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Chapter 15
MIMO Sampled-Data Systems

We assume that the reader has mastered the chapters on SISO sampled-data
systems as well the chapters on MIMO continuous systems. When the extension
of results to MIMO sampled-data systems is straightforward the discussion will
be brief and sometimes limited to simply defining the appropriate notation.

15.1 Fundamentals of MIMO Sampled-Data Systems

15.1.1 Sampled-Data Feedback

The block diagram of a typical sampled-data feedback loop is shown in Fig.
15.1-1A. Thick lines are used to represent the paths along which the signals are
continuous. Equations (7.1-1) to (7.10-11) carry through to the MIMO case,
with vectors instead of scalars. C(z) denotes the discrete controller implemented
through a digital computer. Hy(s) models the D /A converter. We have

Hy(s) = ho(s)I (15.1-1)
where ho(s) is the zero-order hold given by (7.1-12).and I is the identity matrix
with dimension equal to the number of controller outputs. The block I'(s) repre-
sents an anti-aliasing prefilter. The problem of aliasing was discussed in Sec. 7.1.
Assuming that the the same sampling time is used for all the process outputs, it
is reasonable to choose

L(s) =~(s)I (15.1 - 2)
where I has dimension equal to the number of the process outputs. P(s) is the
continuous system transfer matrix described in Sec. 10.1.1.

When the continuous output y is not observed directly but after the prefilter
and only at the sampling points, then Fig. 15.1-1A can be simplified to Fig.
15.1-1B, where

dy(2) = ZLTHT(s)d(s)} = ZL7H{(s)d(s)} (15.1 - 3)
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Figure 15.1-1. Block diagram of computer controlled system A: Sampled-data structure with thick
lines indicating analog signals. B: Discrete structure with all signals discrete.
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yi(2) = ZL7HD(s)y(s)} = 2L {y(s)y(s)) (15.1-4)

and all signals are discrete. Note that when the operator 2L is applied to a
vector or matrix, it is simply applied to each element separately. We define

Py(z) = ZL7HT(s)P(s)Ho(s)} = 2L {ho(s)P(s)7(s)} (15.1-5)

P*(z) = ZL7Y{P(s)Ho(s)} = 2L~ {ho(s)P(s)} (15.1-6)

All the elements of a vector or matrix pulse transfer function are always rational
in z, although the continuous transfer functions may include time delays. In order

to be physically realizable the transfer matrices (or vectors) have to be proper or

causal.
Definition 15.1-1. A wector or matriz G*(z) is proper or causal if all its

elements are proper and strictly proper if all its elements are strictly proper. All
systems G*(z) which are not proper are called improper or noncausal .

15.1.2 Poles and Zeros
Let

G*(2) = ZL Y Ny(s)G(s)} (15.1=-7)

where G(s) is the transfer matrix representation of the system of differential and
algebraic equations of Sec. 10.1.1. Then G*(z) is the z-transfer matrix that
describes the system of difference equations

(kT + T) = ®a(kT) + Tu(kT) (15.1 = 8)

y(kT) = Ca(kT) + Du(kT) (15.1-9)

where T is the sampling time and

@ =T (15.1 — 10)

(T _
L= [ edtB (15.1 — 11)
Taking the z-transform of (15.1-8), (15.1-9) we get

2(z) = (2] — ®)"'Tu(z) (15.1 — 12)
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y(2) = Cz(z) + Du(z) (15.1 — 13)
and substituting (15.1-12) into (15.1-13) yields

y(z) = G*(z)u(z) (15.1 — 14)

where

G*(z) 2 C(zI - ®)'T+ D (15.1 — 15)

The matrix G*(z) will be assumed to be of full normal rank. The poles and
zeros of G*(z) are defined in exactly the same way as those of G(s).

Definition 15.1-2. The eigenvalues m;,i = 1,...,np, of the matriz d are called
the poles of the system (15.1-8), (15.1-9). The pole polynomial w(z) is defined
as

(z) = [1(z — ™) (15.1 — 16)

Ny
t=l

Definition 15.1-3. ( is a zero of G*(z) if the rank of G*(C) s less than the
normal rank of G*(z).

The zero polynomial is defined as
((z) = 1:[1(7. - G) (15.1 —17)
where n, is the number of finite zeros of G*(2).

15.1.3 Internal Stability

Assuming that no unstable poles of the continuous process have become unob-
servable after sampling, the internal stability of the system in Fig. 15.1-1A can
be assessed from the internal stability of the system in Fig. 15.1-1B.

Theorem 15.1-1. The sampled-data system in Fig. 15.1-1A is internally stable
if and only if the transfer matriz in (15.1-18)

(zﬁ) _ (P;C(I+P$C)"l (I+P;C)y'Py ) (7> (15.1 — 18)
o CI+PCy' -C(+ PxC) Py )\

is stable — i.e. if and only if all its poles are strictly inside the unit circle.

Another test for internal stability is the Nyquist criterion, which was discussed
for continuous systems in Sec. 10.2.2. The derivation follows exactly the same
steps. The difference is that when we are dealing with z-transfer functions instead
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of Laplace transfer functions, the Nyquist D-contour encircles the area outside

the UC instead of the RHP.

Theorem 15.1-2 (Nyquist Stability Criterion). Let the map of the Nyquist
D-contour under det(I+ Py(2)C(z)) encircle the origin np times in the clockwise
direction. Let the number of open-loop unstable poles of P;C be npc. Then the
closed-loop system is stable if and only if

nE = —npc (15.1 — 19)

15.1.4 IMC Structure

The block diagram of the sampled-data MIMO IMC structure is shown in Fig.
15.1-2A, where

Pi(z) = ZL7YT(s)P(s)Hy(s)} = ZL{(s)P(s)ho(s)} (15.1 — 20)

P*(z) = ZL Y P(s)Hy(s)} = ZL{P(s)ho(s)} (15.1 - 21)
When the IMC controller @ and the feedback controller C are related through

C=QUI-PQ)t (15.1 — 22)

Q=C(+ P! (15.1 — 23)

then u(z) and y(s) react to inputs r*(z) and d(s) in exactly the same way for
both the classic feedback and the IMC structure.

Figure 15.1-2B is a different representation of the sampled-data IMC struc-
ture, which is equivalent to that in Fig. 15.1-2A, but not suitable for computer
implementation because of the presence of the continuous model P(s). If only the

sampled signals are of interest, then Fig. 15.1-2A is equivalent to Fig. 15.1-2C,
where all signals are digital.

15.1.5 Model Uncertainty Description

In Sec. 7.3.2, we demonstrated how the modeling error in the description of the
discretized plant is related to that in the continuous plant description. We pointed
out that some conservativeness is introduced when the uncertainty bounds for
the discrete plant are derived from those for the continuous plant. However,
the conservativeness is quite small for the type of unstructured SISO system
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Figure 15.1-2. IMC structure: A: Sampled-data structure; B: Structure equivalent to (A) but not
implementable; C: Discrete structure (all signals discrete).
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uncertainty that was used in Chaps. 7 through 9. The same is true for a few
types of MIMO-system uncertainty. For exawple, let us assume that the additive
uncertainty for the continuous plant is hounded by £4:

F(P(iw) = P(iw)) < 4(w) (15.1 — 24)
For the discretized plant we have from (15.1-6), (15.1-21)

P*(z) = P*(2) = ZL Y ho(s)(P(s) — P(s))} (15.1 — 25)
Then from the z-transform property (7.1-5), the singular value property G(A+
B) < 5(A) + &(B), and (15.1-24), (15.1-25). it follows that

5(P*(ei“T) = P*(ei“T)) < % i |ho(iw + k2 )T 4 (G + th2n /T 3 O (w)
k=—o0

(15.1 - 26)
The ZOH hy(s) is small at frequencies higher than 7/T and goes to 0 as fast as
1/w as w — co. Therefore only a few terms around &k = 0 are important in the
infinite sum. Also note that for a physical system, £4(w) — 0 at least as fast as
1/w as w — oo, and hence the sum converges.

However, it is not always possible to obtain a mathematical description for
the uncertainty in the z-domain in a non-conservative way, starting from the
uncertainty in the s-domain. In the absence of first-principles models, these
descriptions may be the result of experiments conducted with different sampling
rates, one of which may be small enough to approximate the continuous system.
A discussion of identification techniques is beyond the scope of this book. We
will assume in this chapter that non-conservative uncertainty descriptions for the
discrete and the continuous plant are available.

15.2 Nominal Internal Stability

15.2.1 IMC Structure

The same arguments as in Sec. 12.2 imply that the following matrix must be
stable for internal stability of the IMC structure in Fig. 15.1-2C.

PrQ (I- PIQ)F; Fr

Si=| Q -QP; 0 (1.2 1)

PQ -PrQP; -
Note that stability of the structure in Fig. 15.1-2C implies stability of that in
Fig. 15.1-2A, provided that no open-loop unstable poles of the plant become
unobservable after sampling.
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Theorem 15.2-1. For P = P, the IMC system in Fig. 15.1-24 is internally
stable if and only if both the plant P and the controller Q are stable.

Hence for open-loop unstable plants, the IMC structure cannot be imple-
mented. In such cases, the IMC design procedure is used to design the controller,
which is then implemented through the classic feedback structure.

15.2.2 Feedback Structure

When there is no modeling error, substitution of ( 15.1-22) into (15.1-18) yields
for the internal stability matrix

PQ (I- P*Q)P*) ‘

5‘:( . de 1 15.2~2

=\a  -dr (152-2)

All four transfer matrices in (15.2-2) have to be stable for nominal stability of
the classic feedback structure in Fig. 15.1-1A.

Theorem 15.2-2 provides a parametrization of all proper stabilizing controllers
in terms of a stable transfer matrix Q;. The following assumptions are analogous
to those made in Sec. 12.3.

Assumption Al. If © is a pole of P* outside the UC, then (a) The order of w
is equal to 1 and (b) P has no zeros at z = .

Assumption A2. Any poles of P* or P* on the UC are at z = 1. Also P* has
no zeros on the UC.

Theorem 15.2-2. Assume that Assns. A1 and A2 hold and that Qo(z) is a
proper transfer matriz that stabilizes P* — i.c., it yields a stable S3. Then all
proper Q’s that make Sy stable are given by

Q(2) = Qo(2) + Qu(2) (15.2'- 3)

where Q1(2) is any proper and stable transfer matriz such that P*(2)Q1(2)P*(2)
1s stable.

Proof. The fact that @ has to be proper in order for @ to be proper and vice
versa, follows from the properness of Q. For the following part of the proof we
will use the fact that P* and FP7 have the same unstable poles.

= We shall show that any @ given by (15.2-3) makes S, stable. From substi-
tution of (15.2-3) into (15.2-2) it follows that all that is required is that
(P*Q1 @1P* P*Q,P*) be stable. From the properties of @1, it follows
that the third element in the above matrix is stable. Stability of the other
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two elements follows by pre- and post-multiplication of P*Q,P* by (P*)71,
since according to assumptions Al and A2, P* has no zeros at the location
of its unstable poles and these are the only possible unstable poles of 5.

<« Assume that  makes Sy stable. Then the difference matrix

a5 = 5@ - su@) = (T 0% M) as2-g)

is stable. This implies that (Q — Qy) = ¢, and P*QP* are stable. ]

15.3 Nominal Performance

15.3.1 Sensitivity and Complementary Sensitivity Function

The development in this section follows that in Sec. 7.5.1. Therefore we shall
limit ourselves to simply setting the appropriate notation for the MIMO systems.

From Fig. 15.1-2A we get for P = P
y(s) = ho(s)P(s)QeT)(r* () — di(eT)) + d(s) (15.3 - 1)
Define

e(s) = y(s) —r(s) (15.3 - 2)

Then for an r(s) that remains constant between sampling points, we have
r(s) = ho(s)r*(e’T) and we can define the sensitivity and complementary sen-
sitivity operators that relate r(s) to —e(s) and y(s), correspondingly as

S

E.(s) 2 1= P(s)Q(eT) (15.3 = 3)

H,(s) 2 P(s)Q(e’T (15.3 — 4)
An approximate sensitivity function for the relation between y(s) and d(s) can

only be obtained when the assumption is made that the disturbance is limited to
the frequency band up to /7.

S

y(iw) = Ed(iw)d(i;z) (15.3 - 5)

where

Ey(s) = I - P(s)Q(s) (15.3 — 6)
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a 1 .
Q) = ()T (5) (153~ 7)
Sampling of (15.3-1) yields '
y'(2) = PH(2)Q(2)(r"(2) = di(2)) + d'(2) (15.3 - 8)
from which we can obtain the pulse sensitivity and complementary sensitivity

functions, relating e*(z) to 1*(z) and d*(z) (for y(s) = 1) or d3(z) (when dJ is
substituted for d* in (15.3-8)):

E*(z) 2 T - P*(2)Q(z) (15.3 — 9)

H*(z) & P*(2)Q(z) (15.3 - 10)

15.3.2 H; Performance Objectives

We define as Ly" the Hilbert space of complex valued vector functions y(z) with
n elements, defined on the unit circle and square integrable with respect to § —
i.e., for which the following quantity is finite:

2

Note that (15.3-11) defines a norm on Ly". In the case where y(z) has no poles
outside the UC, Parseval’s theorem yields a time domain expression for ||y||s:

™ . X 1/2
otk = (5= /7 o) e?) do) (153 - 11)

- 1/2
lylle = (LZ% yfm) (15.3 — 12)
For matrix valued functions G(z) of dimensions n x m, the space Ly" ™ is
defined similarly with norm
1 ) 3 1/2
IGl2 = (.2.; [ tracelG(e™) G(e)] cl&) (15.3 - 13)

The spaces Hy™ and Hy™ ™ are defined as subspaces of the corresponding Lo
spaces as in the scalar case.

