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2.1 Introduction

Most, if not all, of the nonlinear process control strategies described in this
book require an explicit mathematical model of process dynamics. This
chapter is concerned with the development of models suitable for use in
these control system design methodologies. Many of the key issues in the
discussions that follow — motivation, methodology, open questions — may
be related to the “process characterization cube” shown in Fig. 2.1.

The three axes of this cube correspond to the following three process
characteristics:

1. degree of dynamic complexity;
2. degree of nonlinearity;
3. degree of interaction.
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Figure 2.1: The Process Characterization Cube

This construct was originally proposed in reference [64], but a more detailed
discussion, illustrated with specific process examples, is given in Chapter 30
of reference [66]. Our motivation for developing empirical process models
becomes clear when we consider each of the following topics in terms of this
cube:

1. real-world process dynamics;

2. fundamental models of process dynamics;
3. empirical models of process dynamics;

4. control-system design methodologies.

Specifically, the design of a process control system requires us to match the
first item on this list with the last. In the development of model-based control
system designs, this match is to be accomplished through a mathematical
model that satisfies two important criteria. First, it must be compatible in
structure and complexity with the requirements of the control system de-
sign methodology under consideration. As a specific example, the nonlinear
Model Predictive Control (MPC) algorithms discussed by Rawlings [80] re-
quire discrete-time dynamic models and the computational complexity of
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the problem grows rapidly as the model complexity increases. The second
criterion for a “good” process model is that it approximate the true pro-
cess dynamics well enough that the resulting control system will perform
adequately in practice.

In general, fundamental models — derived from known conservation
laws, reaction kinetics, etc. — can be expected to describe process dy-
namics more completely than empirical models can. Conversely, since these
models are fundamental descriptions of the process, we have limited control
over their complexity, which can be substantial. For example, the detailed
model given in [21] for the co-polymerization of methyl methacrylate and
vinyl acetate entails approximately 50 differential and algebraic equations,
mostly nonlinear, and about as many parameters. The advantage of em-
pirical models is that we can specify model complexity explicitly, giving us
at least partial control over the difficulty of the resulting control problem.
On the other hand, the price we pay for this reduced model complexity is
generally reduced model fidelity. Thus, to apply model-based control sys-
tem design procedures effectively, it is necessary to develop empirical process
models that are “close enough” in the process characterization cube to the
dynamics of the real-world process, but that are also within the “domain” of
the control system design methodology of interest. The principal objective
of this chapter is to describe the key issues that we must confront when we
attempt to solve this problem in practice.

Box and Jenkins proposed a systematic approach to linear time-series
modeling, described in reference [10] and consisting of the following four
steps:

1. selection of a general class C of empirical models for consideration;
2. identification of a specific subclass of models to be fit;

3. estimation of model parameters;

4. assessment of model adequacy.

The models considered by Box and Jenkins were parametric models, de-
scribed by a finite number of adjustable parameters (see Section 5.1 for a
brief discussion of parametric modeling and its alternatives). Consequently,
step 2 of their procedure is primarily concerned with deciding how many
model parameters to admit (i.e., how complex to allow the model to be-
come). One of the key points of this chapter (Section 3.2) is that certain
equivalences that hold between different linear models (e.g., discrete- and
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continuous-time models) do not hold for nonlinear models. Consequently,
issues of model structure selection — corresponding to steps 1 and 2 of the
Box-Jenkins procedure — are even more important in nonlinear modeling
than in linear modeling. It is for this reason that we concentrate more on
these issues in this chapter than on the “more traditional” topic of parameter
estimation algorithms.

The remainder of this chapter is divided into sections, numbered 2 through
10. Sections 2 and 3 deal with continuous-time and discrete-time process
models, respectively, providing useful background material for the discus-
sions that follow. Sections 4 and 5 then discuss the empirical model building
process and the problem of model structure selection, respectively, both
closely related to the first step in the Box-Jenkins model development pro-
cedure. Because the subsequent three steps in this procedure have strong
connections to statistics, Section 6 gives a brief overview of some useful
statistical background material. Section 7 then discusses the problem of
model parameter estimation, while Section 8 discusses the problems of cross-
validation and input sequence design. Section 9 then illustrates some of the
main ideas developed here with a case study (control of a high-purity distil-
lation process) and Section 10 gives a brief summary of these ideas.

2.2 Continuous-Time Process Models

Fundamental process descriptions usually take the form of continuous-time
models, so this section gives a brief overview of some of the most popular
continuous-time model structures that appear in the control literature. All
of these models are special cases of — or closely related to — the class of
state-space models:

x(t) = F(x(t),u(t))
y(t) = Gx(), (2.1)

Here, x, u, and y are state, input, and output vectors of dimensions n, m,
and r, respectively. The vector function F maps the domain R" x R™ into
the range R", while the vector function G maps R" into R".

The principal objective of this overview is to give some insight into the
range of qualitative behavior these models can exhibit. This insight is impor-
tant because in empirical modeling, we are attempting to develop a “mod-
erate complexity” model that captures the essential qualitative behavior of
the real-world process of interest.
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2.2.1 Control-Affine Models

Kantor notes [47] that many first-principles models may be represented as
control-affine special cases of Eq. (2.1). Here, the nonlinear vector map
F(x,u) has the special form:

F(x,u) = f(x) + I'(x)u. (2.2)

This structural restriction on F(x,u) necessarily limits the class of dynamic
phenomena that may be represented, relative to the unconstrained state-
space model (2.1). Despite these limitations, however, the discussion given
here illustrates that this class of dynamic phenomena is still very broad. As
a specific example, the second-order polynomial model considered in Section
4.2 is control-affine, but it is particularly interesting because it can exhibit
a form of instability known as finite escape time. More generally, note that
all linear models are included in the control-affine class, as are the bilinear
models discussed in Section 2.2. In addition, Boyd and Chua [12] have
shown that the finite Volterra models considered in Section 2.3 have bilinear
realizations, implying that they, too, are equivalent to members of the class
of control-affine models. Before proceeding to more detailed discussions of
these important subsets of the control-affine model class, it is useful to briefly
consider the following two examples. These examples are not members of
the more restricted model classes discussed in Sections 2.2 and 2.3, and
they illustrate the range of behavior that the control-affine class of dynamic
models — but not all of its sub-classes — is capable of exhibiting.

Example 1 — Chaotic Dynamics

Chaos is a nonlinear dynamic phenomenon that has recieved much attention
recently [26, 39, 96]. One of the simplest continuous-time models that is
flexible enough to exhibit chaotic dynamics is the Lorenz equation [26]:

de/dt = —ox + oy
dy/dt = —zz +rz —y
dz/dt = zy — bz. (2.3)

Physically, these equations describe the convection-driven patterns that arise
in fluid flow between rectangular plates. In this problem, the variables z, y,
and z represent the intensity of convective motion, the temperature differ-
ence between ascending and descending currents in the fluid, and the devi-
ation from linearity of the vertical temperature profile between the plates.
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To see the connection between these equations and the control-affine
model (2.2), define the state vector components z; = z, 2 =y, and z3 = 2z
and take r as the scalar control input u. In particular, note that r is a
ratio of Rayleigh numbers and is proportional to the temperature difference
between plates. Thus, if we consider the problem of controlling fluid motion
by manipulating this temperature difference, the Lorenz equations may be
re-written as a control-affine model by defining:

—0x1 +0x2
f(x) = | —ziz3—22 |, (2.4)
r1ro — b.%‘g
and
0
'x) = | o2 |- (2.5)
0

This example demonstrates that the class of control-affine models is “quali-
tatively rich enough” to exhibit chaotic dynamics.

Example 2 — Jump Phenomena

Jump phenomena are important in the theory of nonlinear oscillators [13, 62,
96]. While these phenomena will not be discussed in detail here, they have
been widely studied and it is useful to note that the class of control-affine
models can also exhibit this type of behavior. This point is significant since
some of the interesting subsets of this model class lack this flexibility, as
noted in subsequent discussions. Here, note that one of the models often
used to illustrate jump phenomena is Duffing’s equation:

d?y dy 3
g2 T Tt By® = u(t). (2.6)

This model may be cast in control-affine form by defining the state variables

z1 =y and z3 = dy/dt. The functions f(x) and I'(x) appearing in Eq. (2.1)
are then given by:

f(x) = "2 (2.7)

—az] — ﬂw‘i’ — cTo
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and

T = [ 0 ] . (2.8)

2.2.2 Bilinear Models

For single-input problems (i.e., u(t) = u(t) is a scalar), if the control-affine
model is further restricted to f(x) = Ax and I'(x) = Nx + b, the result is a
bilinear model. Here, A and N are n X n matrices and b is an n-vector. This
class may be extended to MIMO problems by considering multiple terms of
this general form, i.e.:

T'(xju = i u;(t)N;x + Bu, (2.9)
i=1

where B is an n X m matrix. Further, note that when IN; = 0, for all 7, the
bilinear model reduces to the more familiar linear one. Because this structure
is a special case of the more general control-affine structure, we can expect
the class of behavior it is capable of representing to be correspondingly
restricted. For example, Brockett has shown [13] that bilinear models cannot
represent jump phenomena like that exhibited by the Duffing equation.

A point that will be emphasized repeatedly throughout this chapter is
that the qualitative behavior of a nonlinear model can depend strongly on
the specific inputs considered. The step response of a single-input, single-
output bilinear model illustrates this point nicely. Specifically, consider the
effect of the step input:

a t>0
aft) = { 0 t<0 (2.10)

on the bilinear system defined above. If x(t) = 0 for ¢ < 0, the bilinear
model may be re-written as the “equivalent” linear model for ¢ > 0:

x(t) = (A + aN)x(t) + bu(t).
y@t) = I'x(t) (2.11)

The response of this model will be determined by the eigenvalues of the ma-
trix A + alN, which depend on the input amplitude a. For low-amplitude
inputs (small a) and “weak” nonlinearities (“small” N), these eigenvalues
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will be approximately the same as those of A, so the effects of the nonlin-
earity will not be felt. As a increases, however, the qualitative behavior of
the step response will come ultimately to be dominated by the eigenvalues
of N, which may be very different from those of A.

