)(z)
adig(z) = [f,[f,9)l(z) = [f,ad}g](z)
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It is interesting to note the interpretation of the Lie Derivative and
the Lie Bracket for a linear dynamical system. In this case, f(z) = Az,
g(z) = b, and h(z) = cz. The repeated Lie Derivative of the output function
h(z) along the f(z) vector is given by L’}h(z) = cAFz. Thus, one obtains
the rows of the observability matrix of the linear system. If one applies
the Lie Derivative to the output function along g(x), preceded by repeated
derivatives along f(z), one obtains LyL%h(z) = cA*~'b; in other words, the
Markov parameters for the linear system. Finally, consider the Lie Bracket
of the f(z) and g(z) vector fields: ad’} g(z) = (—1)%A¥b. In this case, we ob-
tain the columns of the controllability matrix of the linear system multiplied
by (—-1)*.

3.2.5 Coordinate Transformations

A general objective in the synthesis of feedback linearizing controllers (see
Chapter 5) is the derivation of coordinate transformations which convert the
original nonlinear system into a system that is “simpler” in the sense that
controller synthesis is more straightforward. For example, a linear system
is “simpler” than a nonlinear system. Before presenting the main result
for this problem (the Frobenius Theorem), a few background comments on
nonlinear coordinate transformations will be given.

Using the inverse function theorem in Section 3.2.3, one can show that a
nonlinear coordinate transformation, z = ®(z) from R" to R", is invertible
if and only if the Jacobian matrix:

Pu(z) .. GB(a)
;] (3.6)
Pa() - La(a)

is invertible. Under this invertible coordinate transformation, a scalar func-
tion h(z) is mapped to a new function:

71’(2) = [h(a;)]a;sz"l(z) (37)

and a vector field g(z) is mapped to the new vector field:

g1(z) = [< d(I)l(:n),g(:E) >]:1::<I>‘1(z)

n(2) = [<d®u(@),9(®) >ls_go1s) (3.8)
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where < -,- > denotes the inner product.

For nonlinear systems, the following interpretation of the Lie Bracket is
useful. Recall that the integral curve o of f is the solution to the equation:
‘2—‘; = f(o(t)). The Lie Bracket “measures” the extent to which the integral
curves of f and g can be used to form the coordinates of a system. For
example [27], consider the integral curve of f starting from a point p for
some time 6t. From the new location, follow the integral curve of g for time
dt. From the new location, reverse the integral curve of f, and follow this
for time 6t. Finally, follow the reverse of the integral curve of g for time
ot. If we denote the integral curve of f by ¢ and the integral curve of g
by %, then the final location of the curve described above is denoted by
c(t) = P_st 0 p_st 0 s © dse(p). The Lie Bracket provides insight into the
ability to close this curve under the operations on the integral curves of f
and g, thus validating their usefulness as coordinate lines for the system.
One can show [27] that &(0) is equal to 2[f, g] evaluated at p. Furthermore,
if [f, g] = 0 in a neighborhood of p, then ¢(t) = p V t, i.e., the curve is closed
[27].

3.2.6 Distributions and Frobenius Theorem

Before introducing the main result of this section, a few definitions are re-
quired. First, the concept of a distribution is formalized:

Definition 1 (Distribution) A distribution D is the vector space which
consists of the span of some vectors f on some open set U of R™:

D(z) = span {fi(z),..., fi(z)}

A distribution D is non-singular if there exists an integer d such that
dim(D(X)) =d for all x € R"

An involutive distibution is defined as follows:

Definition 2 (Involutivity) A distribution D is involutive if for all vector
fields T, € D the following holds: |1, 7] € D.

A related property used later in this chapter is the notion of invariance for
a distribution:

Definition 3 (Invariant Distribution) A distribution D is invariant un-

der a vector field f if for all vector fields T € D the following holds: [r, f] €
I,
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The Frobenius Theorem is concerned with solvability of a particular
set of partial differential equations that arise in the derivation of coordinate
transformations that “simplify” or “straighten out” a given nonlinear system.
To see this, consider the transformation of the vector fields given in the
previous section in (3.8). In order for the transformed vector field § to align
with e, the nth coordinate of the natural basis for linear coordinate systems,
one requires that the first n — 1 elements of § vanish. In other words:

&%‘im)g(m)zo for 4=1,....,n=1 (3.9)
Thus one seeks n — 1 independent solutions to this set of partial differential
equation. When this is possible, one says that the distribution spanned by
the single vector field, {g(z)}, is completely integrable. In a more general set-
ting (the state feedback linearization problem), one is interested in the guar-
anteeing the integrabilty of a general distribution, {g1(x), g2(z),...,g4(z)}.
For that problem, one seeks n — d independent solutions of the following set
of partial differential equations:

0%;(z)

“on lg1(=), g2l2)y .« ygu(@)] =0 for i=1,...,n—d (3.10)

The key result which links this problem to the coordinate transformation
construction results in the last section is given by the Frobenius Theorem
[18]:

Theorem 3 (Frobenius Theorem) A nonsingular distribution is
completely integrable if and only if it is involutive.

The proof of this theorem is rather involved, and the interested reader is
referred to [18, 27] for the details.