The H} performance objective is to minimize over all stabilizing @ the weighted
sum of squared errors for the response to an input or a set of inputs of interest.
Several H;—type objective functions will be considered. For a specific external
input v* (r* or d* or d;) define by using (15.3-9)
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S(v*) & |[We'll = [WE|3 = [W(I - PGl (15.3 - 14)
where W is a frequency dependent matrix or scalar weight. One objective could
be

Objective O1:
min &(v*)

for a particular input v* = (v; vy ... v, )T-

A more meaningful objective would be to minimize ®(v) not just for one input
vector v*, but for every input in a set V:

V={(2)i=1,...n} (15.3 — 15)

where v!(2),...,u"(z) are vectors that describe the directions and the frequency
content of the expected external system inputs and n is the dimension of P. Thus,
the objective is

Objective O2:
rrgn O(v*) Yv* eV

However a linear time invariant Q(z) that solves 02 does not always exist. The
conditions necessary for its existence are expressed in Thm. 15.6-3. An alternative
is

Objective O3:

min[®(v! "
d [B(e) + ...+ 8"

In this case the objective is the sum of the squared errors caused by each of the
v'’s, when applied separately.

For every external input v* that will be considered in this chapter the following
assumptions will be made. They are analogous to those discussed in Sec. 12.6.1
and their physical meaning is identical.

Assumption A3. Every nonzero element of v* includes all the poles of P outside
the UC, each with degree 1, and those are the only poles of v* outside the UC.

Assumption A4. Let ¢; be the mazimum number of poles at z = 1 of any
element in the #" row of P. Then the it" element of v*, v;, has at least {; poles

at z = 1. Also v* has no other poles on the UC and its elements have no zeros
on the UC.

For the case, where a set V of inputs is considered, define
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VEG( W2 .. o) (15.3 — 16)

1 ..., v" satisfy Assn. A3. An additional assumption on V is needed:

where v°,

Assumption A5. V has no zeros at the location of its unstable poles or on the
UC and V! cancels the unstable poles of P in V1P,

15.3.3 - Hy Performance Objective

The H,, objective discussed in Sec. 10.4.4 can now be extended to discrete
systems with band-limited disturbances. The development is similar to that for
the SISO case (Sec. 7.5.5). The objective can be written as

|WE,|» < 1 (15.3 — 17)

where W is the frequency weight and E, (s) is either the approximate disturbance
sensitivity function E; given by (15.3-6) or the setpoint sensitivity function E,
given by (15.3-3). Since the disturbance is assumed to be limited to the frequency
band up to /T and ho(s)r*(e*T) is also limited because of hg, the weight should
satisfy

F(W(w)) << 1, w>n/T (15.3 — 18)
Hence (15.3-17) can be written as

s(W(W)E,(w)) <1, 0<w</T (15.3 — 19)
If W is a scalar, (15.3-19) becomes

3(E,(iw)) < [wW)|™!, * 0<w< /T (15.3 — 20)

15.4 Robust Stability

In Sec. 15.1 we explained that if no open-loop unstable poles of the plant or
the model become unobservable after sampling, then stability of the structures
in Figs. 15.1-1A and 15.1-2A is equivalent to stability of those in Figs. 15.1-1B
and 15.1-2C correspondingly. In Sec. 15.2 we developed the nominal internal sta-
bility conditions. We shall now concentrate on the robust stability of completely
discrete structures like the ones in Figs. 15.1-1B and 15.1-2C. The development
of robustness conditions follows exactly the same steps as those in Chap. 11.

First the M — A structure (Fig. 11.1-2) which is needed in the structured
singular value theory, has to be generated from the given discrete control struc-
ture. For this purpose the same type of block manipulations have to be carried
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out as were demonstrated in Chap. 11. Then, if M and A are stable, the condi-
tion for robust stability is that the map of the discrete Nyquist D-contour under
det(I — M A) does not encircle the origin. Recall that for discrete systems the
D-contour encircles the area outside the UC. We can now use the SSV to obtain
the following theorem.

Theorem 15.4-1. Assume that the nominal systems M 1is stable and that the
perturbation A is such that the perturbed closed-loop system is stable if and only
if the map of the Nyquist contour under det(I — MA) does not encircle the origin.
Then the system in Fig. 11.1-2 is stable for all A € X if and only if
p(ME*T) <1 0Lw<a/T (15.4 - 1)

Note that because of the periodicity of the z-transforms and the property
described by (7.1-8), only the frequencies up to /T need to be considered.

15.5 Robust Performance

15.5.1 Sensitivity Function Approximation

First, we shall obtain an approximate sensitivity function in a similar way as in
Sec. 15.3.1. Then we shall use this function to assess robust performance. From
Fig. 15.1-2A it follows that

e(s) £ y(s) - r(s)
= (d(s) = r(s)) = P(s)Ho(5)Q(e")

(I + (P(eT) = Bi(eT)Qe™) ™ (d1(=) - r*(2)) (155 - 1)

We shall now obtain an approximation to (15.5-1) by considering the frequencies
0 < w < 7/T. Note that because of the periodicity of Q(z), these are the only
frequencies which one can influence independently by using a digital controller.
It follows from (7.1-5) that if a(s) is small for w > 7/T, then

a*(e™T) = %a(iw), 0<w<n/T (15.5 - 2)

Use of (15.5-2) for all the z-transforms in (15.5-1) except for r* for which we
assume 7(s) = ho(s)r*(e*T), yields the approximation

e(iw) = Ey(iw)d(iw) — E,(iw)r(iw), 0<w<n/T (15.5 - 3)
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where

E,(iw) & I — P(iw)Q(e™T)-
[T + (P(iw) = P(i))Q(e“T)y(iw)ho(iw)/T] " (15.5 — 4)

Ey(iw) 2 I — P(iw)Q(e“T)y(iw)ho(iw)/T"
[T + (P(iw) — P(iw))Q(e™T)y(iw)ho(iw)/T] ™ (15.5 — 5)

Note that the above approximation is valid when the input signals r and d are
small for w > 7/T. If we assume that »(t) is a staircase function then it has
the desired property. If one expects disturbances with high frequency content
at w > 7/T then one should reduce T or use the anti-aliasing prefilter whose
function is to cut off signals with frequencies higher than «/T.

15.5.2 H, Performance Objective

We require that the objective defined in Sec. 15.3.3 be satisfied for all plants
P(s) in the uncertainty set IT (note that E,(P) = E,).

max &(W(w)E,(iw)) <1 VPell (15.5 — 6)

0<w<n/T
From this point on the treatment of the problem is identical to that presented
in Sec. 11.3.1. Note that only the continuous plant P(s) appears in F,(s) and
therefore all the uncertain A’s are continuous transfer functions. Hence the need
mentioned in Sec. 15.1.4 for continuous as well as discrete (used for test of robust
stability) uncertainty bounds.

15.6 IMC Design: Step 1 (Q)

15.6.1 H;-Optimal Control

The plant P* can be factored into an allpass portion P} and a minimum phase
portion Py:

P* = PPy (15.6 — 1)
Here P} is stable and such that P;(e)? P}(e"?) = I. Also (P};)~! is stable. Py,
has the additional property that both Pj; and (Pj;)~! are proper. In the case
where P* is scalar, this factorization can be easily accomplished as described by
(8.1-2). In the general multivariable case, this “inner-outer factorization” can be
accomplished by using the bilinear transformation 2z = (1 + s)/(1 — s), to reduce
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the problem to the one for the s-domain, which was discussed in Sec. 12.6.4. The
steps involved in this procedure are explained in Sec. 15.6.4.

Objective O1: Specific Input
Let vy(z) be the scalar allpass with the property vp(1) = 1, which includes the

common zeros outside the UC and the common delays of the elements of v*(2).
Write

v*(2) = vo(2)9(2) (15.6 — 2)

where 9(z) is a vector. Hence © is proper with at least one element semi-proper
and there is no point z outside the UC where ¢ becomes identically zero.

Theorem 15.6-1. Assume that Assns. A1-A4 hold. Any stabilizing Q that
solves Obj. O1 satisfies

Qv = (WP H="'W(P}) 5}, (15.6 ~ 3)
M A

where the operator {-}. denotes that after a partial fraction expansion of the
operand, only the strictly proper terms are retained except those corresponding to
poles of (P})~L. Furthermore, for n > 2 the number of stabilizing controllers that
satisfy (15.6-3) is infinite. Guidelines for the construction of such a controller
are given in the proof.

Note that not every Q satisfying (15.6-3) is necessarily a stabilizing controller.
Equation (15.6-3) should be compared to (9.2-4) for SISO systems. If we assume
that the disturbance and the plant have the same open-loop poles outside the
UC, then the two equations are identical.

Proof of Theorem 15.6-1. We shall assume W = I. The proof of the weighted case
is left as an exercise. Let Vj be a diagonal matrix where each column satisfies
Assn. A3 and every element has £, poles at z = 1, where {, is the maximum
number of such poles in any element of v. Assume that there exists @y, which
stabilizes P* in the sense of Thm. 15.2-2 and also makes (I — P*Q)Vj stable. Its
existence will be proven by construction. Substitution of (15.2-3) into (15.3-14)
and use of the fact that pre- or post-multiplication of a function with an allpass
does not change its Lyo-norm, yields:

®(v') = ||=7H(P3) (I = P*Qu)d — =™ P Qid|3
2 1f1 = £@ul3 (15.6 - 4)

The term f; has no poles at z = 1 because (I — P*Q)V; has no such poles. Any
rational function fi(z) with no poles on the UC, can be uniquely decomposed
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into a strictly proper, stable part {f}+ in Hj and a strictly unstable part {fi}-
in (H3)™M

fHi={Ake+{A}- (15.6 - 5)

Note that according to the definition of Hj, (H3)*, any improper terms as well as
the constant term in a partial fraction expansion of fi, belong in {f;}-. Next we
want to show that foQ;90 has to be stable. The fact that (I — P*Qq)V; is stable
implies that (I — P*Q)? is stable. We require that (I — P*@)v has no poles
outside the UC and therefore that (I — P*Q)0 = (I — P*Qo)0 — P*Q,9 have no
poles outside the UC. But since (I — P*Qq)v is stable, this requirement reduces
to P*@,9 having no poles outside the UC. Also in order for ®(v*) to be finite, Q;
must be such that (I — P*Q)? has no poles on the UC. But since (I — P*Qo)? is
stable, this is equivalent to P*@19 having no poles on the UC. Hence the optimal
@1 must be such that P*Q,? is stable. Then the only possible unstable poles of
f2Q19 = 271(P})"1P*Q19 are the poles of (P})~!. But Assns. A1, A2 imply that
the poles of (P})~! are not among those of f,Q;9 and therefore f,Q;% has to be
stable. To proceed we will assume that @; has this property. We will verify later
that the solution indeed has this property.

Hence we can write

®(v*) = [{f1}-15 + I{f1}+ — f2@19]} (15.6 - 6)

The first term on the RHS of (15.6-6) does not depend on @;. Hence for solving
01 we only have to look at the second term. The obvious solution is

Q19 = £ {fi}+ (15.6 — 7)

Clearly such a @)y produces a stable foQ)19 as was assumed. It should now be
proved that Q;’s that satisfy the internal stability requirements exist among those
described by (15.6-7), so that the obvious solution is a true solution. For n = 1,
(15.6-7) yields a unique @i, which can be shown to satisfy the requirements by
following the arguments in the proof of Thm. 15.6-2. For n > 2 write

&

bR (D by ... b)) (15.6 — 8)
a8y ... o) (15.6 — 9)

i (a @) (15.6 — 10)
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where without loss of generality the first element of v*, and thus ¥, is assumed
to be nonzero. Also q; is nx 1 and g9 is n X (n—1). Then from (15.6-7) it follows
that

Q1= (0 (i fite — %) @) (15.6 — 11)
We now need to show that a proper, stable ¢y exists such that Q) is proper,
stable and produces a stable P*@;P*. Select a g of the form:

k 4
g2(2) = Go(z)(1 = 2713 I;Il(l — w13 (15.6 — 12)

where @ is proper and stable and {7y,...,m} are the poles of P* outside the
UC. Then from (15.6-11) it follows that in order for P*@QP* to be stable it is
sufficient that P*67!f57{ fi}+{P*}1strew has no poles on or outside the UC. But
P*f;! = 2P} is stable and the only possible poles of 7 1{P*}1sty0y on or outside
the UC are poles of 97! outside the UC, because of Assns. A3 and A4. These
are also the only possible unstable poles of Q. Let « be such a pole (zero of ;).
Then for stability we need to find g, such that

k
B(e)Va(@) = (1= o)™ 11 - ma ) @Ak, (156-13)
The above equation always has a solution because the vector Vg(a) is not iden-
tically zero since any common zeros in v* outside the UC were factored out in
Vp.

