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Preface

In the past decade, the control of nonlinear systems has received consider-
able attention in both academia and industry. The recent interest in the
design and analysis of nonlinear control systems is due to several factors.
First and foremost, linear controllers usually perform poorly when applied
to highly nonlinear systems or moderately nonlinear systems that operate
over a wide range of conditions. On the other hand, significant progress has
been made in the development of model-based controller design strategies
for nonlinear systems. These techniques employ the nonlinear model directly
in the controller calculation without the need for local linearization about
an operating point. Finally, the development of inexpensive and powerful
computers have made on-line implementation of these nonlinear model-based
controllers feasible.

This research monograph is intended as an introduction to the design,
analysis, and application of nonlinear control strategies for process systems.
Individual chapters have been prepared by leading academic and industrial
researchers. To make the monograph accessible to a larger audience, we have
attempted to present a balanced view of the theoretical and practical issues.
However, the very nature of nonlinear systems dictates the use of some ad-
vanced mathematical tools. Although the control techniques presented are
applicable to a broad range of nonlinear systems, the application of these
methods to nonlinear process control problems is emphasized. Case studies
are presented to illustrate the controller design procedures. Comparisons
with linear control techniques also are included to demonstrate the perfor-
mance improvements that can be achieved by employing a nonlinear control
strategy.

The monograph has seven chapters which cover three major topics re-
lated to nonlinear process control: nonlinear identification, nonlinear con-
troller design, and nonlinear state estimation. Chapter 1 motivates the need
for nonlinear process control systems and contains a discussion of several
classic nonlinear control techniques. Because all of the control strategies

xi



xii PREFACE

discussed in the subsequent chapters presume the availability of a nonlinear
process model, identification techniques for nonlinear systems are presented
in Chapter 2. Several important topics from nonlinear systems theory are
presented in Chapter 3. Although both Chapters 2 and 3 could easily warrant
an entire book, they are presented primarily as a prelude to the nonlinear
control and estimation techniques presented in the subsequent chapters.

The two most important controller design approaches for nonlinear pro-
cess applications are discussed in Chapters 4 and 5. Feedback linearization
techniques which yield exact linearization of the closed-loop system are pre-
sented in Chapter 4. Nonlinear model predictive control strategies, which are
nonlinear generalizations of linear model predictive control schemes success-
fully applied in the process industries, are discussed in Chapter 5. Because it
may be difficult or even impossible to obtain on-line measurements of all the
state variables required for control, the design of nonlinear state observers is
presented in Chapter 6. The use of artificial neural networks for nonlinear
process identification and control is discussed in Chapter 7.

We have assumed that the reader has completed an introductory course
in process control and has a working knowledge of elementary calculus. Some
familiarity with linear state-space systems and linear controller design tech-
niques is helpful but not essential. The book may serve as a concise reference
for control engineers interested in nonlinear process control theory and ap-
plications. The book also can be used as a textbook in a graduate course
on process control. Chapters 3-5 could be covered in a course in which
nonlinear control is one of several topics.
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Chapter 1

Introduction

DALE E. SEBORG
Department of Chemical Engineering
University of California
Santa Barbara, CA 93106-5080

MICHAEL A. HENSON
Department of Chemical Engineering
Louisiana State University
Baton Rouge, LA 70803-7303

Many common process control problems exhibit nonlinear behavior, in
that the relationship between the controlled and manipulated variables de-
pends on the operating conditions. For example, if the dynamic behavior of
a nonlinear process is approximated by a linear model such as a first-order
transfer function, the model parameters (e.g. steady-state gain, time con-
stant, time delay) depend on the nominal operating condition. If the process
is only mildly nonlinear or remains in the vicinity of a nominal steady state,
then the effects of the nonlinearities may not be severe. In these situations,
conventional feedback control strategies can provide adequate performance.

But many important industrial processes including high purity distilla-
tion columns, highly exothermic chemical reactions, pH neutralizations, and
batch systems can exhibit highly nonlinear behavior. These processes may
be required to operate over a wide range of conditions due to large process
upsets or setpoint changes. When conventional PID controllers are used
to control highly nonlinear processes, the controllers must be tuned very

1



2 CHAPTER 1. INTRODUCTION

conservatively in order to provide stable behavior over the entire range of
operating conditions. But conservative controller tuning can result in seri-
ous degradation of control system performance. There are other situations
where conventional PID control is inadequate, for example, when the process
gain changes sign (e.g. some reactor control problems).