3.2.7 Example — Continuous Fermentor

Many continuous fermentators can be described by the following unstruc-
tured model [14]:

X = —-DX4pk (3.11)

8§ = D(Sp-8)- LMX (3.12)
Yx/s

P = —DP+(ap+8)X (3.13)
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where X is the biomass concentration, S is the substrate concentration, P
is the product concentration, D is the dilution rate, Sg is the feed substrate
concentration, u is the specific growth rate, Yx/g is the cell-mass yield, and
a and 3 are kinetic parameters. The specific growth rate is modeled as:

pn(l — £-)8
p o= m—l:’ms2 (3.14)
Km+S+E

where p,, is the maximum specific growth rate, P,, is the product saturation
constant, K,, is the substrate saturation constant, and Kj; is the substrate
inhibition constant.

Consider the problem of controlling the productivity (y = DP) using
the feed substrate concentration as the manipulated variable (u = Sf). In
order to check the involutivity condition for this system, we will define the
state vector I = [X S PJ]. Thus, the vector fields of interest are:

—Dz1 + p(z)z1

f@) = | —Dos— yrsua)m (3.15)
—Dz3 + [ap(z) + Blz1
0

g(z) = (D) (3.16)
0

where:

pm(1 — %,3;)5”2

- - (3.17)
Kn+o:+ 2
Furthermore, we can check that:
0
adlg(@) = g(z)=[D (3.18)
0
du(z)
1 9y of gw: xal
adsg(z) = i (z) — %g(m) =|-D- Yxl/s %?.m (3.19)
ou(z)

Oxo
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To demonstrate involutivity, we need to show that [ad}g(z), ad}g()] lies in
the distribution spanned by {ad?cg(m),ad} g(z)}:

8% u(x
oz

62
lad}g(2), adjg(@)] = | —vus T’;%ﬁwl (3.20)
% u(x)
o oz3
Through straightforward, though tedious, algebra one can show that the
involutivity condition holds for V z € M where:

M= {z: 2 # VEnKi ) (3.21)

It is interesting to note that the point ze = /K,,K; corresponds to the
optimum substrate concentration (i.e., the substrate concentration corre-
sponding to the maximum productivity).

T

3.3 Nonlinear Inversion

3.3.1 Linear Systems

Initially, we turn to linear systems analysis to develop concepts that will
be useful later. Consider the state-space representation of the single-input
single-output, linear system in (3.2). An equivalent input-output represen-
tation for this system is the following transfer function:

y(s) _1, _ cAdj(sI —A)~'b
e ™ A= det(sI — A)

) (3.22)
The pole-zero excess for this operator is defined to be the order of the de-
nominator polynomial minus the order of the numerator polynomial. This
quantity is also called the relative degree and can range from 1 to n. The
relative degree also can be calculated from the Markov parameters, which
represent the coefficients of the terms in a series expansion of the transfer
function:

Ay = B, el
c(sI A)b_s+32 33+

Definition 4 (Relative Degree) The relative degree of the system (3.2)
is the smallest integer v for which cA"~'b # 0.
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The relative degree also can be interpreted in the context of successive
derivatives of the linear system output (y):

i = cdw
i = cA’z
d'r—l
dtr‘?ll = cA™ 'z
d"y

= cA"z +cA" by

From this analysis, it is clear that the relative degree corresponds to the
lowest order derivative of the output that depends explicitly on the input.
This equivalent definition will be utilized in defining the relative degree for
a nonlinear system of the form in (3.1).

Next, we define a normal form representation for the linear system given
in (3.2). A linear state transformation is sought which represents the dy-
namics in an insightful and compact form. Consider the following transfer
function:

GPotPist -+ Bur1s" T 48"
ap+0a8+ -+ ap_18"1 4+ 8"

G(s) = (3.23)

A minimal state-space realization of this system is represented by the fol-
lowing matrices:

0 il 0 0 0
0 0 1 0 0
A= : b=
0 0 0 1 0
=y 2 e =an =@py—1 k

c=(B b - Par-1 1 0 ---0) (3.24)
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To obtain a suitable normal form, the following transformation is proposed:

& cx
& cAzx
&3 cA?%z
T
m Z1
T’n—’r wn—r

It is straightforward to check that this coordinate transformation is non-
singular, and leads to a transformed system of the following form [18]:

L = &
L = &
Bt = &
& = RE+Sn+ku
n = P{+Qn
y = & (3.26)

where R and S are row vectors and P and () are matrices. In this structure,
the rth order subsystem representing the direct effect of the manipulated
variable, u, on the output, y, is hierarchically decomposed. This structure
will prove useful for nonlinear systems, and in that context is referred to as
the Byrnes-Isidori Normal Form. The matrix ) has special significance: its
eigenvalues are exactly equal to the zeros of the transfer function given in
Equation (3.23).

It is relatively straightforward to construct an inverse for the linear sys-
tem (3.2), such that the cascade of the system and the inverse system form
the identity operator. Using the original state-space representation in (3.2),
an inverse can be realized as:

Z = (A— i )Z+ S

cA™1p cAT1p dtr
AT 74 1 dy
cAT-1p cAT™1b dt”

(3.27)
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where Z is the state vector of the inverse system. Note that the inverse
system takes the rth derivative of y as an input, and generates the value of
u that originally was introduced to the plant. From the transfer function
operator for the system, it is clear that the inverse system can have a minimal
order of r. However, the previously derived operator has a dynamic order of
n, and therefore it is not a minimal realization.

