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Chapter 12
MIMO IMC DESIGN

We assume that the reader has mastered Chaps. 3 through 6 and is familiar
with the IMC concept and its implications. Thus, the MIMO treatment of this
topic will be much briefer. Some concepts which extend to the MIMO case in a
straightforward manner (e.g., two-degree-of-freedom design) will not be covered
at all. Issues for which analogies in the SISO case are lacking (e.g., structured
uncertainty, ill-conditioned systems) will be treated in depth.

For SISO systems it was possible to design the IMC controllers analytically
and to obtain insight into the effect of RHP zeros, RHP poles and robustness
issues in the process. For tutorial reasons a separate derivation for stable (Chap.
4) and unstable (Chap. 5) systems was justified. Except in trivial cases (MP
systems) the derivation of the IMC controllers for MIMO systems and the effect

of RHP zeros and poles is quite complex. Therefore, only one derivation for both
stable and unstable systems will be presented.

12.1 IMC Structure

The block diagram of the IMC structure is shown in Fig. 12.1-1A. Here P denotes
the plant and P, the measurement device transfer function. In general, neither P
nor P,, are known exactly, only their approximate models P and P, are available.
The process transfer function P; describes the effect of the disturbance d on the
process output y. The measurement of y is corrupted by measurement noise n.
The controller @ determines the value of the input (manipulated variable) u. The
control objective is to keep y close to the reference (setpoint) r.

Commonly we will use the simplified block diagram in Fig. 12.1-1B. Here
d denotes the effect of the disturbance on the output. Exact knowledge of the
output y is assumed (P,, = I,n = 0). Note that the complete control system to

be implemented through computer software or analog hardware is contained in
the shaded box in Fig. 12.1-1B.

If the IMC controller @ and the classic controller C' (Fig. 10.2-1B) are related
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Figure 12.1-1. General (A) and simplified (B) IMC block diagram. Shaded portion indicates control
system.
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through B
C=QUI-PQ™! (12.1-1)
Q=C(+PC)™? (193 ~3)
then the IMC structure and the classic feedback structure are equivalent in the
sense that to each input pair {r, d} there corresponds the same output pair {y, u}.

For the IMC structure the sensitivity E and complementary sensitivity H are
defined through

e=y—r=(I-PQ)I+(P~-P)Q)(d-r)2 Ed-") (12.1 - 3)
y=PQU+(P-P)Q)"r2£Hr (ford=0) (12.1 - 4)

For the case that the model is perfect (P = P) these expressions yield
E=1I-PQ - (121 -5)
H=PQ (12.1 - 6)

12.2 Conditions for Internal Stability

In order to test for internal stability we examine the transfer matrices between
all possible system inputs and outputs. From the block diagram in Fig. 12.2-1
we note that there are three independent system inputs r,uy, and uy and three
independent outputs y,u, and §. If there is no model error (P = 13), they are
related through the following transfer matrix:

y PQ U-PQIP Py (7
(u):( Q -QP O) (ul) (12.2-1)
g PQ "*PQP P Uy

Theorem 12.2-1 follows trivially by inspection.

Theorem 12.2-1. Assume that the model is perfect (P = P). Then the IMC
system in Fig. 12.1-1B is internally stable if and only if both the plant P and the
controller @ are stable.

Thus the structure in Fig. 12.1-1B cannot be used to control plants which are
open-loop unstable. Nevertheless, even for unstable plants we will exploit the
features of the IMC structure for control system design and then implement the
controller C' (obtained from (12.1-1)) in the classic manner. For internal stability
of the classic feedback structure the expression (10.2-14) has to be stable. We
substitute for C' from (12.1-1) to obtain for P = P

(i/t) _ (PQQ (I :Sg)P) (1:’) __A:S(m ‘ (122 2)
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U, Uy

r Q“—ui—rP y

)

Figure 12.2-1. Block diagram for derivation of conditions for internal stability.

This implies that @ has to be stable and that in the elements of S the factors @
and (I — PQ) have to cancel any unstable poles of P. Thus both @ and (I — PQ)
must have RHP zeros at the plant RHP poles. Special care has to be taken
to cancel these common RHP zeros when the controller C = Q(I — PQ)™! is
constructed. Minimal or balanced realization software can be used to accomplish
that.

12.3 Parametrization of All Stabilizing Controllers

For SISO systems we derived a parametrization of all stabilizing controllers in
terms of a stable transfer function ¢; (Thm. 5.1-2). A similar development
involving coprime factorization is possible for MIMO systems. However, the
resulting MIMO parameter ) cannot be interpreted as nicely as in the SISO
case. Therefore, the IMC design procedure where Q is augmented by a low-pass
filter for robustness and on-line adjustment would not be meaningful. We will
derive an alternate parametrization which preserves the physical meaning of @
and allows us to compute the Hs-optimal controller for both stable and unstable
MIMO systems. This controller will then again be a possible starting point (Step
1) for the IMC design procedure. We will make the following two assumptions.

Assumption A1l. If 7 is a pole of P in the open RHP, then (a) the order of w
is equal to 1 and (b) P has no zeros at s = 7.

Assumption Ala is made solely to simplify the notation. Assumption Alb is
not very restrictive because the presence of a zero at s = m implies an exact
cancellation in det(P(s)), which is a nongeneric property — i.e., it does not
happen after a slight perturbation in the coefficients of P is introduced.

Assumption Ala is not made for poles at s = 0 because more than one such
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pole may appear in an element of P, introduced by capacitances present in the
process. However, the following assumption is made which is true for all practical
process control problems.

Assumption A2. Any poles of P or P on the imaginary azis are at s = 0. Also
P has no finite zeros on the tmaginary aris.

These two assumptions allow us to derive the following theorem.

Theorem 12.3-1. Assume that Assns. Al and A2 hold and that Qy(s) stabilizes
P — i.e., that S in (12.2-2) is stable for Q@ = Qo. Then all Q’s which make S
stable are given by '

Q(s) = Qo(s) + Q1(s) (12.3-1)

where Q1 is any stable transfer matriz such that PQP is stable.

Proof. = Assume that ¢y makes S stable and that @; and PQ,P are stable.
From substitution of (12.3-1) into (12.2-2) it follows that S(Q) is stable if and
only if ' = (PQ; @QiP PQP) is stable. By assumption the third element
of S is stable. Stability of the other two elements follows by pre- and post-
multiplication of PQ;P by P!, since according to Assns. Al and A2, P has no

zeros at the location of its unstable poles and these are the only possible unstable
poles of §'.

< Assume that @ and @y make S stable. Then the difference matrix
P(Q-Qo) -P(Q- QO)P)
AS=85(Q)-S = (
(@) = 5(Q) (@=Qo) —(Q@-QuP
is stable. This implies that (Q — Q) = @ and PQ,P are stable. ]
Note that for SISO systems we can choose

Q1 =02s"Q}, Q) stable (12.3 - 2)

as we did for Thm. 5.1-2. Then clearly Q; and PQ,P are stable. Poles of MIMO
systems have a “structure” (matrix of residues) which is not reflected in (12.3-2).
While even for MIMO systems any controller of the form (12.3-1 and 12.3-2)
would indeed be a stabilizing controller there are many other controllers which
are not of this form but are also stabilizing. Thus (12.3-1 and 12.3-2) would not
constitute a complete parametrization of all MIMO stabilizing controllers.

12.4 Asymptotic Properties of Closed-Loop Response

“System types” were defined in Sec. 10.4.2 to classify the asymptotic closed-loop
behavior.
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Type m:
lim s*E(s)=0; 0<k<m (12.4 - 1)
Using (12.1-3) this definition becomes
Type m:
lim s™*(I ~ PQUI+(P-P)Q)'=0; 0<k<m (12.4~2)
This is equivalent to requiring
Type m:
. d* ~
Eio E;[(I - PQ)=0; 0L k<m (12.4 - 3)
Specifically we obtain
Type 1: B
y_{%PQ =7 (12.4 - 4)
Type 2:
. . od, -
lim PQ=1 and lim EE(PQ) =) (12.4 - 5)

Thus, in order to track error free asymptotically constant inputs the controller
gain has to be the inverse of the model steady state gain. Note that (12.4-4) and
(12.4-5) are necessary and sufficient for off-set free tracking of steps and ramps,
respectively, even when model error is present.

12.5 Outline of the IMC Design Procedure

In Chaps. 10 and 11 we discussed the objectives of control system design.
Nominal Performance:

Specification:

[WeEWi|ls <1; a=2,00 (12.5 - 1)
Optimal Design Problem:

win [WoBWille = mjn [Wa(I - PQWillay  a=2,00  (125-2)

In Sec. 10.4.3 we concluded that from a deterministic point of view the Hj-
objective (12.5-1) is somewhat artificial. As an alternative we suggested consid-
ering the ISE for a single input or for a finite set of inputs.

Robust Stability:
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Multiplicative Output Uncertainty:
(Hlp) <1; Yo & |Hl|lw=|PQlollw <1 (125~ 38)
Multiplicative Input Uncertainty:
F(P'HPl) < 1; Yw & ||P'HPU|w=|QPllle<1  (12.5-14)

General (block diagonal) Uncertainty (A,):

pa, (GI(P, Q) <1  Vw (12.5 - 5)
Robust Performance:
‘Specification:
IWoEWi|loo < 1 VP eIl (12.5 - 6)
or
pa(GF(P,Q) <1 Yw, A =diag{A,, Ay} (135=T)

Optimal Design Problem:

min sup pa(GF(P,Q)) (12.5 - 8)

where the superscript ¥ in G is used to indicate that at the robustness stage,
the design variables are the IMC filter parameters [see (12.5-11)].

For good performance a weighted norm of the sensitivity function E should
be made small (12.5-1). Usually the 2-norm, co-norm or the ISE for a finite
set of inputs is minimized (12.5-2). Robust stability imposes constraints on the
controller design: multiplicative output uncertainty constrains the maximum sin-
gular value of the complementary sensitivity function (12.5-3) but in general the
constraint takes on a complex form (12.5-5). The robust performance constraint
is expressed through the SSV. As an alternative to (12.5-8) one could minimize
for a specific input the worst ISE that can result from any plant in the set II.