2.2.3 Volterra Models and Fading Memory Systems

Another class of nonlinear models that has attracted significant interest is
the class of Volterra models [12, 79, 88, 96]. For the single-input, single-
output (SISO) case, this series is given by:

y(t) = wo(t) + (2.12)

o0 0 9]
> / / kn(t;t1, b2, ooy tn)u(ty) - - - w(tn)dty...dty,.
n=1 —0o0 —0o0

Here, the functions ky,(¢;t1, t2, ..., tn) are called the Volterra kernels and gen-
eralize the impulse response characterizing a linear system. Essentially, this
series represents the response y(t) in terms of the past history of the in-
put u(r) for all 7 < t and the kernels must be constrained to enforce this
causality condition. As a specific example, note that the standard linear
convolution model may be represented as a Volterra model with all terms
identically zero except the first-order kernel:

ki(t;t1) =

{ h(t—t) t <t (2.13)

0 ti 2t

To be useful in practice, Volterra models must be truncated to a finite
number of terms. Boyd and Chua [12] consider the question of what class
of system behavior may be approximated by such truncated Volterra mod-
els. They show that systems with fading memory on a particular set K of
input sequences may be approximated arbitrarily well on that set by a trun-
cated Volterra model of sufficiently high order. Roughly speaking, a fading
memory system is one whose dependence on past inputs decreases “rapidly
enough” with time. This concept is important because it provides a useful,
broad partitioning of the enormous class of “nonlinear systems.” Thus, we
discuss it briefly here and will revisit it in subsequent sections, particularly
in connection with the distinction between “autoregressive” and “moving
average” discrete-time models and in connection with “mixing conditions”
in statistics.
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The precise definition of a fading memory system given by Boyd and
Chua [12] is as follows. The set C(R) is defined as the space of bounded
continuous functions on the real line R, equipped with the supremum norm
||u|| = supser |u(t)|- Let K be a subset of C(R) and let N be the nonlinear
operator from C(R) to C(R) defined by the nonlinear system of interest.
This operator has fading memory on the subset K if there exists a decreasing
function w(t) : R4 — (0, 1] with lim;—,o w(t) = 0such that for eachu € K
and € > 0, there is some § > 0 such that for all v € K,

supizo lu(—) — o(—Dlw(®) < 6
= |Nu(0) — Nv(0)| < e.

Mathematically, this notion is a stronger version of continuity for the op-
erator N, which would result if we took w(t) = 1 for all ¢ [12]. Boyd and
Chua prove that all finite-dimensional (exponentially stable) linear systems
are fading memory systems.

The dependence on the set K in the definition of fading memory sys-
tems is important, for three reasons. First, it emphasizes the importance
of explicitly considering the class of relevant inputs in modeling nonlinear
systems, a point to which we shall return repeatedly. Second, and more
immediately, Boyd and Chua’s main approximation result is that if N has
fading memory on the following specific set K:

K = {ueCR)||lull <My, |lu(t —7) —u(®)|| < Mpr, 720},

it may be approximated with arbitrary accuracy by a finite Volterra series,
for all u € K. Physically, the set K consists of “slew-rate limited” signals
that do not change “too rapidly” over short time intervals. In particular,
piecewise-constant input sequences like steps are explicitly excluded from
this set. Finally, the third point about the set K is that if N has fading
memory on K and has a state-space representation, and if X is the set
of states reachable from the input sequences in K, then N has a unique
steady-state for all u € K and all initial conditions in X. Thus, fading
memory systems are “well-behaved” in the sense that they cannot exhibit
multiple steady-states or other related phenomena like chaotic responses.
This point is important because chemical processes (in particular, reactors)
can exhibit these phenomena. Consequently, if fading memory models are to
be developed, we can only expect them to be valid “locally,” i.e., within the
basin of attraction of a single steady state.



20 CHAPTER 2. NONLINEAR PROCESS IDENTIFICATION
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Figure 2.2: Hammerstein Model Structure
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Figure 2.3: Wiener Model Structure

2.2.4 Block-Oriented Nonlinear Models

Closely related to Volterra models are the block-oriented models, defined
by cascade and/or parallel connection of static nonlinearities and linear dy-
namics. Probably the best-known member of this class is the Hammerstein
model [3, 37] shown in Fig. 2.2. Because of its relatively simple structure,
this model has become increasingly popular as a “next-step-beyond-linear-
modeling” of chemical processes [31, 91]. In particular, note that this model
combines linear dynamics with a nonlinear steady-state gain. If the order
of these blocks is reversed — i.e., if the static nonlinearity follows the linear
dynamics — the resulting system is called a Wiener model (3, 40, 36, 38|,
which has also been considered for process modeling applications [99, 100].
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Figure 2.4: “Two channel” Uryson model

This model is shown in Fig. 2.3 and is not equivalent to the Hammerstein
model [70], even though if H(0) = 1, the steady-state gain is specified by the
function f(-) in both models and is therefore the same. Both of these struc-
tures are special cases of the more general “sandwich model” considered by
Brillinger [15] and Greblicki and Pawlak [38], in which the static nonlinear-
ity is “sandwiched” between two linear dynamic models. Still more general
“block-oriented” nonlinear models have been investigated involving both se-
ries and parallel connections of static nonlinearities and linear dynamics
[3, 38, 40]. As a specific example, the Uryson model consists of several Ham-
merstein models connected in parallel, driven by a common input, with their
outputs summed [3], as shown in Fig. 2.4.

Chen [17] gives a reasonably detailed review of some of the recent electri-
cal engineering and biological modeling literature on block-oriented nonlinear
models. For SISO models, he introduces the following useful terminology —
the letter “N” is used to indicate the placement of a static nonlinearity and
the letter “L” is used to indicate the placement of linear dynamics. Thus,
Hammerstein models are referred to as “NL” models, Wiener models are
referred to as “L N” models, and sandwich models are referred to as “LNL”
models. This nomenclature is extended to “parallel models,” consisting of
m of each of these models connected in parallel. Thus, the Uryson model
composed of m Hammerstein models in parallel is designated “PNL,,.” A
number of useful results are presented in Chen’s review and some of them
will be discussed in subsequent sections here. It should be noted that his
review does not cover any of the recent chemical engineering applications of
block-oriented models, nor does it mention the growing literature on non-
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parametric identification approaches for these models, a topic introduced in
Section 4 of this chapter and considered further in Section 7.

In any of these models, if the static nonlinearities are analytic, a Volterra
representation may be developed from the Taylor series expansion of the
nonlinearity and the convolution representation of the linear dynamics. To
see this connection, consider the quadratic nonlinearity f(z) = z? in both
the Wiener and the Hammerstein models. If h(t) is the impulse response of
the linear subsystem and k£ (¢;¢1) is defined as in Eq. (2.13), we have for the
Wiener model:

y(t) = [/m o (6 b))ty |

—0o0
o0 o0
= [ [ kit tyututt)dnds, (214)
—00 J —00
where ka(t;t1,t2) is the separable kernel:
kQ(t;tl,tQ) = kl(t;tl)kl (t;tg). (2.15)

Similarly, it is not difficult to show that the Hammerstein model is completely
described by the second-order Volterra kernel:

ka(titi,te) = ki(t;t1)d(t — t2), (2.16)

where §(-) is the Dirac delta function.

Analogous reasoning leads to finite Volterra representations for block-
oriented models with polynomial nonlinearities of arbitrary order, and from
there to infinite Volterra representations for analytic nonlinearities. Note
that a general characteristic of analytic Hammerstein models is that they
involve “diagonal kernels” of the form:

kn(t; tl, t2, veey tn) = 'y(t; tl)é(tl — t2)5(t3 = t2) =2 (5(tn = tn—-l)' (2.17)

Similarly, analytic Wiener models will involve separable kernels of the general
form:

kn(tsti,ta, . tn) = any(t;t1)y(t5 t2) - - - (t; t). (2.18)

One of the topics that Chen’s review does treat fairly extensively is the
relationship between the different Volterra kernels that must be satisfied by
the more complex block-oriented models [17].
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Figure 2.5: General “MIMO Hammerstein model” structure

2.2.5 MIMO Models and “Hidden Layers”

The preceeding discussions have focused on single-input/single-output mod-
els. These models have combined different forms of nonlinearity and dynamic
complexity and thus occupy one face of the “process characterization cube”
introduced in Section 1. To explore more of this cube, it is necessary to con-
sider multivariable models, which are quite important in practice in spite
of their added complexity. In particular, note that first-principles models
are almost universally multivariable — specific control problems may focus
on “single loop pairings,” but this focus is an approximate one and some-
times an inappropriate one. In the linear case, multivariable state space
models are simple extensions of SISO models, building on the same basic
concepts of linear algebra, but these models only serve to map out the sec-
ond face of the process characterization cube. To see the character of the
interior of the cube, it is necessary to consider the simultaneous interplay
between dynamics, nonlinearity, and multivariable character. In general,
this region represents unexplored territory, but the following discussion of
block-oriented MIMO models illustrates some important ideas. In addition,
it will be seen that adopting a MIMO focus illuminates some important
relationships between different classes of SISO models.
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Block-Oriented MIMO Models

First, consider the “multivariable Hammerstein model,” shown in Fig. 2.5.
There, the scalar input variable u defining the standard Hammerstein model
has been replaced with an m-vector u and the scalar output variable y has
been replaced with an n-vector y. In addition, an intermediate g-vector v is
also shown, corresponding to the output from the first block of the diagram
and the input to the second. This second block is a general g-input/n-output
linear system, defined by the n x ¢ transfer function matrix H(s). The first
block is a ¢ x m nonlinear static map G(-), transforming the input vector
u(t) at time ¢ into an “intermediate” output vector v(t) at the same time
instant. Each component of this “intermediate” output vector may depend
arbitrarily on any or all of the components of the input vector, but there is
no dependence on past inputs.