Now consider the derivation of an inverse system using the normal form
representation in (3.26). In this case, it is easy to show that an inverse can
be realized as:

2L = 2
Zr-1 = Zp
. d"y
T
Zrl 21 Zr+1
. — P +Q .
Zn Zr Zn
Z1 Zr+1
1[dy
= = —R| :|=-S : 3.28
u i : (3.28)
z'r Zn

However, this system can be represented in a more compact form as:

i Yy G1
: = P i +@Q :
én—r ‘Cil;T_jg Cn—r
Yy G1
u = % Z;f’—R i8] (3.29)
o=t Cnr

where we have introduced the following change of variables: [(1,...,(n—r] =
[2r+1,--.,2n]. Note that the derived inverse system has order r, and thus it

represents a minimal realization.
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3.3.2 Nonlinear Normal Form

The notion of relative degree, introduced earlier for linear systems, can be
extended in a natural way to include nonlinear systems [16]:

Definition 5 (Relative Degree) The relative degree of the nonlinear sys-
tem (3.1) is the smallest integer r for which LgL'}_lh(.z‘) # 0 and LgL’}_2h(m) =
0 Y z in some neighborhood of the defined operating point xg.

A useful interpretation of the relative degree for nonlinear systems can be
obtained by calculating derivatives of the output:

. dh  Ohdx
= FT g
j = L}h(z)
dr—ly if
dry 7 p=l
Sr = thz) + LyL’ h(z)u

As with linear systems, the relative degree characterizes the lowest order
derivative of the output, y, that is explicitly dependent on the input, u. It
is important to note that there may exist points, xg, at which the relative
degree is not well defined. For example, consider a one-dimensional system
for which LgL’}_lh(m) = z. In this case, the relative degree is not well defined
as the point g = 0. The presence of such singular points complicates the
subsequent analysis considerably [17, 18], and therefore is not considered
here.

Using the definition of the relative degree, one can derive a nonlinear
analog of the normal form in (3.26). This system, called the Byrnes-Isidori
normal form [3], is derived using the following nonlinear coordinate trans-



3.3. NONLINEAR INVERSION 125

formation:

h(z)
L¢h(x)

L () (3.30)
t1(z)

.

The t;(z) functions are obtained as the solution to the partial differential
equation:

Lyt{z) =0
As long as the relative degree is well defined, the existence of ¢;(x) which

satisfy this equation is guaranteed [18]. This coordinate transformation pro-
duces the Byrnes-Isidori normal form:

b = &
& 3
ér—l 67‘
ér a(fﬂ?) +ﬂ(€7n)u
771 q1 (fa 77)
Hn-s7 Qn—r (é., 77)
5 = & (3.31)
where a« = [L;h(.’l;‘)] m:¢_1(§,n), /8 = [LgL;_lh(-T)] :1::@‘1(5,7))’ and

i = [Ly®i(2)] ,eq-1(¢,7)-
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3.3.3 Hirschorn Inverse

For nonlinear systems, the order of the cascaded system consisting of the
plant operator and an appropriately defined inverse is important, and it is
necessary to make a distinction between the two possible cases [16]:

o The left inverse reconstructs the input from the plant output, its
derivatives, and the state variables of the inverse (Figure 3.1).

o The right inverse produces the input history required to obtain a par-
ticular output (i.e., an ideal feedforward controller) using the plant
output and the state variables of the inverse (Figure 3.2).

Figure 3.1: Left inverse of nonlinear operator

Following the derivation of the linear inverse, a nonminimal left inverse for
the nonlinear system (3.1) can be written as:

. &Y IZ1(Z)
Z = f(2)+g(z)&E T2

LyLy 'h(z)
&~ Lih(Z)

LgL;—lh(;c) .

In analogy to the linear case, a minimal realization can be achieved by
exploiting the Byrnes-Isidori normal form:

. ) ar—1
Cl = @i (y’ya"'aw_—:]l_/aCh"':Cn—T)
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Figure 3.2: Right inverse of nonlinear operator

. ) dr—ly
Cn—r = d4pn—r (:’/ay, . oiianly th_T__l’Ch cee ;Cn—r)
r . ],
%TZ‘Z —Q (yay,'-'z%tr——gaciz'-'aCn—r)
s r—1
ﬂ (yay""a((iitTgagla“' aC’rL—’r)
where the following change of variables has been introduced: Ci=wmi-Note

that the inverse operator is driven by the output y, and its first r derivatives
and reconstructs the manipulated input u that produced y.