Often what we need in practice is robust performance. However, at present,
efficient and reliable techniques for the solution of (12.5-8) are not available
and the specification of the performance weights which yield a practically useful
controller is an art. Furthermore, sometimes it is more meaningful to consider
an Hs-type performance objective [and not the Hy-type implicit in 12.5-8] and
to optimize nominal performance subject to the constraint of “robust stability”
or “robust performance.” Also, it is desirable to provide for convenient on-line
robustness adjustment as the plant changes and the model quality degrades with
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time. For these reasons, we adopt the two-step IMC design approach which is
capable of generating good engineering solutions to the robust control problem.

Step 1: Nominal Performance

Q is selected to yield a “good” system response for the input(s) of interest,
without regard for constraints and model uncertainty. Several Hy-type objective
functions will be considered. Define

B(v) = [Well3 = |[WEv|l} = [[W(I - PQ)v|3 (12.5-9)
Then one objective could be
Objective O1:

min ®(v)
Q

for a particular input v = (v, ve,...,v,)¥, where Q satisfies the internal stability
requirements. However, minimizing the weighted ISE for just one vector v is not
very meaningful, because of the different directions in which the disturbances
enter the process or the setpoints are changed. It is desirable to find a @, that
minimizes ®(v) for every single v in a set of external inputs v of interest for the
particular process. For an n x n P this set can be defined as

V={v'(s):i=1,...,n} (12.5 — 10)

where v!(s),...,v"(s) are vectors that describe the expected directions and fre-
quency content of the external system inputs — e.g., steps, ramps, or other types
of inputs.

The objective can then be written as

Objective O2:
ngn ®(v) WVveV

under the constraint that () satisfies the internal stability requirements. A linear
time invariant @ that meets Obj. O2 does not necessarily exist. In Sec. 12.6.3
it will be shown that it exists for a large class of V’s. An alternative objective
would be:

Objective 0%
nbin[@(vl) + 3 +...+ 3(v")]

In this case the objective is to minimize the sum of the ISE’s that each of
the inputs v* would cause when applied to the system separately. This was the
objective discussed in Sec. 10.4.3.
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Step 2: Robust Stability and Performance

The aggressive controller @ obtained in Step 1 is detuned to satisfy the ro-
bustness requirements. For that purpose Q is augmented by a filter F' of fixed
structure

Q=Q(Q,F) (125 -11)

and the filter parameters are adjusted to solve (12.5-8). Generally, the weights W;
chosen for nominal performance (12.5-1, 12.5-2) and robust performance (12.5-6
to 12.5-8) are not the same. As in the SISO case the solution of the nominal
performance problem suggests an ideal sensitivity operator E which cannot be
realized in practice because of robustness problems. The robust performance de-
sign objective is to malke the sensitivity operator as similar to E as possible while
satisfying all robustness constraints. Thus, generally the performance weight for
(12.5-6 to 12.5-8) is derived from the optimal E obtained in Step 1. For example,
one could choose Wy = wyI where w;* > &(E) which implies that the magnitude
(maximum singular value) of the sensitivity function is allowed to increase up to
Wy A,

Sometimes F' enters @ (12.5-11) in a simple manner
Q=QF (12.5 — 12)

Sometimes a more complicated form is required as we will discuss later. In general,
it might not be possible to meet the robust performance requirement (12.5-7).
The reason could be that our two-step design procedure fails to produce an ac-
ceptable Q. On the other hand, there might not exist any @ such that (12.5-7)
is satisfied. Then the performance requirements have to be relaxed and/or the
model uncertainty has to be reduced.

12.6 Nominal Performance

We will first make some assumptions on the input v and the set of inputs V. Then
we will find the controllers ¢ which meet Objs. O1 through O3.

12.6.1 Assumptions

In Sec. 12.3 we made some assumptions on the RHP poles and zeros of P to enable
us to derive a simple controller parametrization. The following assumptions on v
and V are of a similar nature.

Assumption A3. Every nonzero element of v includes all open RHP poles of
P, each of them with degree 1, and those are the only open RHP poles of v.
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Assumption A4. Let {; bé the mazimum number of poles at s = 0 of any
element in the it" row of P. Then the it* element of v, vi(s), has at least €; poles
at s = 0. Also v has no other poles on the imaginary azis and its elements have
no finite zeros on the imaginary axis.

Assumptions A3 and A4 are not restrictive when v is an output disturbance d,
generated by an input disturbance that has passed through the process. In that
case d usually includes all the unstable process poles as postulated by Assns. A3
and A4. Note that the control system will also reject other disturbances with
fewer unstable poles, without producing steady-state offset. Assumption A4 is
different for poles at s = 0 because their number in each row of P can be different
(capacitancies may be associated only with certain process outputs). Also, the
output disturbance may have more poles at s = 0 than the process.

Assumptions A3 and A4 may be restrictive for setpoints. Then, however, we
can employ the two-degree-of-freedom structure (Sec. 5.2.4) which allows us to
disregard the existence of any unstable poles of P and Assns. A3 and A4 are not
needed.

For Objs. 02 and O3 we are considering the set V (12.5-10) of n inputs
v', i =1,n. Define the square matrix

V(s) & (v'(s) v¥(s) ... v"(s)) (12.6 — 1)

Assumption A5. The matriz V has no zeros at the location of its unstable poles
and no finite zeros on the imaginary axis, and V=1 cancels the closed RHP poles
of P in V-IP.

Assumptions A3 and A4 for each column of V' do not necessarily imply that
Assn. A5 is satisfied. A matrix V' which satisfies Assn. A5 can be easily con-
structed. One way is to obtain V as P times a matrix with no open RHP poles
and no finite zeros on the imaginary axis. This case corresponds to the physically
meaningful situation, where the output disturbances v' are generated by distur-
bances at the plant input. Another way is to use a diagonal V', in which case

satisfaction of Assns. A3 and A4 by every column of V implies satisfaction of
Assn. A5.

Note that Assns. Al-A5 are only relevant for unstable plants and impose no
restrictions on stable plants.
12.6.2 H,-Optimal Control for a Specific Input

The solution of Obj. O1 is also the first step toward the solution of Obj. 02 if
such a solution exists. Let vy(s) be the scalar allpass that includes the common

e
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RHP zeros of the elements of v. Factor v as follows:
v(s) = vo(8)(1(s) . .. on(s))T £ vy(s)d(s)T (12.6 - 2)

The plant P can be factored into a stable allpass portion P4 and an MP portion
Py such that
P = PPy (12.6 - 3)

Hence P4 and Pj;! are stable and P{ (iw)Ps(iw) = I. The procedure for carrying
out this “inner-outer” factorization is discussed in Sec. 12.6.4.

Theorem 12.6-1. Assume that Assns. A1-A4 hold. Then the set of controllers
Q that solves Obj. O1 satisfies

Qb = Ptw- YW P79}, (12.6 — 4)

where the operator {-}. denotes that after a partial fraction expansion of the
operand, all terms involving the poles of P7' are omitted. Furthermore, forn > 2
the number of stabilizing controllers that satisfy (12.6-4) is infinite. Guidelines
for the construction of a controller are given in the proof.

We stress that not every controller that satisfies (12.6-4) is stabilizing. Im-
proper stabilizing controllers that satisfy (12.6-4) are accepted because in the
second step of the design procedure a filter with the appropriate roll-off will pro-
duce a proper Q(s). Note that any constant weight W cancels in (12.6-4).

The relationship (12.6-4) should be compared with the Hy-optimal controller
for SISO systems stated in Thm. 5.2-1. If we assume that the plant and the
disturbance have the same open-loop RHP poles, then the expressions (5.2-6)
and (12.6-4) are equivalent. For SISO systems we did not have to make Assn.
A3 because we can easily factor out the unstable portions of p and v.

Proof of Theorem 12.6-1. The proof of (12.6-4) is somewhat lengthy and can be
skipped by the result-oriented reader without loss of continuity. We will assume
W = I. The proof of the weighted case if left as an exercise. Let V; be a diagonal
matrix where each column satisfies Assn. A3 and every element has ¢, poles at
s = 0 where ¢, is the maximum number of such poles in any element of v. Assume
that there exists Qg which stabilizes P in the sense of Thm. 12.3-1 and also makes
(I — PQg)V, stable. Its existence will be proven by construction. Substitution
of (12.3-1) into (12.5-9) and use of the fact that pre- or post-multiplication of a
function with an allpass does not change its Ly-norm, yields:

= . ~12 A "

B(v) = |P1'(I — PQo)d — PuQid|3 £ || f — Pu@idll3 (12.6 — 5)
Ly, the space of functions square integrable on the imaginary axis, can be de-
composed into two subspaces: Hj the subspace of functions analytic in the RHP




304 CHAPTER 12. MIMO IMC DESIGN

(stable functions) and its orthogonal complement Hj that includes all strictly
unstable functions (functions with all their poles in the RHP). The term f has
no poles on the imaginary axis because (I — PQy)Vj has no such poles. However,
f may not be an Lo function because of the existence of a constant term in its
PFE. This term is equal to lim, ., f(s) £ f(c0). Then f(s) 2 f(s)— fgoo) isin

Ly and it can be uniquely decomposed into two orthogonal functions {f}, € Hy
and {f}_ € Hi-:

f(s) & f(s) = f(o0) = {f1+ + {f}-

In order for ®(v) to be finite, the optimal Q; has to make f — PyQ10 strictly
proper. Hence Q1 has to satisfy

lim (Py@19) £ (PyQ19)(00) = f(o0) (12.6 — 6)

Next we want to show that Pj;Q19 has to be stable. The fact that (I — PQo)Vp
is stable and the way V; is constructed imply that (I — PQq)v is stable. Then
(I — PQo)t will also be stable because of the definition of vy. We require that
(I = PQ)v have no open RHP poles and therefore that (I — PQ)? = (I — PQg)0 —
PQ;9 have no open RHP poles. But since (I — PQ)v is stable, this requirement
reduces to PQ;? having no poles in the open RHP. Also in order for ®(v) to be
finite, @1 must be such that (I—PQ)v or (I —PQ)v has no poles on the imaginary
axis. But since (I — PQp)0 is stable this is equivalent to PQ;9 having no poles
on the imaginary axis. Hence the optimal )1 must be such that PQ;? is stable.
Then the only possible unstable poles of Py;Q19 = Py!PQ,% are the poles of P7'.
But Assns. Al, A2 imply that the poles of P;! are not among those of Py Q1%
and therefore Pj;Q19 has to be stable. To proceed we will assume that @y has
this property. We will verify later that the solution has indeed this property.