Multivariable Wiener models can be defined similarly, simply reversing
the order of the two blocks appearing in Fig. 2.5; and “sandwich” or “L NL”
models may be constructed by cascading two MIMO linear dynamic models
with a multivariable static nonlinearity, just as in the SISO case. More com-
plex block-oriented MIMO structures are discussed in some detail in Chen’s
review [17]. In all cases, the dimensions of the “internal” or “hidden” layers
of the model (e.g., v in the MIMO Hammerstein model discussed above)
represent useful “design variables,” as the following subsection illustrates.

SISO Models with a “Hidden Layer”

Typical feedforward neural network structures involve an “input layer” of
processing elements, one or more “hidden layers,” and an “output layer” [85].
If we consider the special case of the MIMO Hammerstein model shown in
Fig. 2.5 with m =n =1 but ¢ > 1, we see an interesting parallel: there is a
g-dimensional “hidden layer” between the static nonlinear “input layer” and
the linear dynamic “output layer.” In particular, note that each component
v; of this “hidden layer” is defined by:

vi(t) = Gi(u(t)), (2.19)

where G;(-) : R — R! is a static nonlinearity. The “output layer” in
this model is a linear MISO transfer function matrix H(s); that is, each
component of the vector v passes through a linear SISO dynamic system
and the results are summed to generate the response y. Combining these
two layers results in the Uryson model discussed above, composed of ¢ SISO
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Hammerstein models connected in parallel, or in Chen’s terminology, the
PNLg model. An important point discussed further in Section 5.3 is that this
model structure is closely related to the concept of “local linear modeling.”

If we reverse the order of the linear and nonlinear blocks in this Ham-
merstein model structure, we obtain a Wiener model that is also quite inter-
esting. Specifically, for the “input layer,” consider a linear state-space model
of dimension n > ¢ > 1 with a scalar input u and a ¢g-dimensional output v.
This “hidden layer response” will be:

x(t) = Ax(t) + bu(t)
v(t) = Cx(t), (2.20)

where A is an n X n matrix, b is an n-vector, and C is a ¢ X n matrix.
The “output layer” then consists of the sum of ¢ static nonlinearities, each
applied to one component of v, i.e.:

q
y(t) = > Gi(vi(t)). (2.21)
i=1

The two extremes of this representation are particularly interesting: tak-
ing ¢ = 1, we recover the standard Wiener model, while Boyd and Chua have
shown that any fading memory SISO system can be approximated arbitrar-
ily closely by a model of this general structure with ¢ = n [12]. The question
of when alternative structures might be advantageous — e.g., intermediate
values of ¢ in this “hidden layer Wiener model,” the “hidden layer Ham-
merstein” structure considered above, “hidden layer sandwich models,” or
others — raise questions reminiscent of the debate over the optimal num-
ber of hidden layers and nodes in neural network approximations of static
nonlinear maps [52].

2.3 Discrete-Time Process Models

While fundamental physical models are almost always developed in continuous-
time, computer-based process control systems function in discrete-time: mea-
surements are made and control actions are taken at discrete time instants,
seconds, minutes, hours, or days apart. In addition, the input/output data
we have available for model identification is generally only available at dis-
crete time instants. Thus, while we can identify continuous-time models from
this data, it is usually easier to identify discrete-time models and use these as
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a basis for designing discrete-time control systems for computer implementa-
tion. This observation motivates our interest in discrete-time models, despite
certain inherent differences between the behavior of discrete-time models and
continuous-time models.

2.3.1 ARMAX and NARMAX Models

The class of ARMAX models (AutoRegressive Moving Average models with
eXogenous inputs) has been widely used as a basis for linear model iden-
tification [55]. These models relate an input sequence {u(k)} to an output
sequence {y(k)} by the linear, constant-coefficient difference equation:

p q
y(k) = Y ajylk—3j) + > bju(k—j)
j=1 §=0
+ icj-e(k —J)- (2.22)
7=0

This model originated in the time-series literature where the focus is on
the statistical characterization of the output sequence {y(k)} resulting when
{e(k)} is a “Gaussian white noise” sequence (see Section 6). The term “ex-
ogeneous input” for the sequence {u(k)} refers to the fact that the ARMAX
model is a generalization of the ARMA model obtained when u(k) = 0 iden-
tically. In the process control applications considered here, the emphasis is
somewhat different. Specifically, it is the relationship between the sequences
{u(k)} and {y(k)} that is of primary importance, while the sequence {e(k)}
represents a “modeling error” in this relationship, arising from the com-
bined effects of measurement noise, unmeasured process disturbances, ne-
glected nonlinearities, etc. The assumptions made regarding the nature of
the two “model inputs” {u(k)} and {e(k)} will influence different aspects of
the modeling problem in different ways and will be discussed from various
perspectives in subsequent sections.

For nonlinear systems, a popular class of discrete-time models is the
NARMAX (Nonlinear ARMAX) family, described by Billings and Voon [5]:

yk) = F(y(k—1),y(k-2),...,y(k —p), (2.23)
U’(k)au(k - 1)7 ,U,(k‘ - Q)
e(k—1),e(k —2),....e(k — 1)) +e(k).
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Here, F(-) is a nonlinear function of the p + q + r + 1 variables indicated
and the sequences {y(k)}, {u(k)}, and {e(k)} have the same definitions as in
the ARMAX model described above. These models constitute an extremely
broad class, including many other classes of nonlinear discrete-time models
as special cases. To define a NARMAX model completely, it is necessary to
specify the order parameters p, q, and r, and the form of the function F'(-)
appearing in Eq. (2.23).

In this section, we will focus on ideal input/output behavior for which
e(k) = 0 identically, implying r = 0 by default. In contrast, the order
parameters p and g are quite important. In particular, taking p = 0 and
g > 0, the model output y(k) depends only on the past history of the input
sequence {u(k)} and not on previous output values y(k — j). Borrowing
terminology from the time-series literature [76, 96], we will call this class the
“Nonlinear Moving Average models with eXogeneous inputs,” or NMAX
models. Conversely, if we take p > 0 and ¢ = 0, we obtain a model whose
output y(k) depends only on the current input u(k) and the past history
of the output sequence {y(k — j)}. Again borrowing terminology from the
time-series literature, this class will be called the “Nonlinear AutoRegressive
models with eXogeneous inputs” or NARX models. As a practical matter,
y(k) will generally depend on the input u(k — d), delayed by a single, fized
number of samples d; this assumption does not change the nature of the
model class — they may still be viewed as NARX models. What is not
permitted in the NARX model class considered here is dependence on several
different past inputs. If both p > 0 and ¢ > 0, the output y(k) at any time
k will depend on both the input history and the output history, giving rise
to the general NARMAX class, including both the NMAX and the NARX
classes as special cases and exhibiting a correspondingly richer variety of
dynamics. (It should be noted that Ljung [55] defines linear ARX models
in a way that permits inclusion of “moving average” terms in the control
input u(k); due to the substantial qualitative behavior differences between
nonlinear “autoregressive” and “moving average” models discussed below,
we will restrict NARX models to exclude terms that are “moving average”
with respect to the control input, as noted above.)

2.3.2 Non-Equivalent Representations

One unique feature of the linear problem is that if a continuous-time linear
ordinary differential equation with constant coefficients is sampled at a con-
stant sampling rate T, the samples may be described exactly by a discrete-
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time linear model [55, p. 20]. In addition, if T} is sufficiently small to avoid
“aliasing phenomena,” this transformation is invertible. That is, given T}
and the discrete-time ARMAX model (2.22), we may derive an N*"-order
constant-coefficient, linear ordinary differential equation relating wu(t) and
y(t) such that y(tx) = y(k) and u(ty) = u(k) for tx = (k — 1)Ts. Another
characteristic feature of linear discrete-time ARMAX models is that they
may be represented equally well by either “moving average” or “autoregres-
sive” expressions. Specifically, note that the case p = 0, = co corresponds
to a convolution model with {b;} representing the impulse response of the
system. It is a standard result [55, p. 13] that any time-invariant, linear sys-
tem may be completely characterized by its impulse response. Conversely,
the case p = oo, ¢ = 0 represents an infinite-order autoregressive model, and
it is not difficult to show that any time-invariant, linear system may be com-
pletely characterized by a model of this form as well [49, p. 112]. In other
words, the response of any stable linear system may be represented either as
a convolution model in terms of the past history of its input sequence or as
an autoregressive model in terms of the past history of its output sequence.

These equivalences for linear models — continuous, discrete, autoregres-
sive, and moving average — are summarized in Fig. 2.6. Unfortunately,
none of these equivalences extend to nonlinear problems. For example, the
logistic equation:

y(k) = ay(k — 1)[1 — y(k — 1)], (2.24)
is a first-order nonlinear discrete-time model that has been extensively stud-
ied because it exhibits chaotic behavior [96]. In contrast, it is known that in
continuous time, nonlinear ordinary differential equations must be at least
third-order to exhibit chaotic behavior [39].

To see that NMAX and NARX models are not equivalent, consider the
following NARX model [96]:

y(k) = { 2y(k—1) +u(k) |yk-1)<2

u(k) w(k—1)| > 2 (2.25)

If this model is driven by the input sequence u(k) = (—1)*¥ — a periodic
sequence with period 2, the response is a sequence with period 6. This
lengthening of the period of the response relative to the period of the input
is called subharmonic generation and is not possible in NMAX models [70].
That is, note that the response of an NMAX model to an input sequence
{u(k)} with period T is of the form:

y(k) = F(u(k),u(k —1),...,u(k —m))
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Flulk+T),u(lk+T—-1),...,u(k+T —m))
= yk+T). (2.26)

Thus, regardless of the form of the nonlinear function F(---), the response
sequence {y(k)} has the same period as the input sequence {u(k)}, excluding
the possibility of subharmonic generation.