(3.33)

3.3.4 Example — Exothermic Chemical Reactor

Consider the problem of regulating the temperature in a nonisothermal
CSTR in which an exothermic, irreversible, first-order reaction takes place.
The mass and energy balances are given, in dimensionless form, as [30]:

1 = —z1+ Da(l — z;)eTF=2/7
Lo = —I9+ B’Da(l - 1'1)61"‘732/7 + ﬂ(u — .112)
Yy = 9 (334)

where z; is the reactant concentration, s is the reactor temperature, u is the
cooling jacket temperature, and Da, B,~, and 3 are dimensionless parame-
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ters. Consider the problem of deriving the Hirschorn inverse for this system.
The relative degree r = 1 since Lgh(z) = # # 0. Thus, the Hirschorn left
inverse (equation 3.32) can be realized by the following nonlinear dynamic
system:

. -
Z1 = —z1+Da(l — z1)et+=2/"
& = B

2T

d T
y = dt? BDa(lﬂ— z1)e™l7 + Bz (3.35)

It is straightforward to verify that if the inverse system in equation 3.35 is
driven by the output of the CSTR in equation 3.34, then the original input,
u, from the CSTR is reconstructed.

3.3.5 Zero Dynamics

In the previous section, the concept of a nonlinear system inverse was in-
troduced. It is apparent that there is no direct method for quantifying the
behavior of the inverse dynamics. In other words, there are no simple quan-
tities, such as the transmission zeros of a linear system, which characterize
the stability of the inverse. Instead, one must analyze the dynamical system
(3.33). Another complication which arises is that a nonlinear extension of

transmission “zeros” yields multiple interpretations in the multivariable case
[19]:

e The dynamics corresponding to the maximally unobservable system
state variables.

e The invariant dynamics under which the system evolves when the out-
put is constrained to be zero for all times.

e The dynamics corresponding a minimal realization of the process in-
verse.

Note that the three dynamic systems are equivalent for a linear system and
a single-input single output, nonlinear system.

A question that arises naturally in the control context is whether the in-
verse of a dynamical system is stable. For example, in IMC design approach
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one utilizes the inverse of the process model directly in the controller syn-
thesis [24]. In the linear context, this question is readily resolved through an
analysis of the system zeros: systems with all zeros lying in the left-half plane
are called minimum-phase, while systems with some zeros lying in the right-
half plane are called nonminimum-phase. Referring to the system inverse
derived in (3.33), it is clear that the nonlinear analog of the minimum-phase
property is related to the stability of the dynamic system:

. ) dr—1
G = @ (%%---;ﬁaﬁw-w%ﬂ)

Il

. dr—ly
Cn—r n—r \ Yy Y5> W, Cla DECE aCn—r (336)
One approach to determine the stability of the inverse system is to an-

alyze the unforced inverse dynamics, which are usually called the zero dy-
namics:

él = ql(an"'wOaClw”)Cn—T)

C.n—r = d4n—r (07 Oa Sieey Oa Cl, e aCn—T) (337)

For example, in the case where the system output is constrained to a constant
value (setpoint) — which can be assumed to be zero without loss of generality
— the stability of the closed-loop system in which the inverse is employed
as the controller is completely determined by the stability of these internal
dynamics. In the case where the system output must follow a trajectory,
the inverse dynamics are driven by the system output and its first » — 1
derivatives. In this case, the stability of the forced zero dynamics (3.36)
must be evaluated to determine the internal stability.

In the general case, one requires stronger conditions than stability of the
zero dynamics to guarantee internal stability in order to avoid, for example,
the peaking phenomena described in [29]. However, this is only a limitation
on global or semi-global stabilization, and will not preclude local stabilization
which can be guaranteed from an analysis of the local properties of the zero
dynamics.
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3.3.6 Example — Cyclopentenol Synthesis

Consider the synthesis of cyclopentenol from cyclopentadien [10], which fol-
lows the same reaction sequence as the van de Vusse reaction [31]: there
is a primary reaction, a further reaction of the desired product, and a side
reaction of the initial reactant. The reaction scheme looks like:

A—-B->C
2A—- D

In this case, A is cyclopentadien, B is cyclopentenol, C is cyclopentandiol,
and D is Dicyclopentadien. Assuming constant volume isothermal condi-
tions, and mass action kinetics, the mass balances for A and B can be
written as:

dy = ViR(CAo —ca) — kica — k3c?

g = —ViRCB + kica — kocp

where c4 and cp are the concentrations of A and B, respectively, c4p is the
inlet concentration of A, ¢ is the inlet flow rate, Vg is the reactor volume,
and ki, ko, and k3 are reaction rate constants.

We are interested in determining the stability of the zero dynamics when
the manipulated variable is the dilution rate (u = Vq};), and the desired
output is the concentration of B (y = c¢p) [20]. The nonlinear state-space
equations become:

.’il - —klml = k3.’17% + U(.’L’lo = .1'1)
Ty = kix1 — koxo + U(—.’Bg)
§ = &y (3.38)
where 1 = c4, 2 = cp, and 19 = c49. The system has relative degreer = 1
since Lyh(z) = —z2 # 0. Hence, a minimal realization of the process inverse
is a first-order nonlinear system. The change of coordinates (equation 3.30):
2) = (ow) = (aa)

= = W 3.39
& tie)) = \mezn A

and its inverse:

() = (=)
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can be used to realize the Byrnes-Isidori normal form:

£ = aln) +BEnu
n = q&mn)
y = & (3.41)

where:

a(g,n) = ki(zwo —né) — k2
BE&n) = —¢

k1(1 —n)(z10 — 7€) + kobn + ka(z10 — &n)?
3

q&mn) =
Thus, the zero dynamics are:

, k1(1 — n)(z10 — néo) + kaon + k(@10 — &on)?

n=q(,n) = kL ) ! (3.42)
&o

where & is the (nonzero) equilibrium value of the output. If we convert the

zero dynamics back to the original coordinates and analyze the Jacobian

linearization, we find that the sign of the quantity:

il e g e
z2
will determine whether the nonlinear system is locally minimum phase (k <
0) or nonminimum phase (k > 0). In fact, at the point where kK = 0, a
singularity occurs and the system relative degree is not well defined. It is
interesting to note that the locus of points where x = 0 cross the conversion
locus at the point of maximum conversion.