The fact that Py Q10 is stable and (12.6-6) imply that Py @10 — f(o0) is in
Hj. Thus, we can then write (12.6-5) as

®(v) = |{F}-13 + I{f}+ — (Pu@1d — £(c0))I3
Because f does not depend on @);, the obvious solution to the minimization of
®(v) is
PyQib — f(o0) = {f}+
or
PyQuo = {f}s + £(20) £ {f}oor

or
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Q1 = Py {f}oon (126 - 7)

where the notation {-}.+ is used to indicate that after a PFE all strictly proper
stable terms as well as the constant term are retained.

Clearly such a @) produces a stable PyQ10 as was assumed and also satisfies
(12.6-6). It should now be proved that @i’s that satisfy the internal stability
requirements exist among those described by (12.6-7) so that the obvious solution
is a true solution. For n = 1, (12.6-7) yields a unique @1, which we have shown
to satisfy the requirements in the proof of Thm. 5.2-1. For n > 2 write

Q2@ o : (12.6 — 8)

B2 e B (12.6 - 9)

where without loss of generality the first element of v, and thus 9, is assumed to

be nonzero. Also q; is n X 1 and ¢y is n X (n — 1). Then it follows from (12.6-7)
that

Qu= (07" (P {feor — %) @) (126 - 10)

We now need to show that a stable ¢ exists such that ) is stable and produces
a stable PQ1P. Select a g of the form:

ga(s) = rjg(s)su" ﬁ(s - ) (12.6 — 11)

t=1

where § is stable and {m,..., 7} are the poles of P in the open RHP. Then if
follows from (12.6-10) that in order for PQ;P to be stable it is sufficient that
Po7 P { f} oo+ {P}1+trow have no closed RHP poles. But PP;;! = P, is stable
and the only possible unstable poles of 7 {P}sy0n are open RHP poles of o7}
because of Assns. A3 and A4. These are also the only possible unstable poles of

Q1. Let o be such a pole (zero of 91). Then for stability we need to find §s such
that

o k .
(e)3() = @~ TT(e = 1) P (@){ ot

i=1 40

(12.6 — 12)
The above equation always has a solution because the vector V() is not identi-
cally zero since any common RHP zeros in v were factored out in vg.

We shall now proceed to obtain an expression for Q. Equations (12.3-1) and

(12.6-7) yield
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Q8 = Py (P5'PQod — {P1' PQoi}oor + {P7 ' 0}oos)

= Py ({P1'PQot}o- + {P1'8}oot) (12.6 - 13)

where {-}o- indicates that in the partial fraction expansion all poles in the closed
RHP are retained. For (12.6-13), these poles are the poles of 9 in the closed
RHP; P71PQq = Py Q is strictly stable because of Assn. Al and the fact that
Qo is a stabilizing controller. The fact that (I — PQg)Vj has no poles at s = 0 and
the form of Vj imply that (I — PQp) and its derivatives up to and including the
(€, — 1)* are equal to zero at s = 0. Also, the fact that (I — PQq)Vj is stable and
that the columns of this diagonal Vj satisfy Assn. A3, imply that (I — PQq) =0
at my,..., 7. Hence (12.6-13) simplifies to (12.6-4).

We now need to show that a stabilizing controller Qg exists with the property
that (I — PQy)Vp is stable. The selection of a V; with the properties mentioned
at the beginning of this section and its use instead of V in (12.6-15) yields such
a controller. a

12.6.3 Hy-Optimal Control for a Set of Inputs

We determined in Sec. 12.6.2 that the set of controllers which meets Obj. O1
for a MIMO system is infinite. Thus Obj. O1 is not a very interesting design
objective. In this section we will address Objs. O2 and O3. Clearly any solution
for Obj. O2 (if it exists) is also a solution for Obj. O3. Therefore, we will start
by determining the controller which meets Obj. 03. If a solution for Obj. 02
exists it will be given by the solution for Obj. O3.

Factor V, defined in (12.6-1), similarly to P (see Sec. 12.6.4)
V=ViVy (12.6 — 14)
Then the following theorem holds:

Theorem 12.6-2. Assume that Assns. A1-A5 hold. Then the controller

Q = P W—YWP; Vi Vi (12.6 ~ 15)

is the unique solution for Obj. O3. Here the operator {-}. denotes that after a
partial fraction expansion of the operand, all terms involving the poles of Py' are
omitted.

The formula is identical to that obtained in the SISO case when p and v have
the same RHP poles.



12.6. NOMINAL PERFORMANCE 307

Proof. Again we assume W = I and leave the weighted case as an exercise. The
Lo-norm of a matrix G(s) analytic on the imaginary axis is given by

o0 1/2
Gz = (—21? Loo trace[GH (iw)G(iw)) dw) ; (12.6 — 16)
Then from (12.5-9), (12.6-1) and (12.6-16) it follows that

B(v!) + B(?) +...+ (") = ||(I - POV & &(V) (126~ 17}

The minimization of ®(V') follows the steps in the proof of Thm. 12.6-1 up to
(12.6-7), with Vi used instead of . In this case ¢, is the maximum number of
poles at s = 0 in any element of V. From the equivalent to (12.6-7) we obtain

Q1 = P {f 1ot Vir' (12.6 — 18)
where V) is used instead of ¥ in f. This @1 makes f — Py Q1 V) strictly proper.
We now have to establish that @, is stable and produces a stable P P. In
PQ1 P the unstable poles of the P on the left cancel with those of Py'. As for

the P on the right, the same follows from Assn. A5. Then in the same way that
(12.6-4) follows from (12.6-13), (12.6-15) follows from (12.6-18). o

Let us now consider the more meaningful Obj. O2. Factor each of the v' in
the same way as in (12.6-2):
vi(s) = vi(8)9'(s) (12.6 — 19)
Define

=y
1>
o~
<2y
<

ot ot L) (12.6 — 20)

Theorem 12.6-3.

i) If Vv (s) is non-minimum phase, then there exists no solution to O2.
i) If f”(s) is minimum phase, then use of V instead of Vi in (12.6-15) yields

exactly the same Q, which also solves Obj. 02. In addition Q minimizes
®(v) for any v that is a linear combination of v'’s that have the same v ’s.

Proof. (W = I). A stabilizing controller that solves Obj. O2 has to solve Obj.
O1 for all v*, i =1,...n. Satisfying (12.6-4) for every v’ is equivalent to

@ = PPV (12.6 — 21)
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Hence the above Q is the only potential solution for Obj. O2. However, it is not
necessarily a stabilizing controller since not only stabilizing Q’s satisfy (12.6-4)
for some v. Indeed, if V is non-minimum phase, V-1 is unstable and this results in
an unstable Q, which is therefore unacceptable. Hence in such a case, there exists
no solution for Obj. 02, which completes the proof of part (i) of the theorem.

In the case where V! is stable (V minimum phase), the controller given by
(12.6-21) is stable and therefore it is the same as the one given by (12.6-15).
This fact can be explained as follows. We have

V="V (12.6 - 22)

where
Vo = diag {vg,v3,...,v5} (12.6 — 23)

Since V! is stable, (12.6-22) represents a factorization of V similar to that in
(12.6-14). From spectral factorization theory it follows that

Vi(s) = Vi(s)A (12.6 — 24)
where A is a constant matrix, such that AA# = I. Then (12.6-15) is not altered
when V is used instead of Vi because A cancels.

Let us now assume without loss of generality that the first j v*’s have the same
vj’s. Consider a v that is a linear combination of v!,...,vJ:

v(s) = a1v'(s) + ...+ ajvi(s) (12.6 — 25)
Then it follows that

ve(s) = vd(s) = ... = vj(s) (12.6 — 26)

B(s) = a1 (s) + ... + ;97 (s) (12.6 — 27)

One can easily check that a Q that satisfies (12.6-4) for ¥',..., 97, will also satisfy
(12.6-4) for the o given by (12.6-27) because of the property

{onfi(s) + ...+ ajfi(s) s = ar{fi(s)}s + ... + ai{fi(s) }« (12.6 - 28)

But then from Thm. 12.6-1 it follows that if a stabilizing controller Q satisfies
(12.6—4) for o, then it minimizes the ISE ®(v). O

The following corollary to Thm. 12.6-3 holds for a specific choice of V.

Corollary 12.6-1. Let

-

.
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V = diag {v1,v2,..., 0} (12.6 - 29)
where v1(s),...,v.(s) are scalars. Then use of V instead of Vi in (12.6-15)

ytelds ezxactly the same Q, which minimizes ®(v) for the following n vectors:

V1 0 0
e g Pl T L (12.6 — 30)
0 0 N,

and their multiples, as well as for the linear combinations of those directions that
correspond to v;’s with the same open RHP zeros with the same degree.

In summary it is most popular to obtain @ by solving Obj. 03. As we
pointed out in Sec. 10.4.3 the Q which solves Obj. O3 minimizes the 2-norm of
the weighted sensitivity operator. Theorem 12.6-3 can be helpful for choosing a
meaningful V.

12.6.4 Algorithm for “Inner-Outer” Factorization

The following theorem is the tool for obtaining the factorizations (12.6-3) and
(12.6-14).

Theorem 12.6-4 (Chu, 1985). Let G(s) = C(sI — A)~'B + D be a minimal
realization of the square transfer matriz G(s), and let G(s) have no zeros on the
iw-azis ncluding infinity. Then we have

G(s) = N(s)M(s)~! (12.6 — 31)
where N, M are stable and N (iw)? N(iw) = I. N(s) and M(s)™! are given by
N(s)=(C-QF)sI -(A-BR'F))'BR '+ Q (12.6 — 32)
M(s)'=F(sI- A 'B+R (12.6 — 33)
where
D=QR (12.6 — 34)

is the QR factorization of D into an orthogonal matriz Q (QTQ = I) and an
upper triangular matriz R, and

F=QTC+(BRY'X (12.6 — 35)

with X the stabilizing [i.e., it makes (A— BR™'F') stable] real symmetric solution
of the following algebraic Riccati equation (ARE):

(A-BR'QTC)"X +X(A~BR™'QTC) - X(BR™)BR™)TX =0 (12.6 — 36)
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Such a solution X exists for (12.6-36).

Methods for solving ARE’s can be found in the cited literature. Many control
software packages include programs for that purpose.