Since all of the equivalences noted in Fig. 2.6 hold for linear models,
linear model structure selection is therefore largely a matter of convenience
— it may be of substantial practical importance, but selecting the “wrong”
model structure does not exclude any qualitative phenomena. Conversely,
since none of these model structure equivalences hold for the nonlinear case,
we must be more judicious in nonlinear model structure selection.

2.3.3 Special Classes of NARMAX Models

As noted above, the class of NARMAZX models is an extremely large one, and
in practice, it is usual to focus on various structurally defined subsets of this
class. The first two steps in the four-step model-building procedure described
in Section 1 then entail selection of a specific sub-class of NARMAX models
and the specification of order parameters p, ¢, and r in Eq. (2.23). The
selection of a sub-class of NARMAX models amounts to specifying a general
form for the function F'(---) in Eq. (2.23), a topic to be discussed further in
Section 4. To facilitate that discussion, it is useful to consider first, briefly,
the following special classes of NARMAX models.

NAARX Models

In theory, one approach to the model structure selection problem is the use
of nonparametric statistical procedures, discussed briefly in Section 4. In
practice, however, these procedures become increasingly difficult to apply
as the number of variables involved increases. In Eq. (2.23), this number
is p+ q +r + 1, which is large enough to be a significant concern even for
low-order models. Consequently, we must either impose a parametric struc-
ture on F(-) a priori or decompose the general structure into a collection
of simpler sub-structures to which nonparametric techniques are applicable.
The first approach is probably the most common in practice, typically taking
F(-) as a polynomial of relatively low degree £. The advantage of this choice
is that it permits the use of statistical techniques like stepwise regression for
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model identification [3]. More recently, Billings and Zhu [7, 102] have ap-
plied similar procedures to the identification of rational NARMAX models,
in which F(-) is the ratio of two polynomials. Alternatively, Tong [96] con-
siders a variety of different models with the NARMAX structure in which
the function F(-) is not a polynomial but instead involves discontinuous
threshold functions.

The second alternative is illustrated by the class of NAARX models
(Nonlinear Additive AutoRegressive models with eXogeneous inputs) defined
by Chen and Tsay [16]:

q

p
y(k) = Y fily(k—0) + D gilu(k—3)) + e(k).  (2.27)
=1

§=0

Here, the functions {fi(-)} and {g;(-)} are scalar nonlinearities, making them
well suited to the use of nonparametric procedures like those discussed in
Section 4. This class of models is broad enough to exhibit a very wide range
of behavior. In particular, note that this class includes the linear ARMAX
models, along with many interesting nonlinear model classes considered later
in this chapter. For example, note that both the logistic equation (2.24) and
Tong’s subharmonic generator model (2.25) are members of this class. Con-
versely, this model does not permit “cross-terms” involving products of in-
puts and outputs, or input or output values at different times. An extremely
interesting open question is what behavioral price we pay for imposing this
analytically convenient structural restriction on @ NARMAX model.

Volterra and Block-Oriented Models

Discrete-time Volterra models may be defined by replacing the “multiple
convolution integrals” appearing in Eq. (2.12) with “multiple convolution
sums,” i.e.:

y(k) =yo + > aju(k —j) (2.28)
7=0
+ 33 bijulk —du(k — j)
i=0 j=0

o ol ole o}

+ .33 aggulk —Dulk —dulk —7) + ...

1=0 i=0 j=0
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As in the case of continuous-time Volterra models, practical applications
require that this series be truncated to a finite number of terms; these trun-
cated series are known as finite Volterra models.

Extending their continuous-time results, Boyd and Chua [12] also define
discrete-time fading memory systems and prove that these systems may be
approximated arbitrarily well by finite Volterra models. Specifically, they
consider nonlinear system operators N mapping £*° into itself, where £*° is
the space of bounded sequences {u(k)} equipped with the supremum norm
||lu|| = supg |u(k)|. The operator N has fading memory on a subset K of
£°° if the following conditions are met. First, there is a decreasing sequence
{w(k)} such that 0 < w(k) < 1 for all k¥ and limg_ w(k) = 0. The
operator N then has fading memory on K if, for each u € K and each € > 0,
there is some § > 0 such that for all v € K,

supg>o |u(—k) —v(—k)|lw(k) < ¢
= |Nu(0) — Nv(0)| < e. (2.29)

As in the continuous-time case, this condition implies that “the distant
past has negligible influence on the present.” Two important points are
worth noting here, however. First, unlike the continuous-time case, the finite
Volterra approximation result holds here for any set K of uniformly bounded
sequences: i.e., ||u|| < M;. In particular, note that no “slew-rate limit” is
imposed here, suggesting the discrete-time result may have wider validity
than the continuous-time result. Conversely, the second point is that, as
Boyd and Chua note [12], these finite Volterra models belong to the moving
average class — i.e., they are polynomial NARMAX models with p = 0.
Also, as in the case of continuous-time fading memory models, discrete-time
fading memory models cannot exhibit output multiplicities [12]. It is known
that the CSTR model can exhibit such multiple steady-state behavior [97],
so it follows that any fading memory model (e.g., linear, Volterra, etc.)
can only be a “reasonable” approximation over an operating range that is
narrow enough to include just one steady-state. This observation raises the
interesting open question: what class of physical phenomena correspond to
discrete-time models that do not have fading memory on the set S of input
sequences of primary interest?

Even when q is relatively small and only a few terms are retained in a
finite Volterra model, the number of model parameters required to repre-
sent the series quickly becomes unreasonable. To address this problem in
practice, various approaches to structural restriction have been proposed,
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including “pruning” (i.e., setting certain Volterra coefficients to zero) [74]
and the use of orthogonal polynomial expansions [57]. Alternatively, this
objection may be overcome by considering instead the discrete-time versions
of the block-oriented models discussed in Section 2. As in the continuous-
time case discussed there, models constructed from analytic nonlinearities
may be viewed as structurally constrained Volterra models. Conversely, the
block-oriented structure remains well-defined even if these nonlinearities are
not analytic. This observation may be important in practice since the non-
linearity f(-) in either the Hammerstein or the Wiener model represents the
steady-state gain of the model and analyticity is a fairly restrictive condition.
For example, note that analytic functions cannot exhibit hard saturation: if
f(z) = c on some finite interval [a,b] but this function is not identically
constant, it is not analytic. This result follows from the fact that the be-
havior of an analytic function on any open interval completely determines
its behavior [19, p. 87]. To distinguish between Hammerstein models with
analytic nonlinearities from those with more general nonlinearities, it is use-
ful to define the sub-class of analytic- or A-Hammerstein models. Similarly,
Wiener models with analytic nonlinearities will be referred to as analytic- or
A-Wiener models.

“Cross-Terms” and the PPOD Model

It is useful to note that the discrete-time Hammerstein model is a member of
the NAARX class defined in Eq. (2.27). To see this connection, take go(z) =
f(z) as the static nonlinearity in the Hammerstein model and represent the
linear dynamic part of the model by an ARMAX model with coefficients
{a;} and {b;}. The other functions appearing in the NAARX representation
are then f;(r) = a;z and g;(z) = bjgo(z). Conversely, note that Wiener
models are not members of the NAARX class: “cross-terms” are present in
the Wiener model. Again, an extremely interesting issue, both theoretically
and practically, is what we gain or lose by including or excluding these terms
from the general NARMAX structure.

Partially motivated by this question, Pawlak, Doyle and ourselves [69]
have proposed a generalization of the Hammerstein model in which the non-
linearity itself is dynamic. This model structure will be abbreviated as the
“PPOD model” and is of the form shown in Fig. 2.7. It is described by the
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u(k) Delay

fG0) H(z) —y(k)

Figure 2.7: “PPOD” Model Structure Proposed by Pawlak, Pearson, Ogun-
naike, and Doyle

following equation:
p q
y(k) = D ajyk—3) + Y bim(u(k —j),u(k —j — 1)), (2.30)
i=1 j=0

where m(-,-) : R* — R represents a dynamic nonlinearity, involving the
lowest-order “cross-terms” missing from the NAARX models. In addition,
by restricting the domain of this nonlinearity to R?, we are still able to apply
nonparametric regression procedures to gain some “hints” as to the nature
of the cross-terms required to explain the input/output data [69].

It is instructive to consider some of the interesting special cases that are
included in this general model class. First, note that if m(z,y) = f(z) or
m(z,y) = g(y), this model reduces to the Hammerstein model. On the other
hand, note that while the Hammerstein model is a member of the NAARX
class, the PPOD model is not, unless m(z,y) = f(z) + g(y). As a specific
example, note that if m(z,y) = g(axz + by), the result is a Wiener model
consisting of a two-term moving average linear model followed by the static
nonlinearity g(-). Finally, Zhu and Seborg [102] recently introduced a model
of this form with m(z,y) = az + p(y) where p(y) is a polynomial. This
model was motivated by practical considerations in implementing nonlinear
model predictive control algorithms based on Hammerstein models and is
discussed further in Section 4.4.
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Relationships Between Different Model Classes

To conclude this section, Figs. 2.8 and 2.9 are Venn diagrams that attempt
to illustrate the relationships between the different discrete-time nonlinear
dynamic model classes considered here. These diagrams are based on simi-
lar ones appearing in [71], which discusses these relationships in somewhat
greater detail. Note that the abbreviation “NAMAX” appearing in Fig.
2.9 refers to “Nonlinear Additive Moving Average models with eXogeneous
inputs,” defined by taking p = 0 in Eq. (2.27).