Process control research has largely emphasized the analysis of linear
systems (via transfer function and state-space models) and the design of
linear controllers. In a similar vein, industrial practice has traditionally
relied on linear control laws, the ubiquitous PI and PID control algorithms.
But within the last 15 years, model-based control strategies such as model
predictive control (MPC) have become the preferred control technique for
difficult mutivariable control problems in oil refineries and pretrochemical
plants [11]. Because the current generation of MPC systems are largely
based on linear dynamic models such as step response and impulse response
models, the resulting linear controllers must be conservatively tuned for
highly nonlinear process.

In view of the shortcomings of linear controllers for highly nonlinear pro-
cesses, there are considerable incentives for developing more effective control
strategies that incorporate knowledge of the nonlinear characteristics. Dur-
ing the past decade, there have been a resurgence of interest in developing
nonlinear control strategies that are appropriate for process control. The
major objective of this book is to provide an overview of key issues and new
research results in this important area.

1.1 Conventional Nonlinear Control Strategies

In the traditional strategy for nonlinear control problems, the objective is to
make the closed-loop system behave more linearly by keeping the loop gain
constant. For example, the nonlinearities associated with control valves
can be reduced by using valve positioners or cascaded flow control loops.
Nonlinear transformations of input or output variables also can make the
loop gain more constant. For example, the nonlinear characteristics of orifice
plate flow measurement can be compensated by taking the square root of
the measurement prior to the control calculation. For composition control
of high purity distillation columns, using the logarithm of a composition as
the controlled variable can make the control loop more linear.

The gain scheduling technique has been widely used to compensate for
nonlinear process characteristics [12]. In this approach the controller settings
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are adjusted to compensate for known nonlinearities so that the loop gain is
kept as constant as possible. For example, if the process gain K, varies with
the throughput of the process, the controller gain K. should be varied so the
product, K. K, is kept constant. In the general case, the controller could
include the inverse of a known static nonlinearity such as a pH titration
curve. But if there are significant time delays, this simple gain scheduling
approach may be inferior to standard PID control [15].

Model-based control strategies for nonlinear processes have traditionally
been based on local linearization and linear controller design based on the
linearized model. If the model is updated on-line, the controller should be
effective over a wider range of operating conditions. This philosophy provides
the basis for the self-tuning approach to adaptive control [1].

1.2 Recent Developments

In recent years, there has been a resurgence of interest in developing im-
proved control and identification strategies for nonlinear systems. The re-
newed interest has been motivated by several developments:

1. Advances in nonlinear systems theory which have led to controller
design methods that are applicable to broad classes of nonlinear control
problems.

2. The development of efficient identification methods for empirical non-
linear models, and their widespread availability in commercial software
packages.

3. Continued improvement in the capabilities of computer-control hard-
ware and software, thus making it feasible to incorporate complex non-
linear models in plant control systems.

Next we introduce two nonlinear controller design methods that have
received considerable attention: input/output linearization and nonlinear
predictive control. Other techniques such as sliding mode control [13] and
fuzzy control [14] are beyond the scope of this book.

Recently, a new controller design method that provides exact lineariza-
tion of nonlinear models has been developed [7]. Unlike conventional lin-
earization via Taylor series expansion, this technique produces a linearized
model that is independent of the operating point. An analytical expres-
sion for the nonlinear control law can then be derived for broad classes of
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nonlinear systems. This approach is usually referred to as input/output lin-
earization or feedback linearization and is based on concepts from nonlinear
systems theory. The resulting controller includes the inverse of the dynamic
model of the process, providing that such an inverse exists. This general
approach has been utilized in several process control design methods such
as: generic model control [9], globally linearizing control [8], internal decou-
pling control [2], reference system synthesis [3], and a nonlinear version of
internal model control [6]. Nonlinear systems theory and the input/output
linearization approach are discussed in Chapters 3 and 4, respectively.

The success of linear model predictive control systems has motivated the
extension of this methodology to nonlinear control problems. This general
approach is referred to as nonlinear predictive control. The control problem
formulation is analogous to linear model predictive control except that a
nonlinear dynamic model is used to predict future process behavior. The
required control actions are calculated by solving a nonlinear programming
problem at each sampling instant [4, 5]. Thus, the potential benefits of the
nonlinear approach must justify the greater computational complexity in
comparison with standard linear techniques. Nonlinear predictive control is
the subject of Chapter 5.