By comparing (12.6-31) to (12.6-3) we see that P4 = N and Py = M
Note however that a P(s) that represents a physical system, is usually strictly
proper (D = 0). In order to apply Thm. 12.6-4 in such a case we need to add to
P(s) a small D = el. Repeated applications have shown this to be a satisfactory
approach. Also note that N(s) in (12.6-32) is unique only up to premultiplication
with a constant unitary matrix U (U7U = 1). Although not necessary, one may
wish for consistency with the SISO case, to choose P4(s) such that P4(0) = I.
This can be accomplished by premultiplying N(s) (12.6-32) by NV (0)_"1.

A comparison of (12.6-31) and (12.6-14) indicates that Thm. 12.6-4 cannot
be directly applied to G(s) = V(s). We can, however, apply Thm. 12.6-4 to
V(s) £ VT(s) to obtain

7 (s) = V7(s) = Va(s)Vau(s) (126 - 37)
with Vy, Vi stable and Vy(iw)?Vy(iw) = I. From (12.6-37) we find
V(s) = Vii(s)V](s) . (12.6-38)
Since V¥ (s), (ViL(s))~! are stable and
VE ) (VE ) = (V] (i) V) = I
we can select Vy, Vyr as
Va(s) = VI(s) (12.6 — 39)
Vir(s) = Vit (s) (12.6 — 40)

Similarly to the case for P(s), we may have to introduce a small D matrix in V(s).
Also the factorization is only unique up to post-multiplication with a constant
unitary matrix.

12.7 Robust Stability and Performance

The controller @ is to be detuned through a lowpass filter F such that for the
detuned controller Q = Q(Q, F) both the robust stability (12.5-5) and the robust
performance (12.5-7) conditions are satisfied. Because (12.5-7) implies (12.5-5)
a procedure is proposed to minimize ua(GF(P,Q)) as a function of the filter pa-
rameters for a filter with a fixed structure. First we will postulate reasonable filter
structures. Then we will discuss an algorithm for carrying out the minimization.
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12.7.1 Filter Structure

In principle the structure of F' can be as complex as the designer wishes. How-
ever, in order to keep the number of variables in the optimization problem small,
a simple structure like a diagonal F' with first- or second-order terms is recom-
mended. In most cases this is not restrictive because the controller @) designed
in the first step of the IMC procedure is a full matrix with high order elements.
Some restrictions must be imposed on the filter in the case of an open-loop un-
stable plant. Also a more complex filter structure may be necessary in cases of
highly ill-conditioned systems.

Open-Loop Unstable Plants.
The filter F(s) is chosen to be a diagonal rational function that satisfies the
following requirements:

(a) Pole-zero excess. The controller Q@ = QF must be proper. Assume that the
designer has specified a pole-zero excess of v for the filter F(s).

(b) Internal stability. The transfer matrix S in (12.2-2) must be stable.

(c) Asymptotic setpoint tracking and/or disturbance rejection. (I—PQF)v must
be stable.

Write
F(s) = diag {f1(s),..., fa(s)} (12.7-1)

Under Assns. A1-A5, (b) and (c) are equivalent to the following conditions. Let
7 (i=1,...,k) be the open RHP poles of P. Let my = 0 and myq be the largest
multiplicity of such a pole in any element of the I** row of V. From Assns. A1-A5
and the fact that Q makes S and (I — PQ)V stable, it follows that the /! element,
/1, of the filter F' must satisfy:

film) =1, i=0,1,...,k (127~ 2)

)

Requirements (12.7-2) clearly show the limitation RHP poles place on the ro-
bustness properties of a control system designed for an open-loop unstable plant.
Since because of (12.7-2) one cannot reduce the closed-loop bandwidth of the
nominal system at frequencies corresponding to the RHP poles of the plant, only
a relatively small model error can be tolerated at those frequencies.

=0, i=1,...,myg—1 (12.7-3)

8§=mg
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Experience has shown that the following structure for a filter element fi(s) is
reasonable:

Ay—108" " o args + agy
(Ab 2l 1)1/—]-1/1——1

fi(s) = (12.7 - 4)

where

v =mg + k (12.7 - 5)

For a specific tuning parameter A the numerator coefficients can be computed to
satisfy (12.7-2) and (12.7-3). This involves solving a system of v; linear equations
with v; unknowns.

Example 12.7-1. Assume that we desire a pole-zero excess of v and that
there is only one pole 7. Then

(Am 4+ 1) :
= 12.7 -6
OB . 27-9)
If # = 0, (12.7-6) reduces to the standard filter for stable systems f(s) = (As +
1. o

Example 12.7-2. Assume that v = 2 and the only pole is a double pole at

s = 0. Then et
s
f(s) = st 1) (387 T

(]

11l-Conditioned Plants.

Problems arise because the optimal controller Q designed for P tends to be an
approximate inverse of P and as a result Q is ill-conditioned when P is. Although
robust stability can generally be achieved by significant detuning of the diagonal
filter, the robust performance condition is usually not satisfied. We have shown
in Sec. 11.3.3 that an ill-conditioned P and C' (and therefore an inverting ill-
- conditioned Q as well) can cause problems when input uncertainty is present.
This problem can be addressed through a filter that acts directly on the singular
values of @, at the frequency where the condition number of Q is highest, say w*.

Let
Q(iw*) = UgSeVh (12.7 - 8)

be the SVD of Q at w* and let R,, R, be real matrices that solve the pseudo-
diagonalization problems:
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VeR. 21 (12.7-9)
Vo BT (12.7 - 10)

Then the controller @ including the filter, is chosen to be of the form

Q(s) = RuFi(s)R7'Q(s) Fa(s) flaT gl

or

Q(s) = Q(s)R,Fi(s)R; ' Fy(s) (12.7 - 12)

where Fi(s), Fy(s) are diagonal filters, such that Fy(0) = F5(0) = I if integral
action is desired. Note that for Fj, mg should be used in (12.7-3), (12.7-5), for
all 1, instead of myg;, where mgy = max; mg;. This is required for internal stability
and no steady-state offset.

It should be pointed out that the success of this approach depends on the
quality of either one of the pseudo-diagonalizations (12.7-9) or (12.7-10). The
diagonalization will be perfect if Ug or Vg is real. This will happen for example
if w* = 0, that is if the problems arise because the plant is ill-conditioned at
steady-state, as for example high purity distillation columns are.

12.7.2 General Interconnection Structure with Filter

Consider the block diagram in Fig. 12.1-1B. Assume that @ = QF. In order
to use the SSV effectively for designing F', some rearrangement of the structure
is necessary. Figure 12.1-1B can be transformed to Fig. 12.7-1A, where v =
d—r,e=y—rand

0 0 Q
G= ( I I PQ) (12.7 - 13)
~I ~I 0

where the blocks 0 and I have the appropriate dimensions.

We will assume throughout the following that the set of plants II can be
modeled in a way that allows Fig. 12.7-1A to be transformed into Fig. 12.7-1B
where A is a block diagonal matrix with the additional property that G(A) <
1, Vw (see Sec. 11.2.1). The superscript v in G* denotes the dependence of G*
not only on G but also on the specific uncertainty description available for the
model P. Next G* is derived for some typical examples.

1. Additive Uncertainty (11.1-1), (11.1-5)
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P-P la— -
Ve G [ Vi G e
{5 o
F |l F
A B

C

Figure 12.7-1. Model uncertainty block diagrams.

i4I 0 0
G'=G4=| 0 I 0|G (12.7 - 1)
0 0 I

where G is defined in (12.7-13)
2. Multiplicative Output Uncertainty (11.1-2), (11.1-5)

P 0 0
P=0=1 0 T 0|@ (12.7 — 15)
0 0 I
3. Multiplicative Input Uncertainty (11.1-3), (11.1-5)
LGP 0 0
G".—_G’:G( 0 I 0 (12.7 - 16)
0 0 I

4. Independent Uncertainty in the Transfer Matriz Flements (11.2-32), (11.2-33)

Wa 0 0 Wa 0 0
G'=G'=| 0 I 0 G( 0 I 0) (12.7=17)

0 0 I 0 0 I
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Note that all the above relations yield a G* already partitioned as

i Gl Gi

G'= |Gy Gy Gy (12.7-18)
51 Gh Gi

Then Fig. 12.7-1B can be written as Fig. 12.7-1C with ¢’ = Wje and v = Wi/

h GY, W, GY ,
o 11 12'%1 13 — PGyl u w i/
G = (W2Ggl 1,1/2(;12‘2‘,V1> + (W’QG%) (I = FG3)" F(Gy, G3W)
A (Gﬁ G1F2)
=\eh ¢f

If the special filter structure for ill-conditioned systems is used, the procedure
for deriving G* is slightly modified. Define

(12.7 — 19)

F(s) = diag{Fi(s), Fa(s)} (12.7 - 20)
and
Qa(s) =Ry;  A(s) = R7'Q(s) (12.7 - 21)
or
Qa(s) = Q(s)Ry; A(s) = R;! (12.7 — 22)

depending on whether (12.7-11) or (12.7-12) is chosen. Then in Fig. 12.7-1B use
G* instead of G*, where '

u L u
11 12 G13 0
u u u

G?l G22 23 0

w,ill __ _
G = 0 0 0 A (12.7 — 23)
Gy Gy Gy O
and G* is obtained from G (12.7-13) with @ replaced by @ 4.
12.7.3 Robust Control: H,, Performance Objective
We can write
F & F(s;A) (12.7 ~ 24)

where A is an array of filter parameters. Then the design problem (12.5-8) has
been converted into a nonlinear program with the constraint that the filter
must be stable. This is easily accomplished by expressing the filter denominator
as a product of polynomials of degree 2 whose coefficients must be positive. If an
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odd degree is desired, an additional first-order term with positive coefficients can
be included. The positivity constraint can be handled by writing the coefficients
as squares of the independent variables A. The design objective (12.5-8) becomes

Objective O4:

mAin sup ua(GF (P, Q)) (12.7 - 25)

One should note that the objective function is not convex. Good initial guesses
for the filter parameters (elements of A) can usually be obtained by matching
them with the frequencies where the peaks of ua(GF) appear for F = I.

The SSV u in Obj. O4 is computed by minimizing its upper bound (11.2-
15). In the computation of the supremum in Obj. O4 only a finite number of
frequencies is considered. Hence Obj. 04 is transformed into

Objective O4’:
minmax inf 5(DGF D)
A" we Dep
where (0 is a finite set of frequencies. Define

Boo(A) 2 max inf 5(DGFD™) (12.7 — 26)

The gradient of ®,, with respect to A can be computed analytically except
when two or more of the largest singular values of DG¥ D~! coincide. This is quite
uncommon, however, and although the computation of a generalized gradient is
possible, experience has shown the use of a mean direction to be satisfactory. A
similar problem appears when the max,cq is attained at more than one frequency,
but again the use of a mean direction seems to be sufficient. We shall now proceed
to obtain the expression for the gradient of ®.(A) in the general case.