2.3.4 Added Complexity of MIMO Models

Mathematically, it is easy to extend the NARMAX model defined in Eq.
(2.23) to the multiple-input/multiple-output (MIMO) setting. To handle
multiple inputs, the arguments u(k),u(k—1),...,u(k—q) in the function F'(-)
are replaced with the larger set u;(k),u1(k —1),...,u1(k — q1),ua(k),ua(k —
1),...,u2(k—q2), ..., etc. To handle multiple outputs, one equation of the form
(2.23) is written for each output y;(k), with the arguments of each function
F;(-) further augmented to include the terms y;(k—1),y;(k—2), ...,y;(k—p;)
for the “other outputs” j # . This generalization leads to combinatorial
growth in model complexity since the number of arguments in each function
F;(+) for an n-input, m-output model will be ngrg = p1 +p2 + -+ + pm +
(@1 +1)+(g2+1)+ -+ (gn + 1), assuming the past model error terms
e(k),e(k —1),...,e(k —r) are omitted (as they often are in practice).

Even if each function Fj(-) is restricted to be a low-order polynomial,
the number of possible terms in this model quickly becomes prohibitive.
For example, consider a three-input, two-output model with p; = 2 for all
© and g; = 2 for all j — each of the two functions Fj(-) then involves 13
arguments. Even if these functions are restricted to be cubic polynomials,
the number of possible terms in each polynomial is 455, meaning that in
the general case 910 model coefficients must be estimated to specify both
functions fully. Increasing the polynomial order to 4 increases the total
number of model coefficients to 14,560. In contrast, in the SISO case, for
p =2and ¢ = 2, F(-) is a function of 5 arguments and the total number
of unknown model parameters is 35 for the cubic polynomial and 70 for
the fourth-order polynomial case. Thus, as important as judicious model
structure selection is in the SISO case, it is even more critical in the MIMO
case. This particular point is illustrated in the case study in Section 9, in
which a MIMO NARMAX model is developed for a high-purity distillation
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column. One possible approach to the multivariable NARMAX modeling
problem is to note its similarity to the multivariable regression problem
[28]. There, polynomial models in which all possible terms are present are
called saturated models [78] and approaches like stepwise regression [5, 44]
have been developed to arrive at non-saturated models. “Regression-based”
approaches like these will be considered briefly in Section 7 in connection
with NARMAX model identification.

2.4 The Empirical Model-Building Process

The fundamental objective of empirical modeling is to construct a mathe-
matical model M of a physical process P. Given a set S of input sequences,
a necessary — but not sufficient — condition for M to be a “good” model is
that the predicted response Mu for any input u € S is approximately equal
to the response Pu of the physical process to the same input. In symbols,
we are seeking “solutions” M to the approximate equation:

Mu ~ Puforallucs. (2.31)

The “solution” we obtain for this “equation” will depend on the following
factors:

e the process P;
e the exact interpretation of the approximation symbol ot
e the set S of process inputs;

e the class C of empirical models M from which we are seeking the “best”
representative.

Here, we assume that the process P is fixed, but that the other three items on
this list are at least partially at the discretion of the model builder. Section
4.1 illustrates some of our options in interpreting the symbol “~7, while
Section 4.2 considers specification of the set S of inputs over which we want
our model to be valid. In practice, model-building is an iterative process
in which we attempt either to “tighten” our notion of approximation, or to
“enlarge” the model validity set S. Section 4.3 briefly discusses this iteration
process. The class C of candidate models to be considered must be specified
at each stage of this iteration process; Section 5 is devoted to a detailed
discussion of this model structure selection problem.
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2.4.1 Interpretation of “~”

The range of possible interpretations for the approximation symbol “~” —
and the impact of our choice on the final modeling result — is most eas-
ily illustrated with a simple example. Specifically, consider the problem of
approximating an analytic function f(-) on a specified interval [a,b]. Three
different “reasonable” approximation strategies will be considered and shown
to lead to fundamentally different results: Taylor series expansion, Tcheby-
shev polynomial approximation, and Bernstein polynomial approximation.

Taylor Series Approximations

Since f(-) is analytic, it may be expanded as a Taylor series, i.e.:

2
flz) = f(zo) + (x— wo)j—f + (z— $0)2g—£ + ..., (2.32)
T lz=ao S PP

where z( is some reference point in the interval [a,b]. If we are to use this
expansion in practice, it must be truncated to a finite number of terms n,
resulting in an approximation error that depends on n. It is important to
note that the underlying approximation philosophy here is a local one; in
particular, the expansion is ezact at £ = o and degrades as we move away
from this point. To increase the approximation accuracy of the Taylor series
on the interval [a, b], we must increase the number of terms retained. Some
Taylor series converge very slowly, however, such as the one for f(z) =
(14 z)~!, valid for the range —1 < = < 1, but very slowly convergent as the
limits of this range are approached.

Tchebyshev Polynomial Approximations

In contrast to the local nature of Taylor series expansions, Tchebyshev poly-
nomials solve the problem of minimizing, for a fixed interval [a, b] and a fixed
polynomial order n, the maximum approximation error incurred on the in-
terval [25, sec. 7.4]. That is, the Tchebyshev polynomial approximation
T, (f; z) minimizes the maximum value of |f(z) — Tn(f;z)| on the interval
[a,b]. Thus, for given order n, the worst-case approximation error for the
Tchebyshev polynomial approximation T, (f;x) is better than the worst-case
Taylor series approximation error. Conversely, the derivatives of the function
f'(z), f"(z), etc. are generally not well approximated by the corresponding
derivatives of T, (f;z). This behavior is in contrast to the local behavior of
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the Taylor series, since the lowest-order derivatives of the truncated Taylor
series are also exact at g, just like the function itself.

Bernstein Polynomial Approximations

By the Weierstrass approximation theorem [50], any continuous function
f(z) can be approximated uniformly to arbitrary accuracy on any finite,
closed interval [a, b] by a polynomial of finite degree. The polynomials often
used to prove this theorem are the Bernstein polynomials B, (f;x), given by
the explicit formula [25]:

Balfi) = 3 ks (:) Fa-orh (233)
k=0

(This formula assumes the interval [a, b] is [0, 1]; nothing significant is changed
by re-scaling this expression to arbitrary finite intervals.)

It is important to note that the basis of the Weierstrass theorem is funda-
mentally different from the basis for Tchebyshev approximation. Specifically,
Tchebyshev approximation constructs a best approzimation of fized order n,
given the function and the approximation interval. On the other hand, in
proving the Weierstrass approximation theorem, the maximum approxima-
tion error over the interval is specified and a Bernstein polynomial of suffi-
ciently high order n is constructed to meet this approximation requirement.
In fact, an unfortunate feature of the Bernstein polynomial approximations
is that their convergence is rather slow [25], so the required polynomial order
tends to be high. The primary advantage of these polynomials, however, is
that the approximations preserve the qualitative character of the functions
they approximate. In particular, low-order derivatives of Bernstein poly-
nomial approximations are reasonable approximations of the derivatives of
f(z) and the approximation also preserves such general qualitative behavior
as convexity and monotonicity [25].

Deciding Between Different Approximation Criteria

The key point of this discussion is that the “best nonlinear approximation”
we obtain for the function f(z) depends on both our “adequacy” criterion
and the range over which we want this criterion to be met. In the above
example, if our sole criteria is “goodness of fit,” we will prefer the Tcheby-
shev approximation over either the Taylor series or the Bernstein polynomial
approximation because, for a specified interval and polynomial order, it has
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the smallest possible worst-case approximation error. Conversely, the trun-
cated Taylor series has a certain “fundamental feel” about it, since each
term in the expansion is directly related to the derivatives of the function at
a specified point. Note, however, that a truncated Taylor series expansion
need not exhibit the general qualitative behavior of the function f(z) on a
given interval [a, b]. For example, consider the Taylor series expansion for the
function f(z) = (1+)~! on the interval [-3/4,3/4]; expanded about z = 0
and truncated to second order, this series is 1 — 2 + 22. This approximation
has a minimum in the interior of the approximation interval at z = 1/2,
even though the original function f(x) is monotonically decreasing on the
whole interval. If we wish to achieve an approximation that retains these
qualitative features over the entire interval of interest, we must accept a
more complex model like the Bernstein polynomial approximation discussed
above.

2.4.2 Specification of the Range of Model Validity

Overall, the “most reasonable interpretation” of the approximation symbol
“~” in Eq. (2.31) will depend on the following factors:

e the set S of process inputs;
e the class C of empirical models under consideration;

e our application (i.e., the process P and the control system design
methodology under consideration).

The following paragraphs illustrate this dependence on the set S of process
inputs, demonstrating the subtlety required in adequately defining this set.
Dependence on the class C of models is related to the issue of model struc-
ture selection considered in Section 5. Finally, note that it is application-
depencence that motivates recent work on “control-relevant” model iden-
tification [81]: “open loop” prediction error measures are replaced with
frequency-weighted prediction error measures that penalize prediction errors
with adverse control implications more than those with negligible control im-
plications. It is not immediately obvious how to generalize these ideas to
arbitrary nonlinear model identification problems because frequency-domain
descriptions of nonlinear models are necessarily incomplete. Still, the basic
concept of making our approzimation measure application-dependent seems
like a useful one and this area appears to be a fruitful one for future research.
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Specification of the “range of validity” for a dynamic model M is more
complex than specification of the range of a function f(-) mapping one finite-
dimensional space into another. Specifically, note that the set S appearing
in Eq. (2.31) is a set of functions u(t) rather than a set of values. To illus-
trate this distinction, recall from the discussion of fading memory systems in
Section 2.3 that Boyd and Chua’s approximation result [12] was valid for a
set K of slew-rate limited inputs. This restriction was necessary to make the
Stone-Weierstrass approximation theorem apply to fading memory systems.
The key point is that this restriction specifies two types of constraints on u:

1. the static amplitude limit ||u(¢)|| < My;
2. the dynamic slew-rate limit ||u(t — 7) — u(t)|| < MaT.

This observation is important because specification of an input range condi-
tion like (1) alone is generally not sufficient to define the set S. The following
example provides a detailed description of another case where dynamic con-
straints are both important and non-obvious without further examination.