We now need to examine the properness of Q. Since (Pj;)~! is proper and
{f1}+ is strictly proper, f7'{f1} is proper. Then if 47! is improper (9, strictly
proper) there exists at least one element in f”2 that is semi-proper. Hence by
solving a system of linear equations we can always select a §a(z) such that of the
first impulse response coefficients of f7'{fi}, — ¢2V4, as many are zero as needed
to make the first element of the matrix in (15.6-11) proper.

We shall now proceed to obtain an expression for Q¥. (15.2-3) and (15.6-11)
vield

Qb = 2(Py)™ [ H(P) P Qo — (= (PP Quike + {7 (PY) 6}]

= 2(Py) ™ [{="Y(P) T P*Qui}o- + {z7(P)'0}4] (15.6 — 14)
where {-}o- indicates that in the partial fraction expansion all poles on or outside
the UC are retained. For (15.6-14), these poles are the poles of ¢ on or outside
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the UC; (P})"1P*Qo = P;;Qo is strictly stable and proper because of Assn. Al
and the fact that Qg is a stabilizing controller. The fact that (I — P*Qq)Vp has no
poles at z = 1 imply that (I — P*Q) and its derivatives up to and including the
(£, — 1) are equal to zero at z = 1. Also, the fact that (I — P*Qq)Vj is stable and
that the columns of this diagonal Vj satisfy Assn. A3, imply that (I — P*Qg) =0
at 1,7y, ..., 7. Thus (15.6-14) simplifies to (15.6-3).

‘We now need to establish that a stabilizing controller Qg exists with the prop-
erty that (I — P*Qy)V is stable. The selection of a ¥ with the properties men-

tioned at the beginning of this section and its use instead of V in (15.6-16) yields
such a controller. =

Objectives 02 and O3: Set of v*’s.
Factor V' similarly to P* (see Sec. 15.6.4):

V =VuVy (15.6 — 15)
Theorem 15.6-2. Assume that Assns. A1-A5 hold. The controller

Q = z(WP)  {z"'W(P) 'V} Vir (15.6 — 16)

is the unique solution to O8. Here the operator {-}. denotes that after a partial
fraction expansion of the operand, only the strictly proper terms are retained
except those corresponding to poles of (P})™L.

Proof. Again we assume W = I and leave the weighted case as an exercise. From
(15.3-13), (15.3-14), and (15.3-16) it follows that

B(v)) + B(v?) +...+ (") = ||(I - PQ)V|3 & &(V) (15.6 — 17)

The minimization of ®(V') follows the steps in the proof of Thm. 15.6-1 up to
(15.6-7), with Vi used instead of 9. In this case ¢, is the maximum number of
poles at z = 1 in any element of V. From the equivalent to (15.6-7) we obtain

Q1= fi {A}+Var' (15.6 — 18)

We now have to establish that ), is stable, proper and produces a stable P*Q, P*.
In P*@P* the unstable poles of the P* on the left cancel with those of (P};)~! in
fil. As for the P* on the right, cancellation follows from Assn. A5. Then in the
same way that (15.6-3) follows from (15.6-14), (15.6-16) follows from (15.6-18).
O

A more meaningful objective would be to solve Obj. 02. However a ( that
solves Obj. O2 will also solve Obj. 03. Then from Thm. 15.6-2 it follows that
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if a solution to O2 exists, it is given by (15.6-16). Factor each of the v* in the
same way as in (15.6-2):

vi(2) = vi(2)0'(2) (15.6 — 19)
Define

VA 2 .. o) (15.6 — 20)
Theorem 15.6-3. Assume that Assns. A1-A5 hold.

(i) If V(z) is non-minimum phase (i.e., V=1 is unstable or improper), then there
exists no solution to Obj. O2.

(i) If ‘7’(2) is minimum phase, then use of V instead of Vi in (15.6-16) yields
exactly the same Q, which also solves Obj. 02. In addition Q minimizes
®(v*) for any v*(z) that is a linear combination of v'’s that have the same
v s,

Proof. (W = I). A stabilizing controller that solves Obj. O2 has to solve Obj.
01 for all v, i = 1,...,n. Satisfying (15.6-3) for every v' is equivalent to

= 2(Py) (P WLV ! (15.6 — 21)

Hence the above Q is the only potential solution for Obj. 02. However, it is
not necessarily a stabilizing controller since not only stablhzmg Q’s satisfy (15.6—

3) for some v*. Indeed, if V is non-minimum phase, V! is unstable and/or
improper and thls results in an unstable and/or improper Q, which is therefore
unacceptable. Hence in such a case, there exists no solution for Obj. 02, which
completes the proof of part (i) of the theorem.

In the case where V=1 is stable and proper (V minimum phase), the controller
given by (15.6-21) is stable and proper and therefore it is the same as the one
given by (15.6-16). This fact can be explained as follows. We have

V=V (15.6 — 22)

where

Vo = diag{v},v3,..., v} (15.6 — 23)

Since V! is stable and proper, (15.6-22) represents a factorization of V similar
to that in (15.6-15). From spectral factorization theory it follows that




é,,

L
.

412 ' CHAPTER 15. MIMO SAMPLED-DATA SYSTEMS

V(z) = Vi(2)A (15.6 — 24)

where A is a constant matrix such that AA? = I. Then (15.6-16) is not altered
when V is used instead of Vi because A cancels.

Let us now assume without loss of generality that the first j v’s have the same
vi’s. Consider a v* that is a linear combination of v!,...,v%:

v*(2) = vl (2) + ... + ajvi(z) (15.6 — 25)
Then it follows that

vo(2) = v(2) = ... = vi(2) (15.6 — 26)

5(2) = ayd'(2) + ... + ;1% (2) (15.6 - 27)

One can easily check that a Q that satisfies (15.6-3) for #!,..., ¢/, will also satisfy
(15.6-3) for the ¢ given by (15.6-27) because of the property

{onfi(2) + ...+ aifi(D)h = {fiD) b+ .. + o5 {fi()}  (15.6 — 28)

But then from Thm. 15.6-1 it follows that if a stabilizing controller Q satisfies
(15.6-3) for 0, then it minimizes the Ly error ®(v*). o

The following corollary to Thm. 15.6-3 holds for a specific choice of V.

Corollary 15.6-1. Let

V = diag{v1,vy,...,0s} (15.6 — 29)

where v1(2),...,va(2) are scalars. Then use of V instead of Vi in (15.6-16)
yields exactly the same Q, which minimizes ®(v*) for the following n vectors:

U1 0 0
0 LR L SO (15.6 — 30)
0 0 Up,

and thewr multiples, as well as for the linear combinations of those directions that
correspond to v;’s with the same zeros outside the UC with the same degree and
the same time delays.

Example 15.6-1 (Minimum phase P). P*(z) cannot be truly MP for a
physical system. Even if the Laplace transfer matrix representing the continuous
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plant is MP but strictly proper, the discretized plant P*(z) will still have a delay
of one unit because of sampling. Hence P; = 27!, P}, = zP* and (15.6-16)
yields for W = constant

Q= (P)'I-KVih) (15.6 — 31)

where I is the constant term in a partial fraction expansion of V. This is equal
to the first non-zero matrix in the impulse response description of V(z), which
can be obtained by long division. a

15.6.2 Setpoint Prediction

In the case of setpoint tracking, future values of »* are often known and supplied
to the computer ahead of time. If at time ¢ the setpoint value that is provided to
the control algorithm as Z~1{r*(z)} is the one we wish the plant output to reach
at time ¢ 4+ NT, then the objective function has to be modified to:

Oy (r*) = ||[W (NI - P*Q)r*|2 (15.6 — 32)

If the above objective function is used for Objs. O1, 02, O3, then the resulting
expressions for the Hj-optimal controller are the same as in Thms. 15.6-1, 15.6-2,
and 15.6-3, but with the term z~V~! instead of 27! inside {-},. All the steps in
the proofs remain the same when (15.6-32) is used rather than (15.3-14).

15.6.3 Intersample Rippling

The Hj-optimal controller minimizes the sum of squared errors and completely
disregards the plant’s output behavior between the sample points. Therefore the
performance of the Hj-optimal controller may be excellent at the sample points
but may suffer from severe intersample rippling. This problem was demonstrated
in Sec. 7.5.3. A modification was introduced in Secs. 8.1.2 and 9.2.2 to substitute
poles in ¢ close to (-1,0) with poles at 2 = 0. The new § was shown to be free
of the problem of intersample rippling and to combine desirable deadbeat type
characteristics with those of the Hj-optimal controller. This section extends the
modification to MIMO systems and general open-loop stable and unstable plants.
It should be pointed out that this modification is sufficient only if there are no
open-loop oscillatory poles in the continuous plant transfer function, which have
become unobservable after sampling.

Let Q u(z) be the Hj-optimal Q obtained according to the previous sections.
Also let 6(z) be the least common denominator of the elements of P*(z), and &;,
t=1,...,p be the roots of 6(z) close to (-1,0) (or in general with negative real
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part). Define
P 2 - K;

g (z)=iz? 15.6 — 33

i) = 1= (15.6 - 33)
Then Qy is modified as follows:

Q(2) = Qu(2)i-(=)B(2) (15.6 - 34)

where the scalar B(z) is selected so that the matrix Sy (15.2-2) and (I — PQ)V
remain stable. Let m;,7 = 1,...,£ be the unstable roots (including m; = 1) of the
least common denominator of P*(z),V(z). Let the multiplicity of each of them
be m;. Note that the poles outside the UC have multiplicity one, according to
Assns. Al and A3. Remember also that according to Assns. A3 and A4, V has
at least as many poles at z = 1 as P* and that each pole of V outside the UC is
also a pole of P*. Then, since Qy makes S, and (I - P*Q g)V stable, it follows
that the requirements on B(z) are:

k
%(l—d_(z)B(z))l_'=0, k=0,....m;—-1 i=1,...,6 (15.6—35)

We can write

M-1 )
B(z)= 3} bz (15.6 — 36)
Jj=0 ‘
where
4
M = 3 wmy (15.6 — 37)
=0

and then compute the coefficients b;,5 =0,...,M — 1 from (15.6-35). Note that
since none of the m;’s is 0 or oo, (15.6-35) is equivalent to

o
(- q_(/\“l)B()\‘l))lAﬂﬂ =0, k=0,...,mi—1; i=1,...,¢

(15.6 — 38)
Both ¢-(A™!) and B(A™!) are polynomials in A and therefore their derivatives
with respect to A can be computed easily. Then (15.6-38) yields a system of M
linear equations with M unknowns (b, by,...,bar—1). The resulting controller Q
combines the desirable properties of the Hj-optimal controller and deadbeat type
controllers.
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Example 15.6-2. This example is presented to demonstrate the problem of
intersample rippling in the Hj-optimal controller and the modification discussed
above. Consider the continuous system

0.50 1.42
541 Gs+1
Blge| (15.6 — 39)
1.00 1.00
2s+1 4541

The discretized system (zero order hold included) for a sampling time of 7' = 1,
is

0.316 0.218
:-0.368  z-0.846 ,
T it (15.6 — 40)
0.393 0.221
7—-0.607 :-0.779
Computation of the roots of detP(z) = 0 shows that the system in (15.6-40) has
two finite zeros, at a; = —0.95 and ay = 0.75. The first zero is close to (-1,0) and

is expected to cause intersample rippling when the Hj-optimal controller is used.
We find from (15.6-40) that P; = z7'I, P}, = zP. We shall consider step

setpoint changes as external inputs - i.e.,

z

V(z) =

o ' (15.6 — 41)

o
<

Then (15.6-16) yields

Qulz) = 21P1 (15.6 — 42)

Figure 15.6-1A shows the time response of this control system for a unit step
change in the setpoint of output 1:

vz} = 9*(a) = (z/(~ . 1)> (15.6 — 43)

The prediction of intersample rippling is verified. Note that at the sample points
the outputs are indeed exactly at the setpoints yielding the minimum sum of
squared errors.

The IMC controller is now obtained from (15.6-34) with B(z) = 1 and

z40.95
i(z) = ——— 15.6 — 44
g n=—as ( )
The response for this control system is shown in Fig. 15.6-1B. Clearly the rippling
problem has disappeared. Note the inverse responses caused by the RHP zero of

the continuous system P(s). o
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-1 1 T ]

i 25—

j o B
0.8
0.6 —
0.4 —
[

-0.2 T T ]

B

Figure 15.6-1. Response to unit setpoint change r = (1,0)7. A: Hj-optimal controller, B: IMC.

15.6.4 Inner-Outer Factorization

As mentioned in Sec. 15.6.1, the factorization (15.6-1) is accomplished by em-
ploying the bilinear transformation

_ 1+s
=3
to reduce the problem into the one discussed in detail in Sec. 12.6.4. The theorems

below provide the formulas for the transformation of state space descriptions
implied by (15.6-45) or its inverse

z

(15.6 — 45)

-1+4z
142

The following lemma is used in the proofs of the theorems.