Assume that for the value of A where the gradient of ®,(A) is computed, the
max,eq is attained at w = wy and that the infpep 5(DGF (iwg)D™1) is obtained
at D = Dy, where only one singular value oy is equal to . Let the singular value
decomposition be

g = op O it
DOGF(ZQJ())DO 1= (u1 U) ( 01 2) (VlH) (127 b 27)
Then for the element of the gradient vector corresponding to the filter parameter

Ar we have under the above assumptions:

Gy : 8 P
I 2 = 571G (i) D) (12.7 - 28)
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because Vp,(01) = 0 since we are at an optimum with respect to the D’s. To
simplify the notation use

AL DyGF(iwg) Dy = Uys, v (12.7 — 29)

Then the gradient can be computed as follows:
AAT = U, ud

s O

9 qamy_ 0 <2 178 9 saypE 9
= 6/\k(AA )_' 6}\k(UA)"‘JAUA +UA6/\L(2A)UA +UAEA6)\I:

(Ud)

Multiply this expression by uf? on the left and u; on the right. Consider the first
term on the RHS

0 0 15}
u{fb—X;(UA)ZiUf{ul = uffa-/(;(UA)(Uf B e B = Ufuffg,j\;ul =1

because u; is a vector on the unit sphere whose gradient is orthogonal to u;. Thus
both the first and the last term on the RHS vanish and we find

5] 16} 1o} o
H Hy. _  H H H — o H = H
uj —-——a/\k (AA ), up (-—a)‘k (A)A7 + Aa—-)\k (A~ Py =ui U 4(2 A—_a/\k (24))Ufuy

a d a
B < H_ Y 4H - e
= uy a/\k (A)Vlo"l + o1Vy a/\k (A )111 20‘18)%7 (0’1)

- 5%(”1) = Re[u/ (%('DOGF(iwo)DE H)v] (12.7 - 30)

From (12.7-19) we get

9 : - GY 9 w \— u u -
o (DG (i) D5 ) =D0( i3 )———[([—FGm) F](GY  GHWh)D;!

WoGs ) O\,
(12.7 - 31)
We use the identity
L P 7o -1 7)1 = q
Ez—(]\[(z) )= —-M(z) E(./\-[(z))]&/[(z) (12.7 - 32)

in
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, o B "
b-‘i-;((f ~ FGY%)™'F) = (53-;(1 ~ FGY)™)F + (I - FGY) (12.7 - 33)

to obtain

8 U Y a 3 u T T S 4 5L Y
oo (I-FGR)™F) = ~(I-FG)™} (551 -FGly) ) U-FG)) ™ F-HI-F )™

oF .
=(I - FGi)™ - 5y (G3 (I — FGYy) ' F + 1)
! = 3 T
= (I - FG%)™ (I GLFY! (12.7 — 34)
Equation (12.7-28) can now be expressed in terms of (12.7-30), (12.7-31) and
(12.7-34):
3 G’lllg m _1i .
8Ak P = = Re ‘:ul <I’V2G¥3) (I FG33) a/\k(F(z‘”O))
(I - GLF)Y(GY Gg;ervl)Dglvl] (12.7 — 35)
where F, G¥, W;, and W, are computed at w = wq. The derivatives of F' with

i
respect to its parameters (elements of A) depend on the particular filter form

selected by the designer and can be computed easily.

12.7.4 Robust Control: H)-Type Performance Objective

In the previous section we outlined how to design the filter such that in the pres-
ence of model uncertainty the sensitivity operator remains “close” to its nominal
value. If the performance for a particular external input v is of primary interest
then it will be more appropriate to minimize the ISE for this particular input in
the presence of model uncertainty — i.e., to minimize

1 joo
- A 06% T 2—_— s 2 ( =39
max [WaEv||3 e /_N/J’O dw (11.3 — 32)

Hence the filter parameters are obtained by solving

Objective O5:

min || Bo|l2
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Note that in Sec. 12.5 we defined Hs-type objective functions not only for a single
input v but also for finite sets of inputs. For the robust performance case here
we have to restrict our problem definition to a single input.

Objective O5 defines a nonconvex nonlinear program. The solution is simpli-
fied by the fact that the gradient 98y/dA; can be computed explicitly as we will
show next. ‘

Define G? from G¥ (12.7-19) as

G’ = (é ﬁql) e (12.7 — 36)

The function Jy is defined through [see (11.3-28), (11.3-29)]

pGw) =1 & Bw)=pFw) (12.7 ~ 37)

First, By has to be computed at a finite set Q0 of frequencies. Theorem 11.3-
2 implies that any basic descent method should be sufficient. To obtain the
gradient of ||G||s with respect to the filter parameters, we need to compute the
gradient of By(w) with respect to these parameters for every frequency w € Q.
From the definition of Gy in (12.7-37) we see that as some filter parameter A
changes, By(w) must also change so that p(G®(iw)) remains constantly equal to
1. Hence we find ’

i . B 5 Ot 2 00
0B O Ok Ok I’ 9B

where g is computed by minimizing its upper bound infpep 5(DGPD~1) [see
(11.2-15)]. We assume again that the two largest singular values of DG#D~! for
the optimal D’s at the value of 8 where the gradient is computed, are not equal
to each other. If this is not the case a mean direction can be used as mentioned
above.

(12.7 — 38)

The numerator du/OX; of (12.7-38) can be evaluated in the same way as
(12.7-28) and (12.7-35) but with G” instead of G

a u
RS B(; aie H 13 . u \—1
S G () = Reluff Do 5 iy, ) (7 - Foy)

oF

o= GLP Gy G Dy (12.7 - 39)

where

Wy=(v 0 , (12.7 — 40)
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For the computation of the denominator dy/9; let the inf pep &(DGP(iw)D 1)
be attained for Dy = Dgy(w;3) and let oy be the maximum singular value and
uy,vi the corresponding singular vectors of DyG?Dy!. Then the same steps as
for obtaining (12.7-30) are valid and we find after some algebra

) . 1 0 0\,
(MG (1)) = ~gRe {ufDo ( &, 052) D; lvl} (12.7 — 41)

Substitution of (12.7-39) and (12.7-41) into (12.7-38) yields the desired gradient.

12.8 Application: High-Purity Distillation

Consider again the distillation column described in the Appendix where the over-
head composition is to be controlled at yp = 0.99 and the bottom composition at
zp = 0.01 using the reflux L and boilup V' as manipulated inputs. Approximating
the dynamics by a first-order system we find the linear model

P(s) =

1 (0.878 -—0.864) (12.8 - 1)

755 +1\1.082 —1.096
Problems arise from the fact that high purity distillation columns tend to be ill-
conditioned. For (12.8-1) the condition number is 142. Hence any controller @
based on the inverse of P will also be ill conditioned and this might result in a

control system which is not robust. For simplicity we will use the (conservative)
uncertainty description (11.1-22)

5s+1

The performance weights
20s
=100\ — a”
W5 (s) 105 +1 (12.8 - 3)
Wy=1 (12.8 — 4)

require a closed loop time constant of about 20 and restrict the maximum peak
of the sensitivity operator to less than two.

The plant P is MP and therefore
Q(s) = P(s)™ (12.8 - 5)

First a diagonal filter structure is chosen. A one-parameter search based on the
analytic gradient expression derived in Sec. 12.7.3 yields
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F(s) = (12.8 — 6)

1
7.28s + 1I
Plots of p for robust stability and robust performance are shown in Fig. 12.8-1A.
Clearly, although the system is guaranteed to remain stable in the presence of
modeling error within the bound defined by (12.8-2), the performance is expected
to deteriorate. This is confirmed by the simulations shown in Fig. 12.8-2. For
the nominal case (P = P), the outputs are decoupled and the performance is
acceptable (Fig. 12.8-2A). However in the case where

-~ (12 O

Pe)=PE) (Y os)
the performance deteriorates to the point where it is totally unacceptable (Fig.
12.8-2). Note that the plant in (12.8-7) includes a 20% error in each plant input
and is within the bound (12.8-2). The same plant is used in all other simulations
in this section when model-plant mismatch is assumed. Higher order filters with
different elements were also tried but were found not to improve the performance
substantially. The reason is that, in general, a diagonal filter cannot affect the
condition number of Q significantly.

(12.8 = 7)

We shall proceed with the filter structure suggested in Sec. 12.7.1 for ill-
conditioned systems. For our example w* = 0 and therefore the diagonalizations
(12.7-9) and (12.7-10) are exact. Hence (12.7-11) and (12.7-12) yield the same
Q. Objective O4’ was solved with a gradient search method using the analytic
gradient expression of Sec. 12.7.3. Different filter orders were tested and a few
different initial guesses were tried to avoid local minima. The final result for
filters with two parameters in each element was:

e
Fi(s) = (( ' 03+ ! 0.00284s+1) (12.8-8)
(8.72s+1)7
0.16:4$j:12 0
Fy(s) = ( (0‘44(6“_1) 0.213s-+1 ) (12.8-9)
{0.4765+1)

The values of u for robust stability and performance are shown in Fig. 12.8-1B.
The clear improvement over the diagonal filter is verified by the simulations in
Fig. 12.8-3. It is interesting to note that settling times for the nominal case
are similar as with the diagonal filter (Fig. 12.8-2 and 3). Hence, as expected,
the robustness improvement was not the result of additional detuning, but of the
two-filter structure which allowed us to affect the singular values of Q directly
and reduce its condition number in the critical frequency range.

Finally, a comparison will be made between the performance obtained by the
two-filter IMC controller and the “true” p-optimum controller, defined as the
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Figure 12.8-1. Solid lines: p for robust performance. Dashed lines. p for robust stability. (A)
One-filter IMC controller, (B) Two-filter IMC controller, (C) p-optimal controller.
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Figure 12.8-2. Time response for the one-filter IMC controller for unit step setpoint change for
distillate (output 1). Dashed line: Setpoint; Solid lines: OQutputs. (A) P = P, (B) P # P.
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Figure 12.8-3. Time response for the two-filter IMC controller for unit step setpoint change for
distillate (output 1). Dashed line: Setpoint; Solid lines: Outputs. (A) P = P, (B) P # P.
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Figure 12.8-4. Time response for the g-optimal controller for unit step setpoint change for distillate
(output 1). Dashed line: Setpoint; Solid lines: Outputs. (A) P = P, (B) P # P.
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result of minimizing sup, ua(GF) over all stabilizing controllers @ (or C). How-
ever, the iterative approach presently available for solving this problem is not
guaranteed to converge and indeed, in our experience it has often failed to con-
verge. For this particular example though, we were able to obtain a p-optimal
controller. The values of u for robust performance and stability are shown in
Fig. 12.8-1C. Clearly the difference is not significant and this is verified by the
simulations shown in Fig. 12.8-4.