A Simple Nonlinear Continuous-Time Model

Consider the behavior of the first-order SISO model obtained by approxi-
mating the function F'(z(t),u(t)) in Eq. (2.1) by the following second-order
polynomial [65]:

F(z,u) ~ (¢ + 12 + ¢2z?) + (Y0 + 112 + 22°)u. (2.34)

Note that this model is control affine but not bilinear unless v = 0 and ¢y =
0. This model structure was motivated by a desire to explore the “next-step-
beyond-bilinear-models,” retaining the first two terms of the Taylor series
expansion of the nonlinearities appearing in the control-affine structure.

To obtain insights into the qualitative behavior of this model, it is useful
to employ the same “trick” invoked earlier for the bilinear model. Specifi-
cally, note that the step response of this model is given by the solution of
an equation of the form:

dz 2
= = a+ bz + cz?, (2.35)

where:

a = ¢o+ay
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b = ¢1+an
c = ¢+ ay. (2.36)

An explicit solution to this equation may be obtained, but its form depends
strongly on the constants a, b, and c. In particular, the character of the
solution depends on the discriminant A = 4ac — b?: if this quantity is nega-
tive, nothing remarkable happens, but if it is positive, this model can exhibit
finite escape time. That is, for A > 0, the solution to Eq. (2.35) is:

zig) = %—CZ [tan (90 + \/TZt> — tan 90} ; (2.37)

where 6y = arctan(b/+/A). Note that this solution diverges to +oco as the
argument of the tangent function approaches 7 /2, which occurs at the escape

time:
T

2
# = [_ - eo] | 2.38
VA 2 (2.38)

An extremely important point to note here is that the dominant qualita-
tive behavior of this model — presence or absence of a finite escape time —
depends on both the model structural parameters ¢; and +; and the input

amplitude a. To see this point, expand A explicitly as:

A = [4¢o2 — ¢1] + [4(0¢2 + 12¢0) — 21 dn]e + [47072 — 73], (2.39)

To force A < 0 — and thus avoid the finite escape phenomenon — the
following criteria must be met. First, to satisfy this condition for small input
amplitudes (a ~ 0), the first term in brackets must be negative, representing
an “inherent stability constraint.” Similarly, to avoid finite escape at large
input amplitudes (a — 00), the last term in brackets must also be negative.

Note that both of these conditions are satisfied by the linear special case
0o = ¢2 = 0 and 11 = 72 = 0. In fact, for this case, A = —¢? < 0 for
all a, correctly indicating that the linear case cannot exhibit finite escape
time, regardless of the input amplitude. Similarly, note that both of these
conditions are also satisfied for the bilinear case, for which the constraint
71 = 0 is relaxed. In fact, for the bilinear case, we have A = —(¢; +
y1)?, which is, again, non-positive for all possible input amplitudes and
system parameters. Thus, the bilinear special case of this model cannot
exhibit finite escape time, either. Conversely, note that if the first term in
brackets is negative but the last term is positive, the model will exhibit a
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finite escape time for some sufficiently large input step amplitude a. As a
specific example, consider ¢9 = 0, ¢1 = 1, ¢po = 0, 9 = 1, 71 = 0, and
72 = 1. Here, A = 4a2 — 1, so the model cannot exhibit finite escape
time for a < 1/2, but it can for @ > 1/2. Finally, note that a perverse
kind of “conditional stability” is also possible in this model: if the first and
last terms in brackets are both negative but the middle term is positive,
there may be an “intermediate amplitude” o that causes the middle term to
dominate. In this case, A > 0 and the model response will diverge in finite
time. As a specific example, consider ¢ =0,y =1, 0 =1, 79 =1, 11 = 1,
v2 = 0: it is easy to show that A > 0 for a between 3 — /8 ~ 0.172 and
3+ /8 ~5.828.

Now, suppose we perform the following identification experiment: we
wish to model a process P that is both well-behaved (i.e., does not exhibit
finite escape times) and well approximated by a control-affine fundamental
model. Suppose we excite this process with inputs from a set S and attempt
to estimate the corresponding parameters for model (2.34) that best match
the available data. Here, the set S consists of “high-frequency” piecewise-
constant input sequences that assume arbitrary values in the interval [—1, 1],
but whose values switch rapidly enough that they never remain constant
longer than 0.2 time units. For these inputs, the “conditionally stable”
model just described is perfectly well-behaved — the worst-case (i.e., short-
est) escape time for step inputs in the interval [—1,1] is t* = 7/4 ~ 0.7854.
Thus, it is possible that this model could be the “best fit” approximation
of P from the available data, even though this model exhibits finite escape
time but the process itself does not. In particular, the point of this ezample
is that it is the nature of the set S we choose that determines whether the
model considered here is a “good” or a “pathologically poor” approzimation
of the process. Specifically, the model considered here may be a good ap-
proximation on the set S of “high-frequency” piecewise-constant sequences
used for identification, but it is completely inadequate when considered in
terms of step responses since any positive step of amplitude between 3 — /8
and 3 + /8 will exhibit the finite escape instability. Note that the differ-
ence between the set S and the larger set of “all piecewise- constant input
sequences” is that S excludes “low-frequency” signals (e.g., steps).

2.4.3 Sequential Model Building

In practice, model building is usually a sequential process, in which models
of increasing complexity are developed from — and compared with — ear-
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lier models of lower complexity. In the development of nonlinear, dynamic
models, two particularly useful and important points of comparison are:

e static (i.e., steady-state) models;
e linear dynamic models.

The nonlinear model structure selection problem will be considered in Sec-
tion 5, but before considering this topic, it is worth considering the two
“precursors” listed above, specifically in their role as “gquides” for the itera-
tive nonlinear modeling process.

Steady-State Behavior of Empirical Models

The idea of “steady-state agreement” between a candidate model and process
behavior is often an important criterion for “model validity,” but this issue
is more subtle for nonlinear models than for linear ones. In particular, for
linear models, the issue is whether the steady-state gain K is correct, but for
nonlinear models, the notion of “steady-state agreement” between a model
and a process is closely related to the issues of local vs. global modeling
considered in Section 5. That is, for a linear SISO problem, the process input
is typically represented as U + u(t) where U is a steady-state reference value
and u(t) is the instantaneous deviation of the input from this reference value.
Similarly, the process response is represented as Y +y(t), where Y is steady-
state response to the input U and y(t) is the corresponding instantaneous
deviation from this reference value. For stable, linear, time-invariant models,
the following conditions hold:

L1 the steady-state response is Y = KU, independent of u(t);
L2 the dynamic response is y(t) = L{u(t)}, independent of U,

where L is the linear model’s dynamic response.
For nonlinear models, the situation is more complex, and we have the
following possibilities:

N1 the steady-state value Y may fail to exist;

N2 when Y is well-defined, generally Y = S{U,u(t)} is a function of both
U and u(t);

N3 the dynamic response y(t) = D{U,u(t)} is a function of both U and
u(t).
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The first of these possibilities (i.e., N1) is illustrated by the first-order thresh-
old autoregressive model considered in [70]:

y(k) = aly(k—1)| + bu(k —1).

In particular, if the amplitude of the input to this model is sufficiently large,
the step response of this model is chaotic and never settles out to a steady-
state value Y. As an example of nonlinear behavior N2, consider the re-
sponse of a Hammerstein model with the quadratic nonlinearity g(z) = z?
to the input sequence U +u(t) where u(t) = acos(2w ft). It follows from sim-
ple trigonometric identities that, if K is the steady-state gain of the linear
part of the Hammerstein model, then Y = K (U+a?/2). That is, the steady-
state response depends on both the steady-state input U and the amplitude
of the “fluctuations” wu(t) about steady-state. Note that this “rectification
phenomenon” — i.e., conversion of “fluctuations” into a “steady-state off-
set” — necessarily arises in any model with an asymmetric nonlinearity.
This phenomenon is commonly observed in chemical processes; for a specific
example, refer to the high-purity distillation column discussed in Section 9.

Finally, the nonlinear behavior N3 listed above is illustrated by the fol-
lowing example. Consider a Hammerstein model with the saturation non-

linearity:
z |z| <1
T —
9(@) { 1 & »>1,

and suppose the input to this model is U + acos(27 ft) where a = 1/2. For
—1/2 < U < 1/2, this model behaves linearly and its dynamic response will
be of the form H(f)acos(2n ft), where H(f) is the amplitude response of
the linear part of the Hammerstein model at the excitation frequency f. For
-3/2< U < —1/2and 1/2 < U < 3/2, the saturation nonlinearity g(x) will
cause harmonic generation at frequencies 3f, 5f, ..., and the intensities of
these harmonics will depend on U. Finally, for U < —3/2 or U > 3/2, the
input nonlinearity will be fully saturated, so the input to the linear part of
the Hammerstein model will be constant at either +1 or —1. Consequently,
the output of the Hammerstein model will saturate at +K. This dependence
of the dynamic response y(t) on both U and u(t) is also commonly observed
in chemical processes and is again illustrated in Section 9.

The key point here is that the “steady-state behavior” of a nonlinear
model is usually inextricably linked with both dynamic responses and the
class of inputs under consideration. In addition, even when well-defined
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steady-states exist for a given class of inputs, evaluating them may require
significant effort. As a specific example, consider the task of characterizing
the steady-state response of a NARMAX model of “moderate complexity”
(e.g., 5 to 10 model parameters):

e does it exhibit chaotic regimes?

e are there pronounced differences in “steady-state gain” for different
input sequence amplitudes?

e are there pronounced differences in “steady-state gain” for different
input sequence “shapes”?

e etc.

Still, certain “steady-state characterizations” (e.g., “what does the step-
response ultimately settle out to?”) do yield useful insight into nonlinear
model behavior and should be developed, if only as a prelude to a more
complete dynamic characterization.