A key issue in model-based nonlinear control is what type of process
model should be used. Physically-based models derived from first principles
(e.g. mass and energy balances) are appealing because of the physical insight
they provide and their applicability over relatively wide ranges of operating
conditions. However, such models often are not available due the engineering
effort and cost it takes to develop and maintain them. Another disadvantage
is that they often contain a number of process variables that cannot be
measured. One possible solution to this problem is state estimation, the
subject of Chapter 6.

An alternative approach is to design the nonlinear controller using an em-
pirical model or semi-empirical model which is developed from experimental
data. In recent years, there has been considerable interest in developing non-
linear dynamic models from input/output data. While a variety of modeling
techniques are available, the predominant tool for obtaining nonlinear empir-
ical models is artificial neural networks. Neural network software packages
are now commercially available which should hasten their widespread use in
industry, including process control applications. An overview of nonlinear
empirical models is presented in Chapter 2 while neural network models are
considered in Chapter 7.



1.3. ILLUSTRATIVE EXAMPLE 5

Table 1.1: Nominal Operating Conditions for the CSTR.

Variable Value Variable Value
q 100 L/min L 8750 K
Cay 1 mol/L ko 7.2 x 10*® min~?
Ty 350 K UA | 5x10* J/minK
1% 100 L T, 300 K
p 1000 g/L Ca 0.5 mol/L
Cy 0.239 J/g'K T 350 K
(—AH) | 5x 10* J/mol

1.3 Illustrative Example

In order to demonstrate the potential benefits that can result from using
nonlinear control techniques, we consider a simulated chemical reactor. A
nonlinear controller designed using the input/output linearization approach
is compared to a linear MPC controller.

Consider the classical continuous stirred tank reactor (CSTR) for an
exothermic, irreversible reaction, A — B. Assuming constant liquid volume,
the following dynamic model can be derived based on a component balance
for reactant A and an energy balance [12]:

v = Lo, ) — )
Cp = V(CAf Ca) — koexp ( RT) Ca (1.1)
; q (—-AH) ( E > UA
T = = — — . —
v (Tf T)+ oCy koexp BT Ca+ VoG, (T.-T)

We have used standard notation where C4 is the concentration of A in the
reactor, T' is the reactor temperature, and T, is the temperature of the
coolant stream. The objective is to control 7' by manipulating T.. Table
1.1 contains nominal operating conditions, which correspond to an unstable
steady state. The open loop response in Figure 1.1 demonstrates that the
reactor exhibits highly nonlinear behavior in this operating regime.

The nonlinear state-space model,

& = f(z)+g(@)u (1.2)
y = h(2)
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Figure 1.1: Open-loop response for +5 K changes in 7.

can be obtained by defining the state vector as z = [Cy T1*, the manipu-
lated input as u = T, and the controlled output as y = 7. This model can be
used directly in the input-output linearizing controller design, as discussed in
Chapter 4. The linearizing controller is tuned such that the closed-loop sys-
tem has a time constant of approximately 0.25 min. The linear MPC design
is based on a linear deviation model which is obtained from the nonlinear
model via first-order Taylor series expansion about the nominal operating
point in Table 1.1. The control actions are calculated by solving an open-
loop optimal control problem at each sampling instant, as discussed in [10].
The MPC cost function includes weighting coefficients () = 4 and R = 2
which penalize deviations of the output from the setpoint and deviations of
the input from its target value, respectively. The controller is tuned with a
sampling period At = 0.05 min and a control horizon N = 16.

In Figure 1.2 the linear and nonlinear controllers are compared for £25 K
changes in the temperature setpoint. The MPC controller produces a slug-
gish response for the negative setpoint change, while overshoot and small
oscillations are obtained for the positive change. This type of response is
commonly observed when a well tuned linear controller is applied to a highly
nonlinear process. By contrast, the nonlinear controller provides rapid and
smooth responses for both setpoint changes. Note that the responses are per-
fectly symmetrical, indicating that that the closed-loop behavior has been
completely linearized. This is a fundamental property of linearizing con-
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trollers (see Chapter 4). Figure 1.3 shows the input moves produced by the
controllers for the +25 K change. This result indicates that the superior per-
formance of the nonlinear controller is not attributable to more aggressive
control action, but rather to a more judicious use of the input.

Figure 1.4 compares the controllers for a =150 K step change in %. This
type of unmeasured disturbance could be caused, for instance, by a sudden
change in the reaction catalyst that results in a reduction of the activation
energy. The linear controller yields large deviations from the setpoint, while
the nonlinear controller provides very effective attentuation of the distur-
bance. This result demonstrates that nonlinear controllers can exhibit good
robustness to modeling errors.
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