3.3.7 Example — Isothermal CSTR

This example involves the following multicomponent isothermal kinetic se-
quence carried out in a CSTR [5]:

A=B—>C

The desired product is component C, and the manipulated input is the feed
flowrate of component B. The dimensionless mass balances for A, B, and C
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are given below:

1 = 1—x1 — Dajx + Dagm%
Ty = —z9+ Dajxi — Dagw% — Dagm% +u
#3 = —z3+ Dasz?
y = 3 (3.43)

where the Da; terms are the respective Damkohler terms for the reactions.

The system has relative degree r = 2 since Lgh(z) = 0 and LyLsh(z) =
2Dasxs # 0. Hence, a minimal realization of the process inverse is a second-
order nonlinear system. The change of coordinates (equation 3.30):

&1 T3 — T3,55
& = —z3 + Dagz3 (3.44)
n 1 — T1,ss

and its inverse:
X1 N+ T1,ss
z9 = §2+£I1)1-:3 ss (3.45)
z3 &+ T3,ss

can be used to realize the Byrnes-Isidori normal form. The objective in this
example is a derivation of the zero dynamics for this reactor. They can be
constructed from the dynamics for 7:

. Da
" = —(1+Dan+ 3= (6 + &) (3.46)
as
Thus, the unforced zero dynamics are:

n = —(1+ Dai)n (3.47)

Therefore, the unforced zero dynamics are globally stable, and this CSTR is
globally minimum phase.

3.4 Controllability and Observability

3.4.1 Linear Systems

We briefly discuss the controllability and observability of the single-input,
single-output linear system (3.2). A more complete presentation of these
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concepts is available elsewhere [4]. A dynamic system is said to be con-
trollable if there exists an input u(t) such that any initial state z(t9) can
be driven to any other state z(¢;) in finite time ¢; > ¢p. A necessary and
sufficient condition for the linear system (3.2) to be controllable is that the
n x n controllability matrix:

We=[b Ab .- A ] (3.48)

has rank n. The system is said to be uncontrollable if the rank(W,) < n.

A dynamic system is said to be observable if there exists a time ¢; such
that any initial state z(tp) can be distinguished from any other state z
using the input u(¢) and output y(t) over the time interval to < t < t;. A
necessary and sufficient condition for the linear system (3.2) to be observable
is that the n x n observability matrix:

C

cA
W, = : (3.49)

cAn—l

has rank n. If the rank(W;) < n, the system is said to be unobservable.

The Kalman decomposition allows a linear system to be decomposed
into controllable/uncontrollable and observable/unobservable parts. More
specifically, there exists a linear change of coordinates z = T'z such that
(3.2) is transformed into:

& A;p 0 Az O 21 by

Z2 _ | Az Az A Ay =1 by "

2"3 0 0 A33 0 z3 0

24 0 0 As3 Ap 24 0
sl

y = [a 0 o]|” (3.50)

z3
24

It follows directly from (3.50) that: (1) z; represents the controllable and ob-
servable modes; (2) z2 represents the controllable and unobservable modes;



134 CHAPTER 3. NONLINEAR SYSTEMS THEORY

(3) z3 represents the uncontrollable and observable modes; and (4) z4 repre-
sents the uncontrollable and unobservable modes.

3.4.2 Local Controllability

We now consider the controllability of the single-input, single-output non-
linear system (3.1). For simplicity, the subsequent analysis is local; i.e. the
results are valid only in a neighborhood of the operating point. Global re-
sults are available elsewhere [15, 18, 25]. The nonlinear system (3.1) is said
to be weakly controllable at z( if there exists an input wu(t) such that any
initial state z(tp) in a neighborhood Xy of z¢ can be driven to any other
state z(t1) € Xo in finite time t; > to [15, 28]. It is important to note
that this definition does not ensure that the state trajectory z(t) will remain
near zy. For this reason, a local version of weak controllability is introduced.
The nonlinear system (3.1) is said to be locally weakly controllable at z if it
is weakly controllable and there exists a neighborhood X; C Xj such that
z(t) € X; for tp <t < t; [15, 28].

An important advantage of local controllability is that it can be deter-
mined by examining the rank of a matrix which is analogous to the linear
controllability matrix. In particular, the nonlinear system (3.1) is locally
weakly controllable at z if the n x n controllability matrix [15, 28],

We() = [ g(@) adsg(e) - adjg(a) | (3.51)

has rank n at zg. In this case, the system is said to satisfy the controllability
rank condition. The system is said to be uncontrollable if this condition does
not hold. It is illustrative to evaluate the controllability matrix W.(z) for
the linear system (3.2), for which the Lie brackets can be expressed as:

adilg(z) = (-1)¥ 141, 1<k<n (3.52)

Hence, for a linear system the nonlinear controllability matrix We(z) is iden-
tical to the linear controllability matrix W,, modulo the (—1)¥~! term which
appears in W,(z).