(15.6 — 46)

Lemma 15.6-1. Let G(a) = C(zl — A)"'B +zD. Then
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2G(z) = C(2l — A"'AB+ CB + 2D (15.6 — 47)
Proof. We have

G(z) = C(2I — A)"Y(A+2I — A)B +zD
=C(2I - A" 'AB+CB+2D

O
Theorem 15.6-4. Let G*(z) = C(zI — ®)7'T + D have no poles at z = —1.
Then
G(s) & G*<1+j) =C(sI-A)'B+D (15.6 — 48)
where
A=@+D) (e -1) (15.6 — 49)
B=2@+Dr (15.6 — 50)
C=cC (15.6 — 51)
D=D-C(@+D7'T (15.6 — 52)
Proof. Since P*(z) is assumed to have no poles at z = —1, ® + I is nonsingular.
We can then write
=1
il = (1+SI ) T+D
=(1-35)C(s(®+I)+I-3)'I'+D
=(1=s5)C(I-(@+ )Y -D)(®+)'T+D (15.6 — 53)

Use of Lem. 15.6-1 in (15.6-53) yields

G(s) = C(sT = (@ + D™(@ = 1)) (@ + 1)'T

—CGI-(@+D M@ -I) @+ D) He-I)(@+ ) 'T+C(@+I)'T]+D
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=C(sI—-(S+I)Y @ -D)'UI—(@+ D) (@-D)(®+I)'T+D-C(®+I)'T

=C(sI—(®+ D)Y@ -DN)12®+ )T+ D-C(@+I)"'T
O

Theorem 15.6-5. Let @(s) =C(sI — A)‘IB + D have no poles at s = 1. Then

it b EP—LE A i _
G(~)—G(1+Z>_C(zl—-<1>) T+D (15.6 — 54)
where
&= (I-A)NI+A) (15.6 — 55)
L=2(I-A)"B (15.6 — 56)
c=C (15.6 - 57)
D=D+C(I-A)'B (15.6 — 58)
Proof. I — A is nonsingular because G(s) is assumed to have no poles at s = 1.
We have
()= i B4 b

1+ 2
=1+2)C(I-A)-I+A)'B+D

=(142)C(I - (I~ A YT+ A)) (- A)B+D (15.6 — 59)
Application of Lem. 15.6-1 to (15.6-59) yields
G*(2) =C(zI - (I - AN I+ A)W(I-A4)'B

+[C = (1= A I+ A) (I - AT+ AT - A B+ C(I - A B|+D

=C(I-(I-A Y+ A T+I-A'I+A)B+D+C(I-A)B
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=Cl(zl - (I - A" YT+ A2l - Ay2B+ D+ C(I - A'B
The factorization

P'(z) = Pi(2)Pi(z) (15.6—1)

involves the following steps:

Step 1: Use the variable transformation (15.6-45) on P*(z) to obtain P( ). Note
that the assumption of Thm. 15.6-4 that P*(z) has no poles at z = —1 holds for
the P*’s under consideration in this chapter because of Assn. A2.

Step 2: Apply Thm. 12.6-4 on P(s) to obtain the factorization

S) ( )P\,[(S) (156 e 60)

Note that for a strictly proper system D = 0 and therefore from (15.6-52) we

have D = —C(® + I)~'T" = P*(~1). According to Assn. A2, P*(z) has no zeros

on the UC and therefore P*(—1) has full rank. Hence, the assumption of no zeros
on the imaginary axis including infinity in Thm. 12.6-4, holds for I:"(s)

Step 8: Use the variable transformation (15.6-46) on P4(s) and Py(s) to obtain
P3(z) and Pj},(z) correspondingly. Note that P4(s) satisfies the assumption of no
poles at s = 1, since by construction all its poles are in the LHP. Also, Py(s) has
the poles of P(s), which do not include a pole at s = 1, since P*(z) has no poles
at z = oo.

The result of the above steps is a stable, all- -pass P} and a minimum phase
P};. Both P; and P}, are proper because P4 and Py; have no poles at s = 1. Also
note that since PM(s) is minimum phase, it does not have a zero at s = 1 and
therefore Pj;(z) has no zero at z = oo, which means that (Pj;(z))™! is proper.

To obtain the factorization

V =VyVy (15.6 — 15)
one should follow the same steps as above with the difference that in Step 2,
Thm. 12.6-4 is applied on V(s)T as described in Sec. 12.6-4.

15.7 IMC Design: Step 2 (F)

The controller Q obtained in Step 1 of the IMC design procedure is detuned in

Step 2 to satisfy the robustness conditions by augmenting it with the IMC filter
F(z):
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Q = Q(Q, F) (187 1)
First we will postulate reasonable filter structures. Then we will define appro-

priate minimization problems to be solved over the filter parameters and discuss
the computational issues involved.

15.7.1 Filter Structure

Some structure has to be assumed for F', which can be as general as the designer
wishes. However, in order to keep the number of variables in the optimization
problems small, a rather simple structure like a diagonal F' with first- or second-
order terms would be recommended. In most cases this is not restrictive because
the controller @ that was designed in the first step of the IMC procedure is in
general a full high-order transfer matrix. More complex filter structures may be
necessary in cases of ill-conditioned systems (&(P*)/a(P*) very large). For such
systems a two-filter structure was discussed in detail in Sec. 12.7.1. The elements
of each of the two filters in that structure can be designed as described below.

The filter F(z) is chosen to be a diagonal rational function that satisfies the
following requirements.

a. Internal Stability. S; in (15.2-1) must be stable.

b. Asymptotic setpoint tracking and/or disturbance rejection. (I — P*QF Jv*
must be stable.

Write

Fz) = ding{ fi(2)y o s Jul2)} (15.7-2)
Then, Assns. A1-A5 and the fact that by construction Q(z) makes S) and (I —
P*Q)V stable, imply that the requirements on an element f; of F' are:

dJ

@‘(1 —fg(z)) = 1, _] =0,...,mlg—- 1 (157—3)

L:ﬂ'l

Je(mi)y =1, B2 et (15.7 — 4)
where m; = 1 and my is the highest multiplicity of such a pole in any element

of the ¢ row of V and 7;, i = 2,...,¢ are the poles of P* outside the UC, each
with multiplicity 1, according to Assn. Al.

One can now select the filter elements to be of the form discussed in Sec. 9.3

f(2) = ¢(2) fu(2) (9.3-3)
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&~
PY' PY &
S— -
AV m————" G e¥
WU N
F [

Figure 15.7-1. Discrete interconnection structure.

where
Al = L2 (82— 1)
#() = 3 2 (9.3 4)

and the coefficients By, . . ., 8, are computed so that (15.7-3), (15.7-4) are satisfied
for some specified «. The parameter « can be used as a tuning parameter.

Note that for £ = 1,7 = 1,m, = 1, we only need ¢(z) = 1. For the general
case, (15.7-3) and (15.7-4) a system of M linear equations with fy,... 3, as
unknowns where M is given by

My=my+¢& (157 = 5)

The procedure for solving these equations is identical to the one described in Sec.
9.3, with my, and M, replacing m; and M. Also, when the two-filter structure of
Sec. 12.7.1 is used in the case of ill-conditioned plants, 72; = max, my, should be
used for all £ in the place of my, in Fi(z). This is required for internal stability
and no steady-state offset.

15.7.2 Robust Stability Interconnection Structure

Consider the block diagram in Fig. 15.1-2C. The same block manipulations that
were used to obtain Fig. 12.7-1A from Fig. 12.1-1B, can be used on Fig. 15.1-2C
to obtain Fig. 15.7-1. The only difference is that Py and 157* take the place of P
and P. All the transfer matrices in Fig. 15.7-1 are discrete.
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The development described in Sec. 12.7.2 can now be applied to the block
structure of Fig. 15.7-1 to put it in the form shown in Figs. 12.7-1B, C. The
difference is that the uncertainty block A represents a discrete transfer function. If
simple uncertainty descriptions of the form discussed in Sec. 12.7.2 are available
for the discrete plant Py, then the corresponding formulas carry over to the
discrete case, where £y, o, £1, W1, W,y are now discrete. Therefore only their
values up to n/T need be considered. ‘

Theorem 15.4-1 provides the robust stability condition. The matrix M in
(15.4-1) is G3¥ and therefore for robust stability the filter has to be designed
such that

pa(Gif(iw)) <1,  0<Lw< /T (15.7 - 6)
The superscript * is used to indicate that in this case G is a discrete transfer
matrix.

15.7.3 Robust Performance Interconnection Structure

If one only cared about the performance at the sample points, then one could
use Fig. 15.7-1 to state the robust performance conditions. However, because
of the intersample rippling problem, one has to consider the continuous output
of the plant and express the robust performance requirements in terms of the
approximate sensitivity functions E,(s) or Eq4(s) given by (15.5-4) and (15.5-5).

One can obtain the appropriate interconnection structures of Fig. 12.7-1 by
starting from Fig. 15.1-2B. The use of (15.5-2) in the derivation of (15.5-4) and
(15.5-5), is equivalent to approximating the function of the sampling operator by
1/T for 0 < w < «/T. This approximation is reasonable for signals with small
power for w > 7/T. Use of 1/T in the place of the sampling switch in Fig. 15.1-
2B, allows us to derive the matrix G in the block diagram in Fig. 12.7-1A, which
is slightly different from the one given by (12.7-13) for the continuous controller.

For v = d, e = y, we have

0 0  h@
Gyg=] I I hPQ (15.7=17)
2 =3I @
For v = —r, e = y — r, with r(s) = ho(s)r*(e’T):
0 0 hQ
Go=| I I hPG (15.7 - 8)
-%I hy'I 0

Note that in this case the uncertainty block A represents continuous transfer
functions as in Sec. 12.7.2.
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15.7.4 Robust H, Performance Objective

The next step is to transform (15.5-6) into an equivalent SSV condition. By
using the equations in Sec. 12.7.2, but with the appropriate G, instead of G and
with Wy = W, W) = I, we can obtain the corresponding G¥. Then (15.5-6) is
satisfied if and only if

pa(GF(iw)) <1, O0Lw<w/T (15.7 - 9)

where A = diag{A,,A,}, with A representing the uncertainty block A of Fig.
12.7-1 and A, the additional block introduced for performance.

‘We can now write

F 2 F(z;A) (15.7 — 10)

where A is an array with the adjustable filter parameters. The filter design
problem can be formulated as an minimization problem over the elements of A.
In the filter structure proposed in Sec. 15.7.1, there is one adjustable parameter o
for each element of the diagonal filter, or of each of the two diagonal filters, if two
are used. Each one of these real parameters, say «;, has to be inside the UC for
F to be stable. The stability constraints can be removed from the minimization
problem by setting

o =e TN (15.7 — 11)

where A; is an element of A. Then any Aj in (—o0,00) produces an «; in [0,1).
Note that if the parametrization (15.7-11) is used, then it is )\3 and not \; that
corresponds to a time constant. If one wishes to use a higher order fi(z) with
more parameters in (8.2-1), one can write the denominator of each element of
F as the product of polynomials of degree 2 and one of degree 1 if the order
is odd. A polynomial of degree 2 with roots inside the UC can be written as
22 — (TP + eTP2)z 4 TP +TP2 where py, py are the roots of A32% + Ao + 1 = 0 for
some value of Aj, Ag. In this way, the optimization problem is unconstrained in
the optimization variables A;, A2, which can take any value in (—o0,00).

Our goal is to satisfy (15.7-9). The filter parameters can be obtained by solving
Objective O4:
1 - i -
min Osrgg;}/T pal(Gy) (15.7 - 12)
It should be noted however that the optimal solution for Obj. O4, may still not

satisfy (15.7-9). The reason is usually that the performance requirements set by
the selection of W in (15.5-G) are too tight be to satisfied in the presence of the
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model-plant mismatch. In this case one should choose a less tight W and resolve
Obj. O4.

Another important point is that satisfaction of the robust performance condi-
tion (15.7-9) does not necessarily imply satisfaction of the robust stability con-
dition (15.7-6), which was the case in the continuous controller design. This is
so even if the uncertainty descriptions for the continuous plant [used in (15.7-
9)] and the discretized plant [used in (15.7-6)] correspond to exactly the same
sets of possible plants. The reason is that (15.7-9) was obtained by using the
approximations discussed in detail in Sec. 15.5.1, while there are no approxima-
tions involved in the derivation of (15.7-6). Note however, that if the uncertainty
descriptions for the continuous and the discrete plant are equivalent in the sense
discussed in Sec. 15.1.5, then satisfaction of (15.7-9) is usually sufficient for sat-
isfaction of (15.7-6), although this is not guaranteed. As a result of the above
discussed possibility, when a solution to Obj. O4 is found, one should check if
(15.7-6) holds. If this does not happen, then one can always substitute the robust
stability p (15.7-6) in Obj. O4 and proceed with the minimization until (15.7-6)
becomes less than one.

The type of problem defined by (15.7-12) is nearly identical to that defined by
(12.7-25). The only difference is that the search over w is limited to 0 < w < n/T
in (15.7-12). This difference disappears, when only a finite number of frequencies
is considered, as described in Obj. O4' in Sec. 12.7.3. Hence the entire procedure
and equations of Sec. 12.7.3 carry over to this case.

15.8 [Illustration of the Design Procedure

The purpose of this section is to demonstrate the IMC design procedure by ap-
plying it to a 2 x 2 open-loop unstable system.