12.9 Summary

For internal stability of the IMC structure (12.1-1) both the plant P and the IMC
controller () have to be stable. For open-loop unstable plants it is convenient to
destgn the IMC controller @ but for implementation the classic feedback structure
must be chosen. Under some mild assumptions about pole-zero cancellation (Sec.
12.3) all stabilizing controllers @ for the plant P are parametrized by

Q1(s) = Qo(s) + Q1(s) (12.3-1)

where Qo(s) is an arbitrary stabilizing controller for P and @, is any stable
transfer matrix such that PQP is stable.

The IMC.desiga procedure consists of two steps. In the first step, Q is se-
lected to yield a good system response for the inputs of interest, without regard
for constraints and model uncertainty. As one option we propose to define a set
of n inputs

V={o(s): i=1,...8} (12.5 — 10)

and to minimize the sum of the ISE’s that each of the inputs v* would cause when
applied to the system separately:

Objective O3:

min [®(v!) + @(v?) + ...+ D(v")]

where

B(v') = |We'll; = [WEV|[3 = W (I - PR3 (12.5-9)

The unique controller Q which meets Obj. O3 is given by

Q = P'WH{WP 'y}, Vil (12.6 — 15)
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where the operator {-}, denotes that after a partial fraction expansion of the

operand, all terms involving the poles of P/Il are omitted. The factorization of
the plant '

P =.PyPy; (12.6 — 3)
into an allpass portion P4 and an MP portion Py can be accomplished via inner-
outer factorization (Sec. 12.6.4). The input matrix V = (v! »?2 ... ") can
be factored similarly

V =VyuVy (12.6 — 14)

In some special cases, Q defined by (12.6-15) is also Hy-optimal for each one of
the inputs v’ separately and their linear combinations.

In the second step of the design procedure, the controller Qis detuned through
a lowpass filter F' such that for the detuned controller Q@ = Q(Q, F') the robust
performance condition

pa(GF(P,Q) <1  Vw,  A=diag{A,, Ay} (12.5-17)

is satisfied. A nonlinear program was formulated (Sec. 12.7.3) to minimize
pa(GF(P,Q)) as a function of the filter parameters for a filter with a fixed diago-
nal structure. For unstable plants the filter has to be identity at all the unstable

plant poles. For ill conditioned plants two filters can be necessary to meet the
requirement (12.5-7).

12.10 Discussion and References

12.2. The idea of a “balanced realization” as a framework for model reduction is
described by Moore (1981).

12.3. A general stable parametrization of all stabilizing controllers for a partic-

ular plant was developed by Youla, Jabr & Bongiorno (1976). It involves matrix
coprime factors.

12.6, 12.7. The MIMO procedure for obtaining the controller for optimal
nominal performance is patterned after the SISO case. For SISO systems the
tradeoff between robustness and performance is straightforward because there
are very few degrees of freedom. It malkes sense to start from (almost) “perfect
control” and to detune for robustness. Usually, the robust performance obtained
in this manner is only marginally inferior to what can be accomplished via an
integrated procedure which optimizes robust performance directly.
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For MIMO systems this is not true anymore. There are tradeoffs between
the different outputs and between the different inputs. One or even two di-
agonal filters might not offer enough degrees of freedom to reach the desirable
performance-robustness compromise when the starting point is the (improper)
Hj-optimal controller as proposed in Sec. 2.6. Short of going to the integrated
procedure of optimizing robust performance directly, there are two options: a
more complex filter or a different design for nominal performance. Because of
the nonconvex nonlinear programming problem (Sec. 12.7.3 and 4) necessary
to determine the filter parameters, the first option is likely to cause many diffi-
culties. It appears more promising to investigate alternate nominal-performance
designs. One possibility is to include a penalty term for the control action in the
Hj-objective. The linear quadratic optimal controller minimizing the modified
objective can be found by solving two Riccati equations (IKwakernaak & Sivan,
1972). The controller is always proper and should be better conditioned because
of the control action penalty. The other possibility is to postulate H(= PQ) and
to determine Q from H. The advantage is that the structure of H (decoupled,
one-way decoupled, etc.) can be postulated directly by the designer. The limita-
tions on H imposed by NMP elements in P have been explored by Holt & Morari
(1985a,b), Zafiriou & Morari (1987) and Morari, Zafiriou & Holt (1987).

12.6-1-12.6-3. These sections follow the development in Chap. V of Zafiriou
(1987).

12.6.4. Theorem 12.6-4 is Thm. 4 of Chu (1985, p. 40), applied to square
systems and with some notational changes. Methods for solving ARE’s can be
found in Laub (1979) and Molinari (1973). Details on the QR factorization can
be found in many books — e.g., Sec. 5.7.2 of Dahlquist and Bjorck (1974).

12.7.1. An algorithm for pseudo-diagonalization is described by Rosenbrock
(1974). '

12.7.3, 12.7.4. These sections follow the discussion in Zafiriou and Morari
(1986b).

12.8. For computing the py-optimal controller the procedure proposed by Doyle
(1985) was used.
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Chapter 13

PERFORMANCE LIMITATIONS FOR
MIMO SYSTEMS

We know from practical experience that for a SISO system with a small gain,
a long deadtime or severe “inverse response” it is impossible to achieve good
closed-loop performance. Qur thereotical analysis in Sec. 3.3.4 corroborated
these observations. NMP characteristics are detrimental to closed-loop perfor-
mance regardless of the employed controllers, in particular long delays and RHP
zeros close to the origin should be avoided. Also, when the plant gain is small,
only small disturbances can be controlled effectively without saturation of the
manipulated variable.

Unlike SISO systems, MIMO systems display “directionality” which malkes the
assessment of their inherent performance limitations much more difficult. There
is no single “gain” but the MIMO “gain” depends on the direction of the input
vector. This is most apparent from the singular value decomposition which was
discussed in Sec. 10.1.5. Whether a MIMO RHP zero leads to poor closed-loop
performance or not, depends not only on its location in the RHP but also on its
“structure.” If it affects primarily a process output which is of minor importance,
its presence might be irrelevant, even when it is located close to the origin. Finally,
in Chap. 11 we pointed out that model uncertainty is a very critical component in
the design of MIMO controllers. SISO systems do not display a similar sensitivity
to model uncertainty.

The objective of this chapter is to develop a quantitative understanding of the
factors which limit the achievable closed loop performance and to demonstrate
how they can be used to screen alternate choices of “control structures” — i.e.,
manipulated variables.
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13.1 Effect of Plant Gain

We will use the process description
y = Pu+ Pyd (13.1-1)

as suggested by Fig. 10.2-1. P; is the disturbance model expressing the relation-
ship between the physical disturbances d; and their effects d; on the output. For
a distillation column the components of d' = (d,...,d;,...,d,)T may correspond
to disturbances in feed rate, feed composition, boilup rate, etc. The column vec-
tor pg; of Py represents the disturbance model for the disturbance d;-. The effect
of a particular disturbance d; on the process output is d;,

d; = paid; (13.1-2)

The direction of the vector d; will be referred to as the direction of the disturbance
1. The overall effect of all disturbances d; on the output is d,

d=3di= Y pad; = Psd (13.1 - 3)

In most cases we will consider the effect of one particular disturbance d;. To
simplify notation we will usually drop the subscript i, and d = pyd' will denote
the effect of this single disturbance d; = d’ on the outputs. We will be referring to
d as a “disturbance,” although, in general, it represents the effect of the physical
disturbance. The “disturbance” d can also represent a setpoint change (—r) as
indicated in Fig. 10.2-1.

We assume that the disturbance model and the process model have been scaled
such that at steady state —1 < d; < 1 corresponds to the expected range of each
disturbance and —1 < u; < 1 corresponds to the acceptable range for each
manipulated variable. For process control u; = —1 may correspond to a closed
valve and u; = 1 to a fully open valve.

13.1.1 Constraints on Manipulated Variable

In this section we investigate the magnitude of the manipulated variables neces-
sary to cancel the influence of a disturbance on the process output at steady state.
It should be obvious that this magnitude is independent of the controller. This
analysis will allow us to identify problems with actuator (e.g., valve) constraints
at steady state. However, we should point out that the issue of constraints at
steady state is not really a control problem, but rather a plant design problem.
Any well designed plant should be able to reject disturbances at steady state.
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For complete disturbance rejection (y = 0) at steady state
u = —P(0) 'pqg(0)d' (13.1 — 4)
- To avoid actuator saturation we must require
[ulow <1 Vd' 3 |d | <1

or equivalently
|P(0)'pa(0)]e < 1 (13.1 — 5)

where | - |, denotes the co-vector norm which was defined in Sec. 10.1. Whether
(13.1-5) is violated and saturation causes problems depends both on the process
P and the disturbance pg. Even if |P(0)7}||s is large (implying a small plant
“gain”), |P(0)"1pa(0)|s can still be small if p, is “aligned” with P~! in a certain
manner. This is the topic of the next section.

13.1.2 Disturbance Condition Number

When saturation is not an issue it is more reasonable to use the Euclidean
(2-) norm as a measure of magnitude because it “sums up” the deviations of all
manipulated variables rather than accounting for the maximum deviation only
(like the co-norm). Consider a particular disturbance d = pyd'. For complete
rejection of this disturbance
u=-—Pd (13.1 - 6)

The quantity

% _ lP ~44 |2

ldlz — |d]>
depends only on the direction of the disturbance d but not on its magnitude. It
measures the magnitude of u needed to reject a disturbance d of unit magnitude
which enters in a particular direction expressed by d/|d|s.