In analogy to the linear case, the nonlinear system (3.1) can be locally
decomposed into controllable/uncontrollable parts. If the system satisfies
certain technical assumptions [18, 22], there exists a local change of coor-
dinates z = ®(z) defined in a neighborhood of zy such that the system is
transformed into:
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z21 = fi(z1,22) + g1(21, 22)u

zo = fa(22) (3.53)

The state z; represents the locally weakly controllable dynamics and has di-
mension d. = rank(W,(z¢)). By contrast, the state z2, which has dimension
n — d., represents the uncontrollable dynamics.

3.4.3 Local Observability

We now consider the observability of the nonlinear system (3.1). As before,
only local results will be presented; the interested reader is referred elsewhere
[15, 18, 25] for global considerations. The nonlinear system (3.1) is said to
be weakly observable at x if there exists a time ¢; such that any initial state
z(tp) in a neighborhood Xy of z( can be distinguished from any other state
z1 € Xy using the input u(t) and output y(t) over the time interval ¢y <
t <t [15, 18]. It is useful to introduce a local version of weak observability
to ensure that the state trajectory z(t) will remain near zy and, therefore,
that ¢; is reasonably small. The nonlinear system (3.1) is said to be locally
weakly observable if it is weakly observable and there exists a neighborhood
X1 C Xo of such that z(t) € X; for to <t < t; [15, 28].

Local observability can be checked using a matrix which is analogous to
the linear observability matrix. It can be shown [15, 18] that the nonlinear
system (3.1) is locally weakly observable at x if the n x n observability
matrix:

dh(x)

dLsh(x)

W,o(z) = (3.54)

dLy~'h(z)

has rank n at . In this case, the system is said to satisfy the observability
rank condition. Otherwise, the system is said to be unobservable. It is illus-
trative to evaluate the nonlinear observability matrix W,(z) for the linear
system (3.2). In this case, the Lie derivatives have the form:

dLE 'h(z) = dCA* o = CAM Y, 1<k<n )
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Thus, Wy(x) is identical to the linear observability matrix W, when the
system is linear.

In analogy to the linear case, the nonlinear system (3.1) can be locally
decomposed into observable/unobservable parts. Assuming the system sat-
isfies certain technical assumptions [18, 22|, there exists a local change of
coordinates z = ®(z) defined in a neighborhood of z( such that the system
is transformed into:

Z21 = fi(z1,22) + g1(21,22)u
29 = fa(2z2) + ga(22)u
y = h(z2) (3.56)

The state zp represents the locally weakly observable dynamics and has di-
mension d, = rank Wy(z¢). By contrast, the state z; represents the unob-
servable dynamics and has dimension n — d,.

3.4.4 Example — Cyclopentenol Synthesis

Consider again the cyclopentenol synthesis example from Section 3.3.6:

&1 = —ki@r — kaat + (210 — 1) = fi(z) + g1(2)u
Ty = kiz1 — kozo — zou = fZ(w) + gQ(m)u’
y = z2=h(z) e

In order for the system to be locally weakly controllable, the matrix W,(z)
= [ 9(z) adsg(z) ] must have rank two at the operating point zo. It is
easy to show that:

g(z) = {mlo_m]

(3.58)

adsg(z) = [ —fi(z) — (k1 + 2ksz1)g1(x) }

—fa(z) — k191(z) + kaga(z)

Thus, the model is locally controllable if:
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det We(z) = [—fo(z) — k191(2) + k2g2(z)]g1(2) +
[f1(z) + (k1 + 2k3z1)g1(x)]g2(z) #0 (3.59)

at xo. Although the controllability matrix has a generic rank of two, there
may exist points zo for which W,(z) is singular. This possibility must be
checked for particular xg.

The model (3.57) is locally weakly observable if the matrix:

dh
Wo(z) = (z) (3.60)
dLsh(x)
has rank two at the operating point zg. It is easy to show that:
h(:l:) = I
L¢h(z) = kizy — koxa (3.61)
hence,
0 i
Wile) = ( o k2> (3.62)
Thus, the model is locally observable for any zo because:
det Wo(z) = —k1 #0 (3.63)

3.5 Input-Output Representations

3.5.1 Linear Systems

The general problem of input-output modeling for nonlinear systems involves
the determination of a nonlinear functional which maps the entire past input
history to the value of the output at the present time. For linear systems,
the linear convolution integral:

gl = /_ Z Bl Y Pl (3.64)

provides a functional which accomplishes this task. Here h; (o), the “kernel”
of the transformation, is the system’s impulse response function. Causality
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requires that the lower limit on this integral be zero; it is therefore customary
to write (3.64) as:

i) = /0 * Bt = ol (3.65)