15.8.1 System Description

Let the continuous system be modeled by
& = Az + Bu (10.1-1)

y=Cz+ Du (10.1 - 2)
where ‘
2.315 0.857 1.000
A=1] -17.719 -5500 -5.250 (15.8 ~ 1)
—14.766 —-6.750 -—-7.375
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0 0
B=|1 0) (15.8 — 2)
=, -
0 03 18 g’
C:(O ; _4.0) (15.8 - 3)
0 0 |
D—_—(O 0) (15.8 — 4)

The eigenvalues of A, which are the poles of the system (see Def. 10.1-3), are

located at -1, -10, +0.5. Hence the open-loop system has an unstable pole of
multiplicity 1 at 0.5.

From (10.1-7) we obtain the transfer matrix of the system:

~15(s=0.2)  0.3(6s+7.5)
) (15.8 = 5)

5 —-0.5 1 —0.5)(s+10
Blajes { P Txl
(s—0.5)(s+1)  (s—0.5)(s+10)

Note that the unstable pole (s = 0.5) appears in all elements of P(s), though
it has only multiplicity 1. This is not an artifact of the example but rather the
generic case for systems described by equations of the type (10.1-1), (10.1-2).

Let us now compute the zero-order hold discrete equivalent of P(s) for a sam-
pling time of 7' = 0.1. This is a reasonable choice, equal to 1/10 of the dominant
stable time constant and 1/20 of the unstable time constant of the system. From
(15.1-6) we find P*(z), which can be written in the form (15.1-15):

P'(2) =C(2I-®)"'T'+D (15.8 — 6)
where C' and D are given by (15.8-3) and (15.8-4) and

1.2757 1.1138 1.0
P = ( —0.15462  0.44053 -0.41687) (15.8-17)
—0.079536 —0.44598 0.60772
0 0
= ( 0.071429 0 ) (15.8 - 8)
—0.094864 0.071429

For the design we need some information on the potential model error. We
will assume a diagonal input multiplicative uncertainty

P*(z) = P*(z)(I + L3(2)) (15.8-9)
where

Li(z) = diag{£(2), £3(2)} (15.8 - 10)
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Figure 15.8-1. Multiplicative uncertainties £ and &;.

and (7, {; are bounded by

y o~ Yo g B Bk L=p¥ B
je1()| < Bi(=) = Jo.2- - e | (15.8 — 11)
with p; = e~7/%. We will also assume that all plants P*(z) have exactly one
unstable pole. The bound (15.8-11) implies that the uncertainty starts to increase
around w = 1/7; with slope 1 and flattens out after one decade. Also, the low
frequency uncertainty can be as much as 20%. The 7;’s are selected here to
correspond to the dominant stable time constants of P(s) associated with the

respective inputs, i.e., 7, = 1 and 7, = 0.1. Bode plots of £, 4 are shown in Fig.
15.8-1, for 0 < w < 7/T.

15.8.2 Design of Q

First one has to decide on the type of external input v for which Q will be designed.
Here we will consider step-like disturbances entering at the plant inputs. The
diagonal V(z) is of the form described in Cor. 15.6-1 with

vi(z) = va(2) = v*(2) = ZL7 {v(e)} (15.8 — 12)

where v(s) is an appropriate transfer function. Since the v;’s represent the effect of
step-like inputs on the plant outputs, v(s) should include both an integrator and
a pole at s = 0.5. The simplest choice would be v(s) = s7!(—s+0.5)"1. However,
such an input is “sluggish” and will result in poor robustness (see observation 3
in Sec. 4.1.2). To avoid this problem we select

s+ 0.5
e s(—s+0.5)
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The next task is the factorization of P* into P} and Pj; (15.6-1). We follow the
steps described in Sec. 15.6.4. This procedure yields the matrices @4, 4,C4, Dy
and ®ur, T'ag, Cor, Dy that define Pi(z) and Pjy(z) respectively through (15.1-
15):

1.54714  1.50513  1.41162 |
.y s ( ~0.69253 —0.67372 —0.63186 (15.8 — 13)
—0.098133 —0.095468 —0.089537

—8.27667 —3.06852
Ty=|-1561316 =4.02293 (15.8 — 14)

—3.78625 —3.05041
—7.0645 x 104 —0.012260  0.20435 _
_ 5.8 w1
Ca ( 0.027830 0.13477 ——0.46555) (15.8 - 15)
00 :
. 15.8 — 16
Dy (O O) ( )

1.27570  1.11380 1.0

By =| —0.15462  0.44053 —0.41687 (15.8 — 17)

—0.079536 —0.44598  0.60772

0 0
P 1 0 (15.8 — 18)
-1.32810 1

—~0.017300 —0.060253 0.050708
Cos = ( 0.021810  0.12528 ~0.18355> (15.8 —19)

~0.13652 0.086180
e ( 0.39111 —0.30647> (15.8 — 20)

We also need to factor V(z) according to (15.6-15), but this is trivial since V(z)
is diagonal and v*(z) can be factored as described by (8.1-3).

The final task is to determine Q(z) from (15.6-16). For W = I a state space
description (15.1-15) of Q(2) is given by

1.27570  1.11380 1 0 0
—0.57541 —0.50239 —0.45106 —2.25465  —0.80172
B =| 0.013486 0.011775 0.010572 0.058490 3.2232 x 10~3
0 0 0 0.94873 0
0 0 0 0 0.94873
(15.8 — 21)
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Figure 15.8-2. Nominal response to a step change at the plant input. (No filter).

0 0
81.6566  26.2327
Tog=]-3.09800 2.64970 (15.8 — 22)
1 0
0 1

& _(0-42079 0.94292 0.034188 2.25465 0.80172) ——
@7 10.46584 0.79454 0.64255 2.93590 1.06154 :
—81.6556 —26.2327
DQ—<~105.3488 —37.4893) (15.8 — 24)

Figure 15.8-2 shows the response with this controller for the disturbance
51
st (8_1> (15.8 — 25)

entering at the plant inputs, when P = P. (The same disturbance will be used
in all subsequent simulations).
15.8.3 Design of F

In this section we will design a filter F'(z) that guarantees robust stability in the
presence of the model-plant mismatch described by (15.8-9). The condition for
robust stability is given by (15.7-6). Here A consists of two scalar blocks and

Gif = -QFP*L} (15.8 — 26)
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where
L} = diag{4;, &3} (15.8 — 27)

The selection of the filter structure follows Sec. 15.7.1. A simple scalar filter
will be used:
' #iz) == FLal (15.8 — 28)

where f(z) is given by (9.3-3) with w = 29. The tuning parameter o in fi(2)
must be in [0,1) and can be parametrized as

a=eTP (15.8 — 29)

where A is a positive time constant which becomes the new tuning parameter.
We prefer A\ over o because A\ has a clear physical meaning and effect as was
illustrated in Sec. 9.3.2. Note that the coefficients of ¢(z) are functions of A and
are obtained from (9.3-6) and (9.3-9). If one wishes to remove the positivity
constraint from the design parameter A, then one should use (15.7-11) instead of
(15.8-29). In this example however, as in the SISO case, we only have a single
design variable to search over, which is a simple optimization problem. Hence
(15.8-29) is used here to maintain a clear physical meaning for the optimization
variable .

For F = I (A= a = 0) we find u(G3¥) = 3.75, which implies that there exist
plants among those described by (15.8-9) for which the closed loop system is
unstable. A plot of p is shown in Fig. 15.8-3. A search over the parameter A
shows that one has to increase \ to at least 0.5 to get 1 = 1.0 so that robust
stability is guaranteed. Further increase of A can reduce u(G3) even further.
Plots of 1 for A = 0.5 and A = 1 can be seen in Fig. 15.8-3.

Note, however, that the lower pu for A = 1 does not necessarily mean that the
performance of the system is superior because y(G3f) is not the robust perfor-
mance index. For determining robust performance, one has to select an appropri-
ate performance weight W and compute u(GF) (Sec. 15.7.4). For our particular
example, P(s) has an unstable pole at s = 0.5 and the uncertainty becomes
significant for w > 1. Therefore there is not much room for performance improve-
ment. The question of robust performance will not be examined any further in
this section. The reader is referred to Sec. 12.8 for a detailed example on the
design of a filter for robust performance.

Let us now look at some simulations to examine the behavior of the control
system when there is model-plant mismatch. The following transfer function was
chosen for the “real” continuous plant P(s):

P(s) = P(s)(I + Ly(s)) (15.8 — 30)
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Figure 15.8-3. pu (Robust Stability) for different filter parameters A.

where
i) 98l 0
ORI Y (15.8 - 31)
2001541

Note that this L;(s) does not generate a plant that falls exactly in the class
described by (15.8-9, 10, 11), although the steady-state gains and time constants
of L;(s) match those used in (15.8-11) exactly. The reason is that no simple
and non-conservative method is available for translating a type of uncertainty
description (input multiplicative in this case) from the s-domain to exactly the
same type in the z-domain. As explained in Sec. 15.1.5, such descriptions may
be obtained either from first — principles models or via experiments conducted
with different sampling rates. For the purposes of this example, (15.8-31) yields a
plant sufficiently close to the class described by (15.8-9) to serve our illustration
goals.

The responses to the input disturbance (15.8-22) are shown in Fig. 15.8-4 for -
A = 0.5 and in Fig. 15.8-5 for A = 1, for both the nominal case (P = 13) and
the case of model-plant mismatch with P given by (15.8-30). Without the IMC
filter, the system is unstable for the “real” plant P in (15.8-30) as expected from
the large value of u(G{). The nominal response is shown in Fig. 15.8-1. The
responses for A = 1 are not significantly better than that for A = 0.5, although
the robust stability u is smaller for A = 1. This is not surprising because p(G3F
is an indicator of stability only.
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Figure 15.8-4. Responses (A) for nominal system and (B) the plant given by (15.8-30) for IMC
filter time constant A = 0.5.
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Figure 15.8-5. Responses (A) for nominal system and (B) the plant given by (15.8-30) for IMC
filter time constant A = 1.0.
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15.9 Summary

For internal stability of the IMC structure, both the plant P and the IMC con-
troller @) have to be stable. For open-loop unstable plants, it is convenient to
use the IMC design procedure to design @) and then obtain the classic feedback
controller C' from (15.1-22) for implementation. Under some mild assumptions
about pole-zero cancellations (Sec. 15.2.2), all stabilizing controllers @ for the
plant P* are parametrized by

Q(2) = Qo(2) + Qu(2) (15.2-3)

where Q) is an arbitrary proper controller that stabilizes P* and Q) is any stable,
proper transfer matrix such that P*Q;P* is stable.

Design Procedure

Step 1: Nominal Performance

First, the stabilizing Hj-optimal controller Q(z) is determined which mini-
mizes the sum of the Sums of Squared Errors that each of the inputs v’ in a set
V = {vi(z):i=1,...,n} would cause, when applied to the system separately.

Objective O3:
m@in[@(ul) + ...+ 2(v")
where
®(v') £ |Wel} = [WE|3 = |W(I - P'Q)v'l3 (15.3 — 14)
The unique controller which meets Obj. O3 is given by

Qu = 2(Py) Mz Y (PL) Wb Vit (15.6 — 16)

where the operator {-}. denotes that after a partial fraction expansion of the
operand, only the strictly proper terms are retained, except for those that corre-
spond to poles of (P})~!. The factorization of the plant

P* = PP, (15.6 — 1)

into an allpass portion P} and a minimum phase portion portion Pj; can be
accomplished through “inner-outer” factorization (Sec. 15.6.4). The input matrix
V= (vl v? ... v") can be factored similarly

V= V,\[VA (15.6 == 15)
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In some special cases (Thm. 15.6-3), Qp is also Hj-optimal for each of the inputs
v’ separately, as well as their linear combinations.

Next, Qy is modified as described in Sec. 15.6.3 to eliminate the potential
problem of intersample rippling:

0(2) = Gu(2)d-(2)B(2) (15.6 — 33)

Step 2: Robust Stability and Robust Performance
In this step, the controller @) is augmented by a low-pass filter F' such that for
the detuned controller @ = Q(@Q, F') both the robust stability

pa(GF(P Q) <1,  0<w<n/T, A=A, (15.7 — 6)

and the robust performance

pa(GE(P, @) <1,  0<w<n/T, A=diag{A,A,} (15.7—9)

conditions are satisfied. A nonlinear program was formulated (Sec. 15.7-4) to
minimize pa(GF(P,Q)) as a function of the filter parameters for a filter with
a fixed diagonal structure. For unstable plants the filter has to be identity at
the unstable poles of P*. For ill-conditioned plants, two diagonal filters may be
necessary to meet the requirement (15.7-9). It should be noted that satisfaction
of (15.7-9) does not guarantee satisfaction of (15.7-6), although this is usually
so. Hence it should be verified that the optimal solution to (15.7-9) also satisfies
(15.7-6).

15.10 References

15.1.2. For a discussion on the computation of the matrices ® and I see Astréom
& Wittenmark (1984).

15.1.3. See the same reference for more details on the Nyquist D-contour for
discrete systems.

15.2. For modeling and identification methods for discrete systems see Astrom
& Wittenmark (1984). Jenkins and Watts (1969) is an excellent reference for
identification techniques that result in norm uncertainty bounds for each element
or a whole row-of the system transfer matrix.
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Chapter 16

LV-CONTROL OF A HIGH-PURITY
DISTILLATION COLUMN

In this chapter the high-purity distillation column described in the Appendix will
be studied, when reflux (L) and boilup (V) are manipulated to control the top
(yp) and bottom (zp) compositions. This column was used as an example on
several occasions earlier in this book. The LV-configuration is selected because
this choice of manipulated inputs is most common in industrial practice. This
does not mean that this is necessarily the best configuration; for example, the
-[L)-%-Conﬁguration may be preferrable.