From the discussion of the SVD in Sec. 10.1.5 we note that the RHS of (13.1-7)
is minimized for

(i1 T

d=gy(P!)=a(P) (13.1 - 8)
For d defined by (13.1-8), (13.1-7) becomes
|ul2 ~1,.¢ p—1 -1 1
2 =P v P 5.2 1 P = - 13.1-9

Thus, the best disturbance direction requiring the least action by the manipulated
variables, is that of the singular vector @(FP) associated with the largest singular
value of P.
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By normalizing (13.1-7) with |uls/|d|s for the “best” disturbance defined by
(13.1-8) we obtain the disturbance condition number of the plant P

|P~tdl;
|l
= P7pdey ) (13.1 - 10)
pal2
It expresses the magnitude of the manipulated variable needed to reject a dis-
turbance in the direction d relative to rejecting a disturbance with the same
magnitude, but in the “best” direction [G(P)].

Kal Py ==

a(P)

The “worst” disturbance direction is
d = o(P) = y(P)

In this case we get
Kd(P)maz = 6(P—1)5'(P) = Ii‘,(P)

and therefore for all disturbance directions
1 < ka(P) < K(P) (13.1 - 11)

Thus, kq(P) may be viewed as a generalization of the condition number x(P)
of the plant, which also takes into account the direction of the disturbances.
It measures how well the disturbance direction d is aligned with the direction
of maximum effectiveness of the manipulated variables. A large value of x(P)
indicates a large degree of directionality in the plant P. If this directionality
is not compensated by the controller the closed-loop performance for different
disturbance directions is vastly different as we will show next.

13.1.3 Implications of x,; for Closed-Loop Performance

The objective of the control system is to minimize the effect of the disturbances
on the outputs y. Consider a particular disturbance d(s) = pa(s)d'(s). The
closed-loop relationship between this disturbance and the outputs is

y(s) = (I + P(s)C(s))7'd(s) = E(s)d(s) (13.1 - 12)

Let |y(iw)|2 denote the Euclidean norm of y evaluated at each frequency. The
quantity
| Ed(iw)]s

)= et

(13.1 - 13)
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depends only on the disturbance direction but not on its magnitude. a(w) mea-
sures the magnitude of the output vector y(iw) resulting from a sinusoidal dis-
turbance d(iw) of unit magnitude and frequency w.

The “best” disturbance direction causing the smallest output deviation is that
of the right singular vector v(E) associated with the smallest singular value g(E).
By normalizing a(w) with this best disturbance we obtain the disturbance condi-
tion number of E~!

[y 1 _ |Bdy o
e 2B~ [l

ky(EY) = (13.1 - 14)
Again
1< ka(E™Y) < k(E™Y) = k(E) (13.1 - 15)

At low frequencies, where the controller gain is high we have E(iw)
(PC(iw))~!. In particular, this expression is exact at steady state (w = 0) when
the controller includes integral action. Based on this approximation we derive
the disturbance condition number of PC.

[(PC)~'d],

= |dl2

&(PC) (13.1 - 16)
As stated above this quantity has physical significance only when g(PC) >> 1.
To avoid problems when this measure is evaluated at w = 0 write

C(s) = c(s)D(s) (13.1 - 17)

where c(s) is a scalar transfer function which includes any integral action present
in C. D(s) may be viewed as a “decoupler.” Then we have

|(PD) Ld|y _

g(PD) (13.1 - 18)
For D = I (i.e., the controller ¢(s)I) we find from (13.1-18) the disturbance con-
dition number of P (13.1-10) derived previously. Thus x4(P) can be interpreted
in terms of closed loop performance as follows: If a scalar controller C' = ¢(s)I
is chosen (which keeps the directionality of the plant unchanged), then xy(P)
measures the magnitude of the output y for a particular disturbance d, compared
to the magnitude of the output if the disturbance were in the “best” direction
(corresponding to the large plant gain). If ky(P) = x(P), the disturbance has all
its components in the “bad” direction corresponding to low plant gain and low
bandwidth. If k4(P) = 1, the disturbance has all its components in the * good”
direction corresponding to high plant gain and high bandwidth.
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Though a large value of x4(P) does not necessarily imply bad performance,
it usually does. In principle we could choose a compensator C' which malkes
ka(PC) = 1 for all disturbances. However, such a controller can lead to serious
robustness problems as we will show in Sec. 13.3.

13.1.4 Decomposition of d along Singular Vectors

The objective here is to gain insight into the type of dynamic response which is to
be expected when disturbances along a particular direction affect a system with
a high degree of directionality (x(E~!) is “large”). The singular vectors v;(E)
form an orthonormal basis. The disturbance vector d can be represented in terms
of this basis

d= Y (55(B)T - dyv;(E) (13.1 - 19)
J=1
Then the output y is described by
y(iw) = Bd(iw) = Y- Bu;(B)(v;(E)" - d)(iw)
Jj=1

n

= 2o BB E ) = 3 o)(B) (i) (13.1 - 20)

Jj=1
where we have defined the new “disturbance components”

d’ = (v;(E)T - d)uj(E) (13.1 - 21)

(13.1-20) shows that the response to a particular disturbance can be viewed as
the sum of responses to the disturbances d’ passing through the scalar transfer
function o;(E). The magnitude of & depends on the alignment of the disturbance
d with the singular vector vj(E). The characteristics of the (speed of) response
to d’ depend on o;(E).

For the controller C' = c(s)D(s) with integral action in ¢(s) the approximation
E(iw) & ¢ Y(PD)(iw) is valid for small w. Then with £ = n — j + 1 (13.1-20)

becomes
n

y(iw) = kzl mcﬂ (13.1 — 22)

where B

dt = d" ! = (Wl (PD) - d)v(PD) (13.1 - 23)
The magnitude of J{is given by the component of d in the direction of the singular
vector u,(PD) and d° affects the output along the direction of the singular vector

ve(PD). If the loop transfer matrix PD has a high gain in this direction [i.e.,
o¢(PD) is large] then the control will be quick and good. If the gain is low
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the response will be slow and poor. If PD is ill-conditioned [£(PD) is large], the
widely different response characteristics for different disturbance components will
result in unusual overall system responses. This will be observed in the following
example.

Example 13.1-1. LV-Distillation Column. Consider the distillation column
described in the Appendix with L and (-V) as manipulated variables and the
product compositions y4 and zp as controlled outputs. The model is given by

1 (0.878 0.864 )

P(s) =77 1082 1.006

(13.1 — 24)
We assume there are no problems with constraints. We want to study how well
the system rejects various disturbances using a diagonal controller C(s) = c(s) 1.
Since we are only concerned about the outputs (yp and zp), the scaling does not
matter provided the outputs are scaled such that an output of magnitude one is
equally “bad” for both yp and zp. We have

5(P)=1972, o(P)=0.0139, &x(P)=1417

Consider disturbances d’ of unit magnitude in feed composition, zr, feed
flowrate, F', feed liquid fraction, qr, and boilup rate, —Vy. The linearized steady
state disturbance models are

et 0.881) (0.394) (0,868) <O.864) 1 :
S ‘(1.119 zrt+{ os86) Ft\ 1.002) 7+ 1,006 ) (V) (13:1 = 25a)

Also consider setpoint changes in yp and zp of magnitude one. These are math-
ematically equivalent to disturbances with

d=(1)andd=<0) (13.1 — 25b)
0 1

The steady state values of the disturbance condition number, k4(P), are given for
these disturbances in Table 13.1-1. The disturbance condition number of E~1,
with the controller described below, is shown as a function of frequency in Fig.
13.1-1. From these data we see that disturbances in zp,qr and V are very well
aligned with the plant, and there is little need for using a decoupler to change the
direction of P. The feed flow disturbance is the “worst” disturbance, but even it
has its dominant effect in the “good” direction.

A “decoupler” is desirable if we want to follow setpoint changes which have a
large component in the “bad” direction corresponding to low plant gains. How-
ever, a decoupler is not recommended for this distillation column because of severe
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Table 13.1.1. Disturbance condition numbers for distillation example (k(P) = 141.7).

CHAPTER 13. PERFORMANCE LIMITATIONS FOR MIMO SYSTEMS

Disturbance/ Setpoint Change d'
ZF V4 qr —V'd YDs ZBs
d (&881) <0.394.> (O.SGS) (0.864) (1) <0)
1.119 0.586 1.092 1.096 0 1
ka(P) 1.48 11.75 1.09 1.41 110.7 | 88.5

robustness problems caused by uncertainty (see Sec. 13.3). Therefore we cannot
expect good setpoint tracking for this LV-configuration. If setpoint changes are
of little or no interest, the LV-configuration with a diagonal controller may be
a good choice. The response to a feed-rate disturbance is then expected to be
somewhat sluggish because of the high value of x4(P).

We will now confirm the predictions based on the data in Table 13.1-1 by
studying some time responses. We use a diagonal controller of the form C(s) =
c(s)I where c(s) is the PI controller ¢(s) = 0.1(75s + 1)s~%.

Time domain simulations are shown for “disturbances” in zyp and F and for
setpoint changes in yp in Figs. 13.1-2 to 13.1-4. We have simulated all responses
as step setpoint changes of size d (13.1-25) to make comparisons easier. Dynam-
ics have not been included in the “disturbances” for zy and F' (which is clearly
unrealistic) to make the example simpler. The time responses confirm the predic-
tions based on Table 13.1-1. The rather odd-looking response can be explained
easily by decomposing the disturbances along the singular vector directions of the
closed-loop system, as shown before. For each disturbance, the closed-loop fre-
quency response at low frequencies can be approximated by y(iw) & ¢! P~ 1d(iw).
By decomposing d along the “directions” of P as in (13.1-22) and (13.1-23) we
may write this response as the sum of two SISO responses

1 o

2P (13.1 — 26)

c s ael L 0E
y(iw) & c&(P)d1+

where

d* = (@’ - d)5(P) (13.1 — 27a)
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Figure 13.1-1. Disturbance condition number of E~! for disturbances in feed rate F', feed compo-
sition @, and setpoint change in yp. C(s) = 0.1(75s +1)s~' - I. (Reprinted with permission from
Ind. Eng. Chem. Res., 26, 2033 (1987), American Chemical Society.)

DASHED LINE --> SETPOINT

SOLID LINE --> OUTPUT

1.2 Azp
1 Ayp
2.8
9.6~
2. 4=
@.2~
B—lm‘mm
) 200 408 500 so8 1000

SIMULATION~-TIME (MIN.)