3.5.2 Volterra Series

Volterra generalized this functional representation for nonlinear systems in
the form of a power series [26]:

y(t) = y1(t) + ya(t) + y3(t) +--- (3.66)

where y; (¢), the first order term, is defined as in (3.65), and the other terms
in the series are defined as follows:

yao(t) = /Ooo /Ooo ho(o1,02) u(t — o1)u(t — o2) dordos

o0 o oo
y3(t) = /0 /0 /0 hs(o1,092,03) u(t — o1)u(t — o2)u(t — 03) doydoados

50 /0°°---/0°°hi(al,...,a,-) s o) il - 0%

A discrete time representation of the Volterra operator takes the form of the
power series:

y(k) = y1(k) +y2(k) +ys(k) + - -- (3.67)

where the first term given by:

yi(k) = i hi(i)u(k — 1) (3.68)

is the convolution model employed in linear MPC approaches. The higher
order terms are given by:

(o ol o]

ya(k) = Y ha(i,g) uk —d)u(k - j) (3.69)

=1 g=1

ys(k) = DD D ha(i,4,0) u(k —d)u(k — jlu(k 1)  (3.70)

i=1j=11=1

—_
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Just as Taylor series are limited to approximating analytic functions [26],
Volterra series — which are in fact temporal equivalents of Taylor series —
are limited to approximating systems with fading memory [2]. Nevertheless,
a wide variety of nonlinear chemical processes exhibit behavior which cannot
be approximated adequately by linear models but for which a Volterra series
models (even of only second order) provides a reasonable representation [8].
Such problems include chemical reactors which exhibit optima as well as
high purity distillation columns which exhibit asymmetric behavior.

3.5.3 Fliess Canonical Form

For nonlinear systems, the input-output representation corresponding to the
Byrnes-Isidori normal form is the Fliess canonical form [11] or Observability
canonical form [23, 34]. A useful property of this normal form is that the
pole dynamics and zero dynamics are structurally separated in the Jacobian
approximation of the nonlinear system. As with the Byrnes-Isidori normal
form, successive differentiations of the output are considered; however, in
this case, the differentiations continue past the rth derivative until the nth
derivative is obtained. Thus, the coordinate transformations are a function
of both the original state, z, and the manipulated input, u. The resulting
normal form is:

21 = Zo
Zn-1 = 2Zn
‘én = F(y’y.,ﬂ7""y(n_l)’u,u""’u(n_r))
y = 21 (3.71)

Consequently, the nonlinear system can be represented by a single nth order
ordinary differential equation:

d™y

o = Fwid... ™D wa,. . u™) (3.72)

The system in (3.72) is also referred to as the external differential form, and
a general algorithm for constructing it from a state-space representation is
presented in [25].
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By performing a Jacobian linearization of the system (3.71) one obtains:

Z'1 = 29
Zn-1 = Zn
2w = aizi+ @zt ...+ anzn + Pou+ B+ ... + Bu_pu® ")
(3.73)
where:
oF OF
=T AT,

The index 0 stands for evaluation at the nominal operating point, which can
be taken as the origin without loss of generality. It is straightforward to
show that the transfer function corresponding to (3.73) is given by:

y(s) o Bo+pBis+...+ Burps" "

= = .74
G(s) u(s) a8 + . .+ Gipd® (3.74)

Thus, the poles and zeros of the linear system are fully characterized by
the final state equation. Returning to the original nonlinear system, one can
easily show that the zero dynamics can be represented by the (n —r)th order
differential equation:

0 = F(0,0,0,...,0,u,a,...,u"") (3.75)

3.5.4 Example — Exothermic Chemical Reactor

Consider the CSTR example from Section 3.3.4:

§1 = —z1+Da(l — 2, )eTeeT7 (3.76)
$y = -3+ BDa(l —2,)e™27 + B(u — z3) (3.77)
y = o2 (3.78)
To obtain the Fliess canonical form, one differentiates the output two times:
§ = —x3+BDa(l — 1)eT57 + B(u — zp) (3.79)
j = —dy— BDagieT*s7 + BDa(l ml)eﬁmm

+B(t — @2) (3.80)
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Using the inverse transformation:

19 Blu—-y) +y
BDael+v/~
Ty = g (3.82)

T = (3.81)

one can obtain an external differential representation for the CSTR problem:

j = (-2-B)g+(-B-1y+pu+pu

1 i
+W(y—ﬁ(u—y)+y)+
Dae™75 (B - + B(u — y) +y) (3.83)

(Note that for complex, higher-order state dynamics, the analytical deriva-
tion of the transformation from the inputs, outputs and their derivatives
to the states may require symbolic manipulation software, or may not be
globally solvable.)

The resultant structure is useful for several reasons: (i) the expression
has an affine dependence on both u and %, indicating that a dynamic feed-
back linearizing controller is easily constructed; and (ii) the structural form
of the y nonlinearities suggests terms that might be included in a nonlinear
input/output semi-empirical model structure for identification (e.g. terms
such as ml/T)f which are not immediately evident from the fundamental
model.)

3.5.5 Realization Theory

The general problem of realizing a state-space representation of a nonlinear
system from an external differential form is quite difficult. In particular, it
often is not possible to completely eliminate derivatives of the input in the
final structure, and it is even more difficult to obtain a control affine realiza-
tion as in (3.1). Representative results in this area are given, for example,
in the papers by Freedman and Willems [12], Glad [13], and Delaleau and
Respondek [6]. They show that a system given in external differential form
(3.72) can be represented, under certain technical conditions, by a general
state space model:

9(z,u)

9 = izl (3.84)
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A limited class of problems which admit such a solution include single-input,
single-output systems with n —r =1 [12].