Development of a “Linear Skeleton”

Since the term “nonlinear models” automatically defines an alternative ref-
erence point — i.e., “linear models” — it is extremely useful to compare the
performance of any nonlinear model with “nearby” linear ones. In addition,
we may reverse this process, using linear models as a basis for guiding the
development of nonlinear models. For example, in developing bilinear time-
series models, Subba Rao and Gabr [92] advocate first constructing a linear
model, taking advantage of such linear modeling tools as the Akaike Informa-
tion Criterion (AIC) [14, 76, 96] to guide model order determination. Cinar
[20] advocates a similar approach in developing NARMAX models: start
with a “linear skeleton” that provides both guidance in selecting an initial
model order and a basis for comparion in subsequent refinement steps. In
addition, this approach may be taken a step further, “trimming” this “linear
skeleton” through the use of techniques like stepwise regression to eliminate
“marginal” model terms [92]; note that the “simplified” models developed
by this procedure also serve as “secondary standards” for comparison in
subsequent nonlinear model evaluations.
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2.5 Nonlinear Model Structure Selection

As noted in Section 1, the first step in nonlinear process identification is
the selection of an “appropriate” model structure. Unfortunately, this step
is probably both the most difficult and the least amenable to systematic
analysis. Consequently, this section offers brief summaries of the following
four topics, to provide useful guidance:

1. parametric, nonparametric, and semi-parametric modeling;
variable selection and transformation;

local modeling;

Ll

control-motivated model structure selection.

2.5.1 Parametric, Nonparametric, and
Semi-Parametric Models

Dynamic model identification is similar in some important respects to regres-
sion analysis. There, we are concerned with the identification of unknown
functions (i.e., static maps) from available data. As a specific example, con-
sider the scalar case: a real-valued function f(-) is to be identified such
that the approximation y ~ f(z) is a “good” one for the available dataset
D = {(zs,y:)}. Three basic approaches have evolved for solving this problem
— parametric regression, nonparametric regression, and semi-parametric re-
gression. Parametric procedures postulate a general form for the function
f(-), characterized by a p-vector of parameters §. For example, an n'-
order scalar polynomial is characterized by n + 1 coefficients. Given such
a functional form, parametric procedures choose optimal values for these
parameters by minimizing some measure of “lack of fit” (e.g., total squared
€rror).

Nonparametric procedures do not assume an explicit form for the func-
tion, “allowing the data to choose.” For example, kernel regression [42]
constructs the following “smoothed” estimate of f(z) from the available

data: n K )
py i Bz — i)y
fle) = ?:11 KG—) (2.40)

Here, the function K(-) is a smoothing kernel that is typically of the form
K(z — z;) = G(%5%) where h is a constant parameter called the bandwidth.
In practical terms, the end result of a nonparametric procedure is typically a
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plot of the smooth function f(z). The choice of both the form of the “basic
kernel function” G(-) and the bandwidth h are important in practice, but
practical advice on these topics is becomming increasingly available [42, 58].

Semi-parametric regression procedures decompose the unknown function
f(z) into a parametric part and a nonparametric part, applying the appropri-
ate analytical procedures to each. That is, we write f(z) = fi 6;z) + fax)
and develop a procedure that both estimates the unknown parameter vector
6 and “smooths” the data appropriately to obtain an estimate fa(z) of the
“nonparametric part” fa(z).

These ideas carry over to system identification. For example, in linear
system identification, direct identification of ARMAX models is a parametric
problem. That is, autoregressive and moving-average model orders p and
q are chosen and the corresponding model parameters {a;} and {b;} that
best fit the available data are estimated. Alternatively, frequency responses
may be estimated nonparametrically by first computing classical estimates of
the input autospectrum Sy, (f) and the input-output cross-spectrum Baylf)
[65, 76]. The ratio H(f) = Suy(f)/Suu(f) then yields a nonparametric
estimate of the frequency response of the linear model relating the input /
output data. The use of semi-parametric techniques in Hammerstein model
identification is discussed briefly in Section 7.2.

The advantage of nonparametric estimates is that they impose fewer
“prior assumptions” on the resulting model, but there are two significant
disadvantages. First, note that nonparametric models are not generally ap-
plicable to control system design directly because most model-based con-
trol schemes require parametric models. For example, to be useful in a
linear pole-placement procedure, a nonparametric frequency response esti-
mate would first have to be converted to a rational transfer function model.
Typically, this conversion would be accomplished by fitting a ratio of low-
order polynomials to the estimated frequency response; the coefficients in
this parametric model would then be used for controller design. In spite of
this ultimate need for a parametric model, nonparametric procedures can be
quite useful in the exploratory initial stages of model development. This is
particularly true in nonlinear process identification because the model struc-
ture selection problem is so difficult, a point discussed further in Section 7.2.
The second disadvantage of nonparametric approaches is that estimation of
maultivariable nonlinear functions rapidly becomes difficult [42]. In particu-
lar, it is not practical at present to apply a general nonparametric regression
procedure to the NARMAX model (2.23) for “reasonable” values of p, q,
and r and expect meaningful results. Thus, while nonparametric procedures



50 CHAPTER 2. NONLINEAR PROCESS IDENTIFICATION

can be useful in the model structure selection process, they do not reduce
the problem to a purely computational one.

2.5.2 Variable Selection and Transformation

Often, empirical process modeling leaves us a number of options regarding
what variables to include in the model, and this choice can profoundly influ-
ence the nature of the model we ultimately develop. Specifically, if we have
any discretion in the selection of variables to be included in a multivariable
model, we may be able to influence the dynamic complexity, nonlinearity,
and degree of interaction significantly, as the following simple example illus-
trates clearly. Consider a conical mixing tank with two feed streams — hot
and cold water. The control objective is to maintain a fixed tank level and
effluent temperature in the face of changes in effluent flow rate. Adopting a
simple pairing scheme (e.g., controlling level by manipulating cold water flow
rate, controlling temperature by manipulating hot water flow rate) leads to a
nonlinear MIMO problem. If instead, we control tank level by manipulating
total flow (i.e., the sum of hot and cold water flow rates) and control effluent
temperature by manipulating an appropriately weighted difference between
these flow rates, we obtain two weakly coupled SISO problems [66]. We can
simplify this problem further by adopting the “extensive variable” control
philosophy [34] and controlling not tank level, but the volume of material in
the tank. That is, note that, given the height, minimum radius, and max-
imum radius of the tank, we can compute the volume of liquid in the tank
from level measurements. The result of these changes in manipulated and
controlled variables — based on physical insights — has taken us from a
strongly nonlinear MIMO problem to two weakly coupled, weakly nonlinear
SISO problems.

While this example is simple enough to be fairly obvious, it raises the
point that the structure and complexity of an empirical model can depend
dramatically on the exact choice of variables. Thus, if the physical variables
available to us for empirical modeling are levels and individual flow rates,
we may find that simpler models result if we consider such alternatives as
the following:

e transform levels into approximate volumes;

e replace individual flow rates with total flow rates into and out of a
vessel or “compartment”;
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e replace individual flow rates with ratios of individual flow rates;

e replace individual flow rates with ratios of individual flow rates to total
flow rates.

Analytical procedures like nonparametric regression may also be useful in
suggesting transformations to apply to individual variables to achieve sim-
pler models. Finally, note that variable selection and transformations also
influence robustness (i.e., sensitivity of model predictions to “outliers” or
“bad data”) [53].

2.5.3 Local Modeling

Another approach to the development of reduced complexity models is the
development of multiple local models, each approximating process behavior
“adequately” over some restricted operating range. The advantage of this
approach is that the overall complexity of the collection of local models is
often significantly less than that of the corresponding global model necessary
to describe process dynamics over the entire operating range. For example,
for many processes, if the range of control input variations is restricted suffi-
ciently, it may be possible to approximate the process dynamics adequately
by a linear model. Combining several linear models then leads to a model
that is globally nonlinear but locally linear. This point is illustrated by Jo-
hansen and Foss [46] who develop a set of four local linear models to describe
the dynamics of a batch fermentation reactor. The question of how ezactly
to specify the regime of validity of each model is an important one, as the
following example illustrates.

Consider a single-input, single-output control problem and suppose the
nonlinear process dynamics may be approximated “adequately” by a collec-
tion of m local linear models. Assume each model has a transfer function
H;(s) and is associated with a set S; of possible input values (e.g., intervals

[u;,u]]). Define the m nonlinear functions:

]

Gi(u) = uxi(u), (2.41)

where x;(+) is the characteristic function for the set S;, i.e.:

1 ves;
xi(u) = { 0 ugsS; (2.42)
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Suppose we now construct an m-channel Uryson model (i.e., a PN Ly, model
in Chen’s notation [17]) with the nonlinearity G;(-) and the transfer function
H;(s) in the i" channel for i = 1,2,...,m. If the model validity sets S; are
disjoint, then for any value of the input u, only one of the “intermediate
variables” G;(u) can be non-zero, so the Uryson model output will be the
response of the “appropriate” linear model.

This construction suggests that for Uryson models in general, the quan-
tity v;(u) = Gi(u)/u may be viewed as a “model validity function” for the
linear model H;(s). That is, if ;(u) — a measure of the nonlinearity of
G;i(-) — approximates the characteristic function for some set S; of possible
input values, the “local linear modeling” interpretation holds. Alternatively,
if the functions v;(u) exhibit broad peaks over some range of input values,
it may be appropriate to interpret them as fuzzy set characteristic functions
[29, 101], describing imprecise regions of model validity. At the other ex-
treme, if v;(u) = 1 for all 4 and all u, the Uryson model reduces to a linear
model whose transfer function is H(s) = Yiv; H;(s). Intermediate between
these limits, the Uryson model may be viewed as a collection of local linear
models whose regions of validity — and influence — overlap strongly. While
it is not equivalent to the nonlinear Uryson model, a useful frame of reference
for this intermediate case is the local linear model:

m
H(s) = Y vi(uo) H(s), (2.43)
i=1
which should have approximately the same steady-state behavior for u(t) ~
ugp-.