The distillation column investigated here was chosen to be representative of a
large class of moderately high-purity distillation columns. The goal of this chapter
is to provide a realistic control design and simulation study for the column. To
be realistic at least the issues of uncertainty and nonlinearity must be addressed.

The reader is assumed to be thoroughly familiar with the material in Part III
of this book.

16.1 Features

16.1.1 Uncertainty

We showed in Sec. 13.3.4 that the closed-loop system may be extremely sen-
sitive to input uncertainty when the LV-configuration is used. In particular,
inverse-based controllers were found to display severe robustness problems. In
a similar manner as in Secs. 11.3.5 and 12.8 we will take uncertainty explicitly
into account here when designing and analyzing the controllers via the structured
singular value (u). We will demonstrate that u provides a much more efficient
tool for comparing and analyzing the effect of various combinations of controllers,
uncertainty and disturbances than the traditional simulation approach.

437
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16.1.2 Nonlinearity

High-purity distillation columns are known to be strongly nonlinear (see Ap-
pendix), and any realistic study should take this into account. Our approach is
to base the controller design on a linear model. The effect of nonlinearity is taken
care of by analyzing this controller for linearized models at different operating
points. Furthermore, all simulations will be based on the full nonlinear model.

16.1.3 Logarithmic Compositions

Several authors found that the high-frequency behavior of distillation columns is
only weakly affected by operating conditions when the scaled transfer matrix is
considered

1

dyf;) s<dL) st .09 \o

- = 16.1 -1

(dm% = dv & 0 —1_190., ( )
B

All plant models and controllers in this chapter are scaled in this manner. G° is

obtained by scaling the outputs with respect to the amount of impurity in each

product

(22) il oy T8
1-yp’ 77 ap
Here z% and y% are the compositions at the nominal operating point. This relative
scaling is obtained automatically by using logarithmic compositions

yp = (16.1 - 2)

Yp =In(1 - yp) (16.1 — 3)
_X'B = lan
because ‘d g
. I ... (16.1 — 4)
— YD TR

Furthermore, the use of logarithmic compositions (Yp and Xp) effectively elim-
inates the effect of nonlinearity at high frequency and also reduces its effect at
steady-state. For control purposes the high-frequency behavior is of principal im-
portance. Consequently, if logarithmic compositions are used we expect a linear
controller to perform satisfactorily even when the operating conditions are far
removed from the nominal operating point for which the controller was designed.
Another objective of this chapter is to confirm that this is indeed true.

In most cases the column is operated close to its nominal operating point and
there is hardly any advantage in using logarithmic compositions which merely
corresponds to a rescaling of the outputs in this case. However, if, for some reason,
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the column is taken far away from this nominal operating point, for example,
during startup or due to a temporary loss of control, the use of logarithmic
compositions may bring the column safely back to its nominal operating point,
whereas a controller based on unscaled compositions (yp and 2 p) may easily yield
an unstable response.

16.1.4 Choice of Nominal Operating Point

The design approach suggested by the above discussion is to design a linear
controller based on a linearized model for some nominal operating point. What
operating point should be used? If an operating point corresponding to both
products of high and equal purities is chosen (i.e., 1 — yp = zp is small), it is
easily shown that the steady-state gains and the linearized time constant will
change drastically for small perturbations from this operating point. We may
therefore question if acceptable closed-loop control can be obtained by basing
the controller design on a linearized model at such an operating point. Some
authors indicate that this is not advisable, and that a model based on a perturbed
operating point should be used. However, as we just discussed, the high-frequency
behavior, which is of primary importance for feedback control, shows much less
variation with operating conditions. Therefore, provided the model gives a good
description of the high-frequency behavior, we expect to be able to design an
acceptable controller also when the nominal operating point has both products
of high purity. This is also confirmed by the results in this chapter.

Therefore, a main conclusion is that acceptable closed-loop performance may
be obtained by designing a linear controller based on a linear model at any nom-
inal operating point. If large perturbations from steady state are expected then
logarithmic compositions should be used to reduce the effect of nonlinearity.

16.2 The Distillation Column

The column model is derived in the Appendix. The following simplifying as-
sumptions are made: binary separation; constant relative volatility; constant
molar flows; constant holdups on all trays; perfect pressure and level control.
The last assumption results in immediate flow response, that is, low dynamics
are neglected. This is somewhat unrealistic, and in order to avoid unrealistic
controllers, we will add “uncertainty” at high frequencies to include the effect of
neglected flow dynamics when designing and analyzing the controllers.

We will investigate the column at two different operating points. At the nom-
inal operating point, A, both products are high-purity and 1 — y% = z% = 0.01.
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Operating point C is obtained by increasing D/F from 0.500 to 0.555 which
yields a less pure top product and a purer bottom product; 1 — y$ = 0.10 and
e = 0.002 (subscript C denotes operating point C while no subscript denotes
operating point A). We will study the column for the following three assumptions
regarding reboiler and condenser holdup

Case 1: Almost negligible condenser and reboiler holdup (Mp/F = Mp/F =
0.5 min). '

Case 2: Large condenser and reboiler holdup (Mp/F = 32.1 min, Mp/F = 11
min). '

Case 3: Same holdup as in Case 2, but the composition of the overhead vapor
(yr) is used as a controlled output instead of the composition in the condenser

(yp)-

These three cases will be denoted by subscripts 1, 2 and 3, respectively. The
holdup on each tray inside the column is M;/F= 0.5 min in all three cases.

16.2.1 Modelling

Nominal operating point (A). A 41st order linear model for the columns is easily

derived
(gg) = G(s) (j{;) (16.2 — 1)

The scaled steady-state gain matrix is

878 —86.4 ] (162 2)

G(0) = [108.2 —~109.6

which yields the following values for the condition number and the 1,1-element
in the RGA

1(G(0)) = 5(G(0))/2(G(0)) = 141.7  A1(G(0)) = 35.1

However, 7(G) and A11(G) are much smaller at high frequencies as seen from Fig.
16.2-1. A very crude model used throughout the earlier chapters is

i
B T 755G(0)

This model has the same y(G) and A;;(G) for all frequencies and is therefore a
poor description of the actual plant at high frequency.

Model 0:  Gy(s)

(16.2 — 3)
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Figure 16.2-1. Column A, Case 1 (G = G;). The condition number of the plant is about 10 times
lower at high frequencies than at steady state. (Reprinted with permission from Chem. Eng. Sci.
43, 35 (1988), Pergamon Press, plc.)

Case 1. For the case of negligible reboiler and condenser holdup the following
simple two time-constant model yields an ezcellent approximation of the 41st
order linear model.

1082 —1082 _ _14 72 = 15 min =1
1478 1478 14+7ms

This two state model uses two time constants: 7 is the time constant for changes
in the external flows and is dominant. 79 is the time constant for changes in
internal flows (simultaneous change in L and V with constant product rates,
D and B). The simple model (16.2-4) matches the observed variation of the

condition number with frequency (Fig. 16.2-1).

S8 _ 818 | L4 104
4718 +718 + 78 = 1
Model 1: Gi(s) = ( ’ ‘ ‘ ) % o

The effect of the reboiler and condenser holdups (Case 2) can be partially
accounted for with Model 1 by multiplying G;(s) by diag{(1+7ps)~*, (1+75s)7'},
where in our case 7p = Mp/Vy = 10 min and 75 = Mp/Lp = 3 min. However, in
practice the top composition is often measured in the overhead vapor line (Case
3), rather than in the condenser. Gi(s) provides a good approximation of the
plant in such cases.

Cases 2 and 8. In order to obtain a low-order model for Cases 2 and 3, we
performed a model reduction on the full 41st order model. These reduced order
models are denoted by G(s) and Gs(s) respectively. A good approximation was
obtained with a 5th-order model as illustrated in Fig. 16.2-2.

Operating point C. We will return with a discussion of the model for this case
in Sec. 16.5 when we also discuss the control of the plant.
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Figure 16.2-2. Column A, Case 2. Relative difference between the 5th order model G5(s) and the
41st order plant Gopn(s). The 5th-order model provides an excellent approximation within the
frequency range of interest (w < 1min™"). (Reprinted with permission from Chem. Eng. Sci., 43,
36 (1988), Pergamon Press, plc.)

16.2.2 Simulations

The design and analysis of the controllers are based on the linear models
G1(s),Ga(s), and Gs(s). However, except for the five simplifying assumptions
stated above, all simulations are carried out with the full nonlinear model. (In
some cases the changes are so small, however, that the results are equivalent to
linear simulations.) To get a realistic evaluation of the controllers input uncer-
tatnty must be included. Simulations are therefore shown both with and without
20% uncertainty with respect to the change of the two inputs. The following
uncertainties are used:

AL=(1+A)AL, A;=02 (16.2 — 5a)
AV = (14 A)AV,, Ay=-0.2 (16.2 — 5b)
Here AL and AV are the actual changes in manipulated flow rates, while AL,
and AV, are the desired values as computed by the controller. A; = —A, was

chosen to represent the worst combination of the uncertainties (Sec. 13.3.4).
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16.3 Formulation of the Control Problem

16.3.1 Performance and Uncertainty Specifications

The uncertainty and performance specifications are the same as those used else-
where in this book.

Uncertainty. The only source of uncertainty which is considered here is uncer-
tainty on the manipulated inputs (L and V) with a magnitude bound:

5s+1

0.5s+1
The bound (16.3-1) allows for an input error of up to 20% at low frequency
as was assumed for the simulations (16.2-5). The uncertainty bound (16.3-1)
increases with frequency. This allows, for example, for a time delay of about 1
min in the response between the inputs, L and V, and the outputs, yp and zp. In
practice, such delays may be caused by the flow dynamics. Therefore, although
flow dynamics are not included in the models or in the simulations, they are
partially accounted for in the p-analysis and in the controller design.

wi(s) = 0.2 (16:3 —1)

Performance. Robust performance is satisfied if

F ) (T L GOTY £ (163 - 2)

|wyl
is satisfied for all possible plants G. We use the performance weight

10s +1
10s

A particular E which exactly matches the bound (16.3-2) at low frequencies and
satisfies it easily at high frequencies is E = 20s/20s + 1. This corresponds to a
first-order response with closed-loop time constant 20 min.

w,(s) = 0.5 (163—3)

16.3.2 Analysis of Controllers

Comparison of controllers is based mainly on p for robust performance (ugp).
Simulations are used only to support conclusions found using the p-analysis.
The main advantage of the u-analysis is that it provides a well-defined basis for
comparison. On the other hand, simulations are strongly dependent on the choice
of setpoints, uncertainty, etc.

The value of ppp is indicative of the worst-case response. If urp > 1 then
the “worst case” does not satisty our performance objective, and if ptgp < 1 then
the “worst case” is better than required by our performance objective. Similarly,
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if uyp < 1 then the performance objective is satisfied for the nominal case.
However, this may not mean very much if the system is sensitive to uncertainty
and pgp is significantly larger than one. We will show below that this is the case,
for example, if an inverse-based controller is used for our distillation column.

16.3.3 Controllers

We will study the distillation column with the following six controllers:

1. Diagonal PI-controller.

0.01 24 0
CPI(S) = T(l + 758) ( 0 _‘2.4) (16.3 - 4)
This controller was studied in Sec. 11.3.5 and was tuned to achieve as good a

performance as possible while maintaining robust stability (see also Fig. 16.4-1).

2. Steady-state decoupler plus two PI-controllers.

(1+ 75s)
s

Coim)(s) = (.7

G(0)~ = 0.01(1 + 75s) (27.96 —22.04

27.60 —22.40> (16.3 - 5)

This controller was tuned to achieve good nominal performance. However, the
controller has large RGA-elements (A11(C) = 35.1) at all frequencies and we

expect the controller to be extremely sensitive to input uncertainty (see Sec.
13.3).

3. Inverse-based controller based on the linear model G1(s) for Case 1.

S

Cim(s) = LG (5)" (163 - 6)

At low frequency this controller is equal to Cpiny($). Note that Cyiny(s) and Gi(s)T
have the same RGA-elements. Therefore from Fig. 16.2-1 we expect Cliny(s) to
be sensitive to input uncertainty at low frequency, but not at high frequency.

4, 5, and 6. p-optimal controllers-based on the models Gy(s),G1(s) and Ga(s).
The controllers are denoted Cy,(s),C14(s) and Co,(s), respectively.

These controllers were obtained by minimizing sup,, u(Ngp) for each model
using the input uncertainty and performance weights given above. The numerical
procedure used for the minimization is the same as mentioned in Sec. 11.3.5.
The p-plots for robust performance for the u-optimal controllers are of particular
interest since they indicate the best achievable performance for the plant. Bode
plots of the transfer matrix elements of Cy,(s) and Cy,(s) are shown in Fig. 16.3-
1. Note the similarities between these controllers and the simple diagonal PI
controller (16.3-4).
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Figure 16.3-1. Magnitude plots of elements in p—optimal controllers Cy,(s) and C3,(s). Dotted
line: Cps(s). (Reprinted with permission from Chem. Eng. Sci., 43, 39 (1988), Pergamon Press,
ple.)