3.5.6 Output Invariance

In developing input-output structures for multivariable dynamic systems, an
important issue for controller synthesis is the case of individual inputs which
do not affect a given output variable. In the linear case, this is straightfor-
ward to analyze — the corresponding transfer function element is identically
zero. Consider the general (i.e., possibly nonsquare) multivariable, state-
space system:

& = fl@)+) gi@)ui(t)
t=1

yj(z) = hi(z) 1<j<p (3.85)

In this section, we describe the conditions under which a given output chan-
nel, y;, is unaffected by a given input, wu;.

Lemma 1 (Output Invariance [25]) For the system (3.85), y; is unaf-
fected by u; on a open set U C R™ if and only if for all v > 1 and for any
Ti, -+, Ty n the set {f,g1, -, 9m}, the following relations hold:

Lghj(z) = 0
LyLp--Lohj(z) = 0 YzeU

Note that this result only holds for analytic systems as there exists coun-
terexamples for non-analytic systems [25]. If this result is applied to a linear
system, the conditions become:

CjAkbiZO k=0 s s s

which indicates that output invariance is obtained if and only if b; lies in
the unobservable subspace of the output c;. This suggests an alternative
formulation of output invariance using the unobservability properties of the
nonlinear system:

Proposition 1 [25] For the system (3.85), y; is unaffected by u; on a open
set U C R"™ if there exists an involutive distribution D of constant dimension
defined on U such that:



3.5. INPUT-OUTPUT REPRESENTATIONS 143

Figure 3.3: Uncertainty structure formulation

1. D is invariant for (3.85)
2. gieD
8. D € ker dh;

where ker denotes the kernel (null-space).

3.5.7 Input-Output Stability

The results in this section rely on an input-output approach to nonlinear
control system design and analysis. The question of closed-loop stability is
analyzed for these systems in much the same manner as for linear systems;
namely using the small gain theorem. We will briefly review this result,
as well as the class of nonlinear systems which can be analyzed in this
framework. Finally, a connection to linear robustness theory (u analysis)
is indicated.

The main result for stability of an interconnected block diagram such as
that depicted in Figure 3.3 is given by the small gain theorem [33]. In this
diagram, the uncertainty, A, is formulated as a separate element in a feed-
back loop about the nominal closed-loop system operator, M, which contains
both the plant and the controller. This uncertainty can represent the effect
of unmodeled dynamics and uncertain parameters in a process model. It is
straightforward to show [24] that problems in which the uncertainty is of an
additive, multiplicative, or inverse multiplicative nature can be cast in the
structure in Figure 3.3.
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Before stating the small gain result, we need to introduce the notion of
an operator gain:

Definition 6 (Gain) The incremental gain of an operator M, denoted by
9(M), is:

_ | M (z1) — M(z2)||
g(M) = sup = (3.86)

where the supremum is taken over all z; in the domain of M, all M(z;) in
the range of M, and all time for which x # 0.

This induced norm can be defined for various L, norms (see for example,
[32]). Having defined the gain of an operator, we can state the main result
in [33]:

Theorem 4 (Small Gain Theorem) If g(M)-g(A) < 1, then the closed-
loop is internally input-output stable.

Clearly the burden in this analysis is the calculation of the nonlinear operator
norm. This remains an area of active research, and trends in computing
algorithms may lead to more tractable solutions in the next few years.

The so-called M-A diagram in Figure 3.3 also represents a general frame-
work for analysis of linear uncertain systems. In [9], there were extensions
presented to include classes of nonlinear systems. It was shown that for
norm bounded nonlinear operators, constant D-scalings could be used in
the structured singular value analysis (see [7]) to give a conservative small
gain condition for robust stability; an application to a CSTR was also pre-
sented. Furthermore, it is possible to calculate a Lyapunov function from the
D-scalings, thus linking the input-output stability results to the Lyapunov
stability.

A class of nonlinear systems is now described which fits into the proposed
M-A structure framework. A conic sector is defined as:

Cone(C, R) = {(u,y)|lly — Cul| < |[Rull} (3.87)

where (u,y) is the input/output pair for the operator. A nonlinear operator
enveloped tightly by a conic sector is most accurately approximated linearly
by the cone center C. In general, the cone center will not coincide with
the plant described by the Jacobian of the nonlinear model evaluated at the
operating point. Note that because we have replaced a potentially highly
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nonlinear function by two linear time-invariant operators, this simplification
is likely to be conservative. The Cone(C, R) describes many input-output
pairs, some of which may yield poorer performance than the original opera-
tor.

There is a direct correspondence between a nonlinear cone-bounded oper-
ator and a time-varying gain. From the conic sector definition, the plant can
be interpreted as being equal to the nominal value (C) which is perturbed
by a time varying gain of magnitude R. R and C can be absorbed into the
system to arrive at the general uncertainty structure in Figure 3.3, where
A is a time-varying gain of norm one. The construction of interconnection
structures for general uncertainty descriptions can be found in [24].
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