The preceeding discussion illustrates the close connection between lo-
cal linear modeling and Uryson models, but two significant points have not
yet been addressed. The first is that the region of validity for a local lin-
ear model is often not directly expressible in terms of the input u alone.
For example, in the fermentor models developed by Johansen and Foss, the
fermentor is a batch process and the models describe the evolution of the
batch from fixed initial conditions, so there is no “control input w.” In-
stead, three different combinations of output variables and state variables
for the fermentor are used to specify the region of model validity, based on a
qualitative understanding of the evolution of the batch through different op-
erating regimes. This observation suggests that, if the analogy between local
linear models and block-oriented models is to hold for these more complex
cases, the “validity functions” v;(u) must be replaced by multivariable func-
tions v;(u, 1, ..., z,) of some set of r measurable “auxiliary variables.” This
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change may destroy the block-oriented structure of the model, but investi-
gation of the possibilities may yield useful insights into both block-oriented
models and local modeling ideas.

The second point overlooked in the Uryson model discussion given above
is the effect of transients that occur when switching from one region of model
validity to another. That is, in switching from u(t) € S; to u(t') € Sj, both
linear models 7 and j will have non-zero responses during the transient, which
will be summed and appear in the Uryson model output. The question of
how to combine local models is an important one and is considered in [2].
In addition, it is useful to note that the threshold autoregressive models
discussed by Tong [96] are locally linear models. The fact that the sub-
harmonic generating model discussed in Section 3.2 is of this form clearly
illustrates that the behavior of “locally linear models” is quite distinct from
that of “linear models.”

Finally, it is important to note that, while the examples discussed here
used local linear models, the local models need not be linear in general.
In particular, recall that the fading memory systems discussed in Section 2
were defined on a specified set K of input sequences and exhibited a unique
steady state for all inputs within that set. Further, for particular sets K
(ie., sets of bounded, “slew-rate limited” inputs), these systems could be
approximated uniformly by finite Volterra models. This observation suggests
that local Volterra modeling around each steady state may be a reasonable
approach for systems (e.g., reactors) that are known to exhibit multiple
steady states. Alternatively, local NARMAX models may be developed for
different operating regimes of a process, resulting in a model with a wider
overall range of validity and simpler structure than a global NARMAX model
that attempts to describe all regimes simultaneously.

2.5.4 Control-Motivated Model Structure Selection

The primary motivation for empirical model identification given in Section
1 was the incompatibility of first-principles models with many control ap-
proaches due to the generally great complexity of such models. This observa-
tion provides a significant motivation for considering the “inverse problem”:
choosing a model structure that leads to a tractable control problem. His-
torically, this idea was one of the strongest motivations for the development
of linear process models. More recently, this idea was one of the motivations
for considering Volterra models — the model structure leads naturally to a
special “nonlinear IMC” control approach [27].
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Similarly, Zhu and Seborg [102] considered the “modified Hammerstein
model” discussed earlier because it greatly simplifies the solution of the
Model Predictive Control (MPC) problem relative to the standard Ham-
merstein model. Specifically, for the MPC problem, we ultimately need to
solve for the control input u(k) required to bring the predicted process out-
put §j(k) to some target value y*. For a polynomial Hammerstein model, if
v(k) is the output of the static nonlinearity, it is given by:

L

v(k) = Y v, (2.44)

=1

while the modified Hammerstein model considered by Zhu and Seborg re-
places this relation with the dynamic nonlinearity:

v(k) = mu(k) + vilu(k — 1)) (2.45)

Mo

[|
N

)

In the absence of either nonlinearity, the linear MPC problem gives the value
of v(k) such that §(k) = y*. To convert this result into a control input for
the nonlinear problem, we must compute u(k) from this value of v(k). Zhu
and Seborg proposed the modified Hammerstein model of Eq. (2.45) because
inversion of Eq. (2.44) is a polynomial root-finding problem. In contrast,
the inversion of Eq. (2.45) is accomplished by the simple analytical result:

L
uk) = — |o(k) — 3 wlulk— DI, (2.46)
m i=2

which is directly computable since u(k — 1) is known at time k.

It was noted in Section 3 that this modified Hammerstein model is a
member of the PPOD family of models. This observation raises a number
of interesting questions. First and foremost is the question of how the class
of dynamic nonlinearities described by this model differs from the range
of behavior representable by the Hammerstein model. Zhu and Seborg’s
motivation for introducing it was the observation that if the sequence {u(k)}
is slowly varying, the control value u(k) given by Eq. (2.46) should not
differ too much from the solution to the unmodified Hammerstein problem.
The more intriguing question is how the dynamics differ in cases where the
difference between u (k) and u(k—1) is not small. In addition, referring back
to the discussion of nonparametric approaches to Hammerstein modeling,
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note that Zhu and Seborg’s model generalizes directly from Eq. (2.45) to:
v(k) = mu(k) + g(u(k—1)), (2.47)

where g(-) is an arbitrary function. In particular, nonparametric estimation
of this function might expand the applicability of this model considerably,
as in the unmodified Hammerstein case (see Section 7.2 for a discussion of
this point). Finally, note that the MPC problem would remain tractable
for a still wider class of PPOD models. For example, consider the following
“control affine” model:

v(k) = mu(k) g(u(k —1)), (2.48)

where again, g(-) is an arbitrary function. As in the previous examples, this
structure permits explicit computation of u(k) from v(k) as:

v(k)
v g(u(k — 1))

An important question raised by such control-motivated model struc-
tures is how well they can represent the process to be controlled. In the
examples just described, the general answer is “at least as well as the linear
sub-class they contain.” That is, viewing this linear sub-class as a con-
strained form of the nonlinear model, the best unconstrained model within
the class must represent the process dynamics at least as well as the best
constrained (i.e., linear) model within the class. In general, we would expect
the best unconstrained model to be a better representation of the process
dynamics, but the practical question is “how much better?”

u(k) = (2.49)

2.6 Statistical Considerations

Once we have selected a model structure, the remaining three steps in the
empirical model development sequence discussed in Section 1 all have strong
connections with statistics. For this reason, the following section summarizes
some important statistical concepts that will be useful in subsequent discus-
sions of these modeling steps. This section is necessarily brief and empha-
sizes concepts, restricting consideration to discrete-time stochastic processes.
Probably the most important notion considered here is the distinction be-
tween the distribution of a sequence of random variables and its dependence
structure, both of which are important in nonlinear model identification. For
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a more rigorous introduction to random variables and stochastic processes,
see Billingsley [8]; for a more extensive “engineering-oriented” introduction,
see Papoulis [68].

2.6.1 Working Definitions and General Concepts

The ideas presented here are mainly summarized from Rosenblatt [83], and
rephrased slightly to emphasize the underlying concepts. The discrete-time
stochastic processes considered here may be viewed as sequences {z} of ran-
dom variables where the index sequence k runs from —oo to +o00. These se-
quences will be characterized in terms of the joint densities p(z;, 41, -, Zj+m)
for arbitrary subsequences {zj, 1, ..., Zj4+m}. In particular, the following
definitions are important.

The sequence {zy} is statistically independent if, for any j and m, the
joint density p(z;,Zj41,...,Zj+m) may be expressed as:

m
Dl By o) = || Pl (2.50)
i=0
Here, the scalar function p;i;(-) is the marginal density for the random
variable z;4;. A sequence that is not statistically independent will be called
dependent and we will be very much concerned with its dependence structure,
which is closely related to the ideas of dynamic modeling.
The sequence {zy} is stationary if, for any j and m, the joint density
PAB G Bt o By} 18 independent of § — 0.,

p(wj7mj+17 "'al'j+m) = p(mkywk—f—la -"axk+m)a (251)

for arbitrary k # j. It follows that if {zy} is both statistically independent
and stationary, the joint density is given by:

m
B(z5, Bl - Bgams) = ] Dolmgaa)s (2.52)
i=0

Here, all elements of the sequence {zy} are characterized by the single
marginal density po(-), independent of the index k. Such sequences are called
independent, identically distributed (i.i.d.) sequences, or “white noise” and
are extremely important in the system identification literature.

Many standard results in statistics were first developed for i.i.d. se-
quences and then extended to sequences with “sufficiently weak” depen-
dence structures. Commonly, any one of various “mixing conditions” are
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considered [83], which are somewhat analogous to the fading memory condi-
tions discussed in Section 2. Specifically, these mixing conditions imply that
the sequence {zyx} is “asymptotically independent,” so that, for example,
p(zk, ;) =~ p(xk)p(z;) if |j — k| is sufficiently large. A particularly strong
mixing condition is the assumption of “m-dependence,” which implies that
p(xk, ;) = p(zk)p(z;) exactly if |j — k| > m. The connection between both
of these conditions and NARMAX models will be discussed below.

2.6.2 Gaussian Sequences and Linear Models

If the joint densities p(zj,Zj+1, ..., Tj+m) are Gaussian for all j and m, then
the sequence {zy} is called a Gaussian stochastic process. A characteristic
feature of Gaussian stochastic processes is that they are completely charac-
terized by their first two moments: the means uy = E{z} and the autocor-
relations R;.(j, k) = E{xix;}. For a stationary Gaussian stochastic process,
the means are constant — i.e., ur = p for all K — and the autocorrelations
depend only on the distance |j — k| between the elements of the sequence,
1:6:

Similarly, the autocovariance function [68] or second cumulant [63] for a
stationary stochastic process is defined as:

5(r) = E{lz(k) — pllz(k +7) — pl}- (2.54)

Equivalently, a stationary Gaussian stochastic process may be completely
characterized by its mean p and its power spectral density Sy (f), defined as
the discrete Fourier transform of the autocorrelation function, i.e.:

Szz(f) == —io:o e—j2ﬂkawa(k)' (255)

k=—00

Here, T is the time between successive samples of the sequence {z(k)} and
f is a frequency variable that ranges from —1/27 to +1/27T.

Probably the best known example of a Gaussian stochastic process is
“Gaussian white noise,” an i.i.d. sequence {z(k)} of zero-mean, Gaussian

random variables. The autocorrelation function for this sequence is given
by:

o® 7 =i

5 o (2.56)
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