At low frequency (s — 0) the six controllers are approximately

001 /24 0O
L ( 0 —2.4)

0.01 (27.96 —22.04
Coiny = Cliny = —— (27.80 —22.40)

» _0.01(3.82 —0.92)_ & __(_)._0_1_(6.07 —~0.90
B = 193 ~a5pi= 8™ 2.80 —2.93

S S

0.01 <4.06 +0.15)

);02"2 s \2.85 —2.93

IIA(C)||1 is shown as a function of frequency for the six controllers in Fig. 16.3-2.
As expected, the p-optimal controllers have small RGA-elements, which make
them insensitive to input uncertainty. For example, Cy, is nearly triangular at
low frequency and consequently has A & I.

16.4 Results for Operating Point A

In this section we will study how the six controllers perform at the nominal
operating point A for the three assumptions regarding condenser and reboiler
holdup (corresponding to the models G1(s), G2(s), and Gs(s)). The p-plots for
the 18 possible combinations are given in Fig. 16.4-1. A number of interesting
observations can be derived from these plots. These are presented below. In some
cases the simulations in Figs. 16.4-2 to 16.4-4 are used to support the claims.
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Figure 16.3-2. Magnitude of RGA elements of controllers. ||[A(C)|ly = ¥;;14:;(C)|. (Reprinted
with permission from Chem. Eng. Sci., 43, 39 (1988), Pergamon Press, plc.)

16.4.1 Discussion of Controllers

Cpi(s). The simple diagonal PI-controller performs reasonably well in all cases.
uyp is higher than one at low frequency, which indicates a slow return to steady
state. This is confirmed by the simulations in Fig. 16.4-3 for a feed rate dis-
turbance; after 200 min the column has still not settled. Operators are usually
unhappy about this kind of response. The controller is insensitive to input un-
certainty and to changes in reboiler and condenser holdup.

Coiny(8). This controller uses a steady-state decoupler. The nominal response
is very good for Case 1 (Fig. 16.4-2), but the controller is extremely sensitive to
input uncertainty. In practice, this controller will yield an unstable system.

Chinv(s). This controller gives an excellent nominal response for Case 1 (Fig.
16.4-1). This is also confirmed by the simulations in Fig. 16.4-2; the response is
almost perfectly decoupled with a time constant of about 1.4 min. Since the simu-
lations are performed with the full-order model, while the controller was designed
based on the simple two time-constant model, Gi(s) (16.2-4), this confirms that
G1(s) yields a very good approximation of the linearized plant when the reboiler
and condenser holdups are small. The controller is sensitive to the input uncer-
tainty as expected from the RGA analysis. Also note that the controller performs
very poorly when the condenser and reboiler holdups are increased. This shows
that the controller is also very sensitive to other sources of model-plant mismatch.

Cou(s). This is the p-optimal controller from our previous study which was
designed based on the very simplified model Gy(s). The controller performs
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Figure 16.4-1. p—plots for operating point. Upper solid line: ppp for robust performance; lower
solid line:unp for nominal performance; dotted line: pps for robust stability. (Reprinted with
permission from Chem. Eng. Sci., 43, 40 (1988), Pergamon Press, plc.)
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Figure 16.4-2. Operating point A, Case 1. Closed-loop response to small setpoint change in yp.
Solid lines: no uncertainty; dotted lines: 20% uncertainty on inputs L and V' (16.2-5). (Reprinted
with permission from Chem. Eng. Sci., 43, 41 (1988, Pergamon Press, plc.)



16.4. RESULTS FOR OPERATING POINT A 449

*10°3

e =

4 — ""‘n,.. AZB

2 _M

0
-2 -W

- Ayp

B S L UL R

0 50 100 150 200 o 50 100 150 200
TIME (min) TIME (min)
A: CP[(.S) B: Clu(s)

Figure 16.4-3. Operating point A, Case 1. Closed-loop response to a 30% increase in feed rate.
Solid lines: no uncertainty; dotted lines: 20% uncertainty on inputs L and V (16.2-5). (Reprinted
with permission from Chem. Eng. Sci., 43, 41 (1988), Pergamon Press, plc.)

surprisingly well on the actual plant (Gi(s)) when the holdups are negligible.
However, the controller is seen to perform very poorly when the holdups in the
reboiler and condenser are increased, which shows that the controller is very
sensitive to other sources of model inaccuracies (for which it was not designed).

C1u(s). This is the p-optimal controller when there is negligible holdup (G1(s)).
The robust performance condition is satisfied for this case since pugp = 0.95. The
nominal performance is not as good as for the inverse-based controller C'i,,($);
we have to sacrifice nominal performance to make the system robust with respect
to uncertainty. The controller shows some performance deterioration when the
reboiler and condenser holdups are increased (Case 2). This is not surprising since
the added holdup malkes the response of yp and zp more sluggish; the open-loop
response for yp changes from approximately (1+194s)! to ((1+194s)(1+10s))™!
[recall discussion following (16.2—4)]. As expected, the controller is much less
sensitive to changes in condenser holdup if the overhead composition is measured
in the vapor line (Case 3). Overall, this is the best of the six controllers.

Cyu(s). This is the p-optimal controller for the case with considerable reboiler
and condenser holdup, and with yp measured in the condenser (Ga(s)). prp =
1.00 for this case. The nominal response is good in all cases (Fig. 16.4-1), but the
controller is very sensitive to uncertainty when the plant is G(s) or G3(s) rather
than G(s). This is clearly not desirable since changes in condenser and reboiler
holdup are likely to occur during normal operation. The observed behavior is not
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Figure 16.4-4. Operating point A. Effect of reboiler and condenser holdup on closed-loop response.
No uncertainty. (Reprinted with permission from Chem. Eng. Sci., 43, 42 (1988), Pergamon Press,

ple.)
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surprising since the controller includes lead elements at w & 0.1 (Fig. 16.3-1B) to
* counteract the lags caused by the reboiler and condenser holdups. If these lags
are not present in the plant (Gi(s) or Gs(s)), the “derivative” action caused by
the lead elements results in a system which is very sensitive to uncertainty.

16.4.2 Conclusions

e The p-optimal controller Co,(s) for the plant Go(s) has ppp = 1.06 while
the p-optimal controller Cy,(s) for the plant Gi(s) has pugrp = 0.95. Thus,
somewhat surprisingly, the achievable performance is not much better for
Gi(s) than for Go(s), even though Gy(s) is ill-conditioned and has large RGA
elements at all frequencies, while G(s) has large RGA elements only at low
frequencies (Fig. 16.2-1). This seems to indicate that large RGA-elements at
low frequency imply limitations on the achievable control performance and
partially justifies the use of steady-state values of the RGA for selecting the
best control configuration.

e However, the use of the more detailed model G1(s), rather than Gy(s), is
still justified since the resulting p-optimal controller is much less sensitive
to changes in reboiler and condenser holdup (which will occur during oper-
ation).

e G(s) approximates the full-order model very closely as seen from Fig. 16.4-
2C; the response is almost perfectly decoupled when there is no uncertainty.

e To avoid sensitivity to the amount of condenser and reboiler holdup, the
overhead composition should be measured in the overhead vapor, rather than
in the condenser. In practice, temperature measurements inside the column
are often used to infer compositions, and the dynamic response of these
measurements is similar to that when the condenser and reboiler holdup is
neglected.

o The simple model G»(s) is useful for controller design even when the reboiler
and condenser holdup is large.

e The main advantage of the pu-optimal controllers over the simple diagonal PI
controller is a faster return to steady-state. This can be seen very clearly in
Fig. 16.4-3 which shows the closed-loop response to a 30% increase in feed
rate.
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16.5 Effect of Nonlinearity (Results for Operating Point
C)

We will not treat nonlinearity as uncertainty because this approach is not rigor-
ous and is also very conservative due to the strong correlation between all the
parameters in the model which is difficult to account for. Furthermore, we know
from the data in the Appendix that the column is actually not as nonlinear as one
might expect. Though the steady-state gains may change dramatically, the high
frequency behavior, which is of principal importance for feedback control, is much
less affected. In particular, this is the case if relative (logarithmic) compositions
are used. To demonstrate this fact we compute p and show simulations for some
of the controllers when the “plant” is G¢(s) rather than G(s).

16.5.1 Modelling

The model G¢(s) describes the same column as G(s), but the distillate flow rate
(£) has been increased from 0.5 to 0.555 such that yp = 0.9 and 25 = 0.002. For
Case 1 (Mp/F = Mg/F = 0.5 min), the following approximate model is derived
when scaled compositions (dyp/0.1,dzp/0.002) are used:

16.0 160 4 0.023
T+ns I4rs ' 14mes 71 = 24.5 min
Goi(s) = o i (16.5 — 1)
9.3 =0i8 « 1l T2 = 1Un
141ns 1478 14798

The steady-state gains and time constants are entirely different from those at
operating point A (16.2-4). Also note that at steady state A;1(G(0)) = 35.1 for
operating point A, but only 7.5 for operating point C. However, at high-frequency
the scaled plants at operating points A and C are very similar. Equations (16.2-4)
and (16.5-1) yield:

17045 -0.36

Gl(oo)_;(o_56 _0'65) Ati(o0) = 3.2 (16.5 — 2a)
17065 -0.65

c;m(oo)_;((l38 _0_52) Mifoo) = 3.7 (165 — 2b)

Therefore, as we will show, controllers which were designed based on the model
G(s) (operating point A) remain satisfactory when the plant is G¢(s) rather
than G(s). Recall that the use of a scaled plant is equivalent to using logarithmic
compositions (Yp and Xp). The variation in gain with operating conditions is
much larger if unscaled compositions are used — both at steady-state and at high
frequencies:
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16.5.2 p~Analysis

The p-plots with the model G¢(s) and four of the controllers are shown in Fig.
16.5-1 (all four controllers yield nominally stable closed-loop systems). For high
frequencies the p-values are almost the same as those found at operating point
A. The only exception is the inverse based controller Cyin,(s) which is robustly
stable at operating point A, but not at operating point C. Again, this confirms
the sensitivity of this controller to model inaccuracies. Performance is clearly
worse for low frequencies at operating point C (Fig. 16.5-1) than at operating
point A (Fig. 16.4-1). This is expected; the controllers were designed based on
model A, and the plants are quite different in the low frequency range.

The p-optimal controller Cy,(s) satisfies the robust performance requirements
also at operating point C when the reboiler and condenser holdups are small.
Consequently, with scaled (logarithmic) compositions, a single linear controller is
able to give acceptable performance at these two operating points although the
linear models are quite different. The main difference between Cy,(s) and the
diagonal PI controller is again that the uy-optimal controller gives a much faster
return to steady-state. This is clearly seem from Fig. 16.5-2A.

16.5.3 Logarithmic Versus Unscaled Compositions

Figure 16.5-1 shows how controllers, designed based on the scaled plant G(s) at
operating point A, perform for the scaled plant (different scaling factors!) at
operating point C; this is equivalent to using logarithmic compositions (Yp and
Xp). We know from (16.5-3) that the plant model based on absolute composi-
tions changes much more. Therefore we expect the closed-loop performance to
be entirely different at operating ponts A and C when unscaled (absolute) com-
positions are used. This is indeed confirmed by Fig. 16.5-2B which shows the
closed-loop response to a small setpoint change in zp at operating point C. Fig.
16.5-2B should be compared to Fig. 16.5-2A which shows the same response, but
with logarithmic compositions as controlled outputs. In Fig. 16.5-2B (absolute
compositions) the response for zp is significantly more sluggish, but the response
for yp is much faster than in Fig. 16.5-2A (logarithmic compositions). This is
exactly what we would expect from a comparison of (16.5-3a) and (16.5-3b). The
high-frequency gain for changes in yp is increased by an order of magnitude and
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Figure 16.5-1. p—plots for operating point C. Upper solid line: trp; lower solid line: uyp; dotted
line: pps. (Reprinted with permission from Chem. Eng. Sci., 43, 44 (1988), Pergamon Press, plc.)
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Figure 16.5-2. Operating point C, Case 1. Closed-loop response to small setpoint change in zp
(zB increases from 0.002 to 0.0021) using diagonal PI controller (dotted line) and the u—optimal
controller for operating point A (solid line). Left: logarithmic compositions as controlled outputs
(equivalent to using scaled compositions); right: absolute (unscaled) compositions as controlled
outputs. No uncertainty. (Reprinted with permission from Chem. FEng. Sci., 43, 45 (1988),
Pergamon Press, plc.)

the gain for changes in zp is reduced by an order of magnitude. However, recall
from (16.5-2) that the gain changes very little when logarithmic compositions are
used.

16.5.4 'Transition from Operating Point A to C

Figure 16.5-3 shows a transition from operating point A (Yp = Xp = 4.605) to
operating point C (Yp = 2.303, Xp = 6.215) using logarithmic compositions as
controlled ouputs. The desired setpoint change is a first order response with time
constant 10 min:

2.303 1 -1.6091
1+10ss’ A=y +10ss

The closed-loop response is seen to be very good. The diagonal controller Cp;(s)
and the p-optimal controller Cy,(s) give very similar responses in this particular
case. (However, the pu-optimal controller generally performs better at operating
point C as is evident from Figs. 16.5-1 and 16.5-2.) This illustrates that a linear
controller, based on the nominal operating point A, can be satisfactory for a large

AYDs =
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Figure 16.5-8. Transition from operating point A to C (Case 1) with controllers C1, (solid line) and
Cpr (dotted line). Logarithmic compositions are used as controlled outputs to reduce the effect of
nonlinearity. Desired trajectory is a first-order response with time constant 10 min. No uncertainty.
(Reprinted with permission from Chem. Eng. Sci., 43, 45 (1988), Pergamon Press, plc.)

deviation from this operating point when logarithmic compositions are used.

16.6 Conclusions

A single linear controller is able to provide satisfactory control for this high-
purity column at widely different operating conditions. To compensate for the
plant nonlinearity it is advantageous to use “logarithmic compositions.” For small
deviations from steady state linear controllers using “absolute compositions” work
also well.

The performance with a simple diagonal controller is robust with respect to
model-plant mismatch but after an upset the return to steady state can be very
sluggish. This particular deficiency can be removed by a u-optimal controller.
Inverse-based controllers, and specifically those involving steady-state decouplers,
were shown to be very sensitive to model-plant mismatch.

16.7 References

This chapter is abstracted from a paper by Skogestad & Morari (1988a) where
the state-space description of the p-optimal controllers and the reduced order
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models for Cases 2 and 3 are also provided. For a general discussion of distilla-
tion control the reader is referred to the book by Shinskey (1984) or the thesis by
Skogestad (1987). Skogestad and Morari (1987a) have reviewed the current in-
dustrial understanding of distillation control from the viewpoint of modern robust
control.

16.1.2. The nonlinear behavior was observed specifically by Moczek, Otto &
Williams (1963) and Fuentes and Luyben (1983).

16.1.3. The use of “logarithmic compositions” seems to have been first sug-
gested by Ryskamp (1981).

16.1.4. The change of gain and time constant with operating condition was
analyzed by Kapoor, McAvoy & Marlin (1986) and Skogestad & Morari (1988d).

16.2.1. The model reduction was performed via “Balanced Realization”
(Moore, 1981). The dominant time constant 7; can be estimated, for exam-
ple, from the inventory time constant introduced by Moczek, Otto & Williams
(1963). The time constant 7 can be obtained by matching the high-frequency
behavior as shown by Skogestad & Morari (1988d).



Appendix

Dynamic Model of Distillation Column

On many occasions in this book a high purity distillation column is used as
an example. In this Appendix all the necessary information is summarized to
enable the reader to verify any of the results reported in this book and to use the
distillation model as a test case for other analysis and design procedures.

A.1 Nomenclature and Assumptions

The column is shown in Fig. A.1-1 where most symbols are also defined.

Symbols:

M
N

N + 1 total number of stages including total condenser

Np
F

™
o

ZR@HAY @ T <UL

hold up
number of equilibrium (theoretical) stages

feed stage location

feed rate

mole fraction of light component in feed
fraction liquid in feed

distillate flow

boilup

top vapor flow

reflux flow

bottom flow

pressure

mole fraction of feed which is liquid

mole fraction of light component in liquid
mole fraction of light component in vapor
relative volatility

linearized VLE-constant

The unit of mass is kmol and the unit of time is minute.

459



460 APPENDIX A. DYNAMIC MODEL OF DISTILLATION COLUMN

Overhead

vapor
Vy /"“'\ C:ndenser
e
Condenser
P = My—===) holdup
N Reflux Distillate
NG L D.yp
'
i
Feed E
ol SRS i
F,ze |
1
'
3
2
f———— _ Boilup
i 1
Reboiler i v L
holdup Mg \ Reboiler
Bottom product -—4/

B,xg

Figure A.1-1. Two product distillation column with single feed and total condenser.

Subscripts:
i tray ¢ (trays are numbered from bottom with the reboiler as tray
: F feed
D distillate
“ B bottom
£ ‘4 top
. Assumptions:

e binary mixture

constant pressure
e constant relative volatility o

constant molar flows

e no vapor holdup (immediate vapor response, dVr = dVp)

constant liquid holdup M; on all trays (immediate liquid response, dLr =
dLp)

e Vapor-Liquid Equilibrium (VLE) and perfect mixing on all stages
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A.2 Nonlinear Model

Material balances for change in holdup of light component on each tray : =
2,,N(Z7é NF,Z #Np-i-l)

M;i; = Lijaziz + Vicior — Lizi — Viys
Above feed location 2 = Np + 1:

M;z; = Lip1%ip1 + Vicryior — Lizi — Viyi + Fyyr

Below feed location, ¢ = Np:

M;i; = Liy12ip1 + Vie1Yio1 — Lizi = Viyi + Frzr
Reboiler, 7 = 1:

Mpgi; = Lg%y — Viyi — Bz, xp =2

Total condenser, 1 = N + 1:

Mpi; = Vi1yi-1 — Lizi — Dz,  yp = Ty4a
VLE on each tray (i = 1,...,N), constant relative volatility:
_ aT;
1 + (Of —_ 1)]2,

Flow rates assuming constant molar flows:

Yi

i > Np (above feed): L;=L, V=V +Fy
t < Np (below feed): Li=L+F;, V=V
Fi=qpF, Fy=F-F;
D=Vy—-L=V+Fy—L (constant condenser holdup)
B=IL,-Vi=L +VFL —V  (constant reboiler holdup)

Compositions zr and yp in the liquid and vapor phase of the feed are obtained
by solving the flash equations:

Fzp = Frzp+ Fyyr
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Table A.2-1. Column Data

Relative volatility (a2 s
No. of theoretical trays N =40
Feed tray (1=reboiler) Np =21

Feed composition zr = 0.5

Condenser time constant | Mp/F": see Ch. 16
Reboiler time constant | Mp/F: see Ch. 16

Tray time constant M;/F = 0.5min

i (8%
T 14 (a=Dzp
The column data and operating conditions used in the book are shown in Tables

A.2-1 and A.2-2. The tray compositions are listed in Table A.2-3. The column
behavior is highly nonlinear as Fig. A.2-1 illustrates.

Yr
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Table A.2-2. Operating Variables:

Operating Point | A C

Yp 0.99 | 0.90
25 0.01 |0.002

(L/D)min | 3.900 | 3.000

L/D 5.413 | 4.935
D/F 0.500 | 0.555
BJF 0.500 | 0.445
V/F 3.206 | 3.291
L/F 2.706 | 2.737

i} 180 260 308 400 500 [} 168 268 388 400 S6@ a 188 280 308 488 50O
TIME (MINUTES) TIME (MINUTES) TIHME (MINUTES)
AV : +6.2% AV : 4+0.003% AV : —6.2%
A B C

Figure A.2-1. (—) Nonlinear open loop responses Ayp and Azpg for changes in boilup V (reflux L
constant). ( - - - ) Approximation with linear first order response. (Different time constants for A,
B and C). A: V +6.2%, B: V +0.003%, C: V — 6.2%.



464

APPENDIX A. DYNAMIC MODEL OF DISTILLATION COLUMN

Table A.2-3. Tray compositions for operating conditions A and C.

] |
Tray z y z Y
41 0.99000001 0.00000000 0.89999998 0.00000000
40 0.98507464 0.99000001 0.85714287 0.89999998
39 0.97891331 0.98584270 0.80946749 0.86436397
38 0.97124165 0.98064220 0.75826764 0.82472157
37 0.96174449 0.97416693 0.70532095 0.78214854
36 0.95007116 0.96615076 0.65266412 0.73812300
35 0.93584847 0.95629781 0.60229003 0.69433850
34 0.91870391 0.94429302 0.55585837 0.65245205
33 0.89830160 0.92982209 0.51450431 0.61384380
32 0.87439108 0.91260135 0.47878328 0.57945764
31 0.84686637 0.89241952 0.44873506 0.54975533
30 0.81582677 0.86918712 0.42401719 0.52477002
29 0.78162557 0.84298790 0.40405512 0.50421697
28 0.74489015 0.81412017 0.38817218 0.48761836
27 0.70649838 0.78311342 0.37568399 0.47441158
26 0.66750675 0.75070858 0.36595631 0.46402755
25 0.62903917 0.71779740 0.35843393 0.45593894
24 0.59216058 0.69532860 0.35264966 0.44968402
23 0.55776387 0.65420103 0.34822109 0.44487435
22 0.52649474 0.62516826 0.34484178 0.44119197
21 0.49872494 0.59877533 9.34226966 0.43838206
20 0.47416389 0.57493830 0.29737207 0.38832030
19 0.44553304 0.54654711 0.25339118 0.33734646
18 0.41298330 0.51345152 0.21191093 0.28741339
17 0.37701508 0.47582585 0.17416464 0.24031939
16 0.33849627 0.43424863 0.14091858 0.19746466
15 0.29860669 0.38972306 0.11246721 0.15971924
14 0.25870702 0.34361297 8.87127668E-02 0.12741737
13 0.22015929 0.29749119 6.9285258TE-02 0.10044810
12 0.18414706 0.25293222 5.36631495E-02 | 7.83913583E-02
11 0.15154333 0.21130413 4.12711129E-02 | 6.06550165E-02
10 0.12285385 0.17361607 3.15471478E-02 | 4.65858951E-02
9 9.82341841E-02 0.14045265 2.39814352E-02 | 3.55459340E-02
8 7.75578097E-02 0.11199372 1.81338135E-02 | 2.69563195E-02
7 6.05053641E-02 | 8.80929977E-02 | 1.36372205E-02 | 2.03172937E-02
6 4.66509089E-02 | 6.83813393E-02 | 1.01931207E-02 | 1.52121522E-02
5 3.55311297E-02 | 5.23663759E-02 | 7.56312115E-03 | 1.13019431E-02
4 2.66932649E-02 | 3.95125374E-02 | 5.55941742E-03 | 8.31601024E-03
2 1.42609123E-02 | 2.12399177E-02 | 2.87815696E-03 | 4.31103166E-03
1 9.99999978E-03 | 1.49253728E-02 | 2.00000009E-03 | 2.99700303E-03
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A.3 Linearized Model

LY

We linearize the material balance on each tray (dL; = dL, dV;=dV):

M;i; = Lipidzigy — (Li+ KVi)dzi + Ki1Vicidziog + (Tig1 — 2i)dL — (yi — yi-1)dV
Here K is the linearized VLE-constant:
K, = fi-y'l- = .
dz; (14 (a—1)z;)?
and ¥;, 24, L; and V; are the steady-state values at the nominal operating point.

Written in the standard state variable form in terms of deviation variables the
model becomes

i = Az + Bu, y=Cx

where z = (dxy,...,dzyy1)T are the tray compositions, u = (dL,dV)T are the
manipulated inputs and y = (dyp,dzp)T are the controlled outputs. The state
matrix A = {a;;} is tri-diagonal:

i# N+ 1: aii41 = Liy1 /M;

ai; = —(L;i + K;V3) [ M;
i# 1 aii—1 = K;_1Vio1/M;

Input matrix B = {b; ;}:
% 75 N+ 1: b,’,l = (aziﬂ — xi)/]\l,', bN+1,1 =i

i#FLi#En+1 bio=—(yi—yi-1)/Mi, byy12=0, bia=(y1—z1)/M

Output matrix C:

00 0 ... 01
C_(l 0 ... 0 O 0)
The condenser drum is assumed to be under perfect level control
V=L+D

Thus, if a different set of manipulated variables, U = (dD,dV)T is employed the
new model is obtained via the linear transformation

()= (5 1) ()
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Table A.4-1. Gain Information

Operating Point A C
Gor(0) (0.878 —0.864) (1.604 —1.602)
L 1.082 —1.096 0.01865 —0.02148
, . o 87.8 —86.4 16.0 16.023
G5y (0) (scaled compositions) (108.2 —-109.6) (9.3 _10'71)
RGA X;1(0) 35.1 7.5
0.45 —0.36 6.5 —6.5
0.01 001
Grv(o0) s (0.56 —0.65) s (0.08 —0.10)
0.45 —0.36 0.65 —0.65
s 1 i
GLv(o0) 5<0.56 —0.65) 5(0.38 —0.52>
. Aui(o0) 3.9 37

A.4 Gain Information

From the gain information in Tables A.4-1 through A.4-3 one can see that the non-
linearity appears mostly in the low-frequency range and is much less pronounced
for high frequencies. The time constant (7 = 75min) used in the simulations
represents an average value based on the simulations shown in Fig. A.2-1.

i T
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Table A.4-2. Singular Value Decomposition of Gain Matrices

Configuration LV VBL'g
G(0) (0‘878 —0.864) (-—0.878 0.014 )
! 1.082 —1.096 -1.082 -0.014
BGA My 35.1 0.45
Condition number & 1T 70.8
SVD; G=ULVH
U (-—0.625 0.781 ) (—0.630 0.777 )
-0.781 ~0.625 -0.777 -0.630
5 (1.972 0 ) (1.393 0 )
0 0.0139 0 0.0197
v (—0.707 0.708) (1.000 ——0.001)
0.708  0.707 0.001 1.000

Table A.4-3. Disturbance gains for LV-configuration.

TR ¥

qr

Vi

dyp
d.’EB

0.881 | 0.394 | 0.868

1.119 | 0.586

1.092

0.864

1.096

467
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