Figure 13.1-2. Step change in setpoint (0.881,1.119)7. (Closed-loop response to “disturbance” in
zp.) (Reprinted with permission from Ind. EFng. Chem. Res., 26, 2034 (1987), American Chemical
Society.)
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Figure 13.1-8. Step change in setpoint (0.394,0.586)7. (Closed-loop response to “disturbance” in

F.) (Reprinted with permission from Ind. Eng. Chem. Res., 26, 2034 (1987), American Chemical
Society.)
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Figure 13.1-. Step change in setpoint (1,0)7. (Closed-loop response to setpoint change for yp.)

(Reprinted with permission from Ind. Eng. Chem. Res., 26, 2034 (1987), American Chemical
Society.)
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Table 13.1-2. d* and d? (13.1-27) for distillation example.

Disturbance/Setpoint Change

TF .3 YDs
d (0.881) (0.394) (1)
1.119 0.586 0
gl (1.00) (0.50) (0.44)
1.00 0.50 0.44

7 (——0.008) (—0.04) (0.55)
0.008 0.04 —0.55

d? = (T - d)u(P) (13.1 — 27b)
Thus, each disturbance response is the sum of two responses: one fast in the

direction d' and one slow in the direction d? (see Table 13.1-2). The singular
value decomposition P = ULV gives

2—(5’ 0)_(1.972 0 )
“\0 g/ \ 0 0.01391

_ 0.625 —0.781
=i 1‘-)‘(0.781 0.625)

- 0.707 -0.708
V=0 2= (0.708 0.707 )

The decomposition expressed through (13.1-26) and (13.1-27) which holds for
low frequencies, explains the actual responses very well: Initially there is a very
fast response in the direction of 37 = (0.707, —0.708). This response arises
from the overall open-loop transfer function ¢5(P) = 0.197/s corresponding to
a first-order response with time constant (0.15(P))~! = 5.1 min. Added to this
is a slow first-order response with time constant (0.1¢(P))~! = 720 min in the
direction of vT = (—0.708, 0.707).

Note that the slow disturbance component d? is the “error” at ¢ ~ 40 min,
because the fast response has almost settled at this time. As an example
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consider the disturbance in feed rate F (Fig. 13.1-3). At t ~ 40 min the
deviation from the desired setpoint, (0.394,0.586)%, is approximately equal to
d? = (—0.04,0.04)T. Similarly, for the setpoint change in yp (Fig. 13.1-4) the
deviation from the desired setpoint, (1,0)7, at ¢ ~ 40 min is approximately equal
to d? = (0.55,—0.55)7. O

13.1.5 Summary

The disturbance condition number of a matrix 4 with respect to a disturbance
with direction d is defined as follows:
‘A”ld[g .,
Ry(A) = ——=G(A
d( ) ld[‘z ( )

For non-square A (e.g., plants with more inputs than outputs) one should replace

|A~1d|; by {min|m|y s.t. Am = d}, that is — one should replace A~ by 4# =
AT(AAT)~! (the pseudo-inverse of A).

We have introduced the disturbance condition number of the plant P (13.1-
10), of E~! (13.1-14) and of PC (13.1-16). The disturbance condition number
ka(E~!) measures the performance (error) for a disturbance in direction d/|d|
relative to the performance for a disturbance which enters in the “optimal” direc-
tion. For high gain feedback (¢(PC) >> 1) E~! & PC, which justifies the use of
ka(PC) and also x4(P) (when the controller C is scalar) instead of x4(E~1). The
disturbance condition number is a measure of control performance and therefore
must be scaling dependent: We define performance in terms of a weighted average
of output deviations. Any measure of performance must depend on the relative
importance of the outputs which is expressed through scaling factors. (On the
other hand, the issue of stability is independent of scaling, and any measure used
as a tool for evaluating a system’s stability should be independent of scaling.)

If k4(P) is large then for good performance in all directions a controller is
needed which makes xq(PC) small. As we will discuss in Sec. 13.3 robustness
problems might prevent us from choosing such a controller. On the other hand,
if kq(P) is small then a scalar controller C' can be expected to yield good perfor-
mance. Thus we can use £4(P) in two different ways:

1. Discriminating between process alternatives and selecting manipulated in-
puts. Plants with large values of x4(P) are not necessarily bad, but if other
factors are equal [e.g., RGA-values (Sec. 13.3), RHP-zeros (Sec. 13.2)], then
we should prefer a design with a low value of x4(P). This measure may
therefore be used as one criterion for selecting manipulated variables and
discriminating among alternatives.
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2. Selecting controller structure (e.g., diagonal versus multivariable inverse-
based controller). Guidance can be obtained from k4(P) when it is used
together with the RGA, as discussed in Sec. 13.3.

13.2 NMP Characteristics

In our discussions we stressed repeatedly that NMP characteristics limit the
achievable closed loop performance. For example, the complementary sensitivity
resulting from an Hs-optimal controller (Sec. 12.6.3) includes the factor Py, the
allpass incorporating all NMP characteristics of P. If Py = I, perfect control is
theoretically possible. Also, Thm. 4.1-4 shows that RHP zeros close to the origin
are more detrimental to the performance than zeros far out in the RHP. In this
section we want to capture quantitatively the “directional” effect of RHP zeros
— i.e., which outputs are most and which are least affected by a particular zero.
We will make the following three assumptions:

Assumption 13.2-1: P(s) is square (n X n) and nonsingular except for isolated
values of s.

Assumption 13.2-2. All RHP zeros (i,...,(m arve of degree one — i.e., the
rank of P((;) isn — 1.

Assumption 13.2-3. No RHP poles are located at (y,...,(m-

Usually, these assumptions are not restrictive. They can be casily relaxed at
the expense of a more involved notation.

13.2.1 Zero Direction

Definition 13.2-1: Let (; be a zero of P(s). The vector z; (z; # 0) satisfying
zF P(¢;) = 0 is called the direction of the zero (;.

Note that P((;) is of rank n — 1 because the zero was assumed to be of degree
one. The vector z; is the eigenvector of P((;)! associated with the eigenvalue zero.
It is called zero direction because for any system input of the form ke, where
k is an arbitrary complex vector, the output in the direction of z; is identically
equal to zero (given appropriate initial conditions).

Because the IMC controller @ has to be stable it cannot cancel the RHP zeros
of P and they will appear unchanged in the complementary sensitivity H = PQ.
Furthermore from Def. 13.2-1 we find the following relation for the sensitivity

T E(G) = 2T (I - PQ(&)) = #F (132 - 1)
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which implies that the magnitude of any disturbance component z;e%! entering
along the zero direction z; is passing through to the output y unaffected by
feedback (given appropriate initial conditions). Thus RHP zeros affect both the
achievable H and E. '

RHP poles also impose limitations on the choice of @ as discussed in Sec.
12.2. With a two-degree-of-freedom structure, however, the achievable H is not
constrained by the presence of RHP plant poles (Sec. 5.2.4).

We would like to characterize in a convenient manner all complementary sen-
sitivity operators which can be achieved for a plant P. The following theorem is
self-evident from the preceding discussion.

Theorem 13.2-1. For a plant P the complementary sensitivity H is achievable
by a two-degree-of-freedom controller (such that the closed-loop system is inter-
nally stable) if and only if there exists a stable Q such that H = PQ.

A direct test for the existence of a stable ) is provided by the following theo-
rem.

Theorem 13.2-2. There exists a stable Q such that the complementary sensi-
tivity is equal to a desired transfer matriz H if and only if H satisfies

ZH(G)=0 (13.2-2)

for all RHP zeros (; of the plant P(s) where z; is the direction of the zero
G (I P(¢:) = 0).

Proof.

= Assume there exists a stable @ such that H = PQ. Then JH(() =
zZFPQ(¢) = 0.

< Find the partial fraction expansion of P71,
. 1
Pls)™" = TRt P(s) (13.2-3)

where R; is the matrix of residues and P;(s) is a remainder term with no
poles at s = ;. Postmultiply both sides of (13.2-3) by P(s)

= —RiP(s) + P(s)P(s) (132 - 4)



13.2. NMP CHARACTERISTICS 341

Because the LHS of (13.2-4) is the identity the RHS cannot have a pole at s = ;.
P(s)P,(s) does not have a pole at s = (; and therefore it must be that

R,'P(Ci) =} (13.2 - 5)

Because (; is of degree one, P((;) is of rank (n — 1). Hence R; is of rank 1 and as
a result of Def. 13.2-1, the rows of R; are multiples of z7. Therefore zF H((;) =0
implies

R;H((;) =0 (13.2 - 6)

Now postmultiply both sides of (13.2-3) by H.
Q=PH= g—;l—zRiH(s) + P(s)H{(s) (132 -7)
P:(s)H(s) does not have a pole at s = (;. Hence (13.2-6) implies that @ does
not have a pole at s = (;. 0

Example 13.2-1. Consider the plant P

1 1 1
T (1+2s 2)
which has a zeroat s =( = % The zero direction z = (2, —1) satisfies
| 11
ZTPl(C)=zT<2 2)=0

We will use condition (13.2-2) to construct decoupled and one-way decoupled
H’s for which stable @Q’s exist. Trivially for the decoupled plant

—25+1 0
H= ( 256-1 —2511)
o 2s+1

H(¢) = 0 and therefore (13.2-2) is satisfied. Let us postulate

1 0
LT
o —(331 Sl 1)

2s+1
and 2541
S
T _ (_2s+1 12)
0 1

where z, and z3 are to be determined. We find from (13.2-2)

2—21(()=0 or 2(()=2

21,‘2(() —1=0 or .'172(() =

N |
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If we postulate z; and z5 to be of the form 23s/(2s + 1) (with the constant 3 to
be determined) so that there are no steady state interactions (H(0) = I) then we
find

2
Q=2 =2
and .
8
] gy
Similarly
() = 5
g b

13.2.2 Implications of Zero Direction for Achievable Performance

The vector z; is constant and possibly complex. Condition (13.2-2) requires
that each column of H, evaluated at the plant zero (;, is orthogonal to z;. For
a particular element of the input vector v the elements of the output vector
y cannot be selected independently but have to satisfy the linear “interpolation
conditions” (13.2-2). The presence of RHP plant zeros requires some relationship
between the elements of a column of H but the columns themselves can be selected
independently of each other.

By assumption, (; is a zero of P(s) of degree one. Assume that H is selected
to be diagonal — i.e., completely decoupled. Then according to the theorem the
degree of (; in H has to be at least equal to the number of nonzero entries in z;.
Usually this number is larger than one, generally equal to n. Thus, requiring a
decoupled response generally leads to the introduction of RHP zeros not originally
present in the plant P(s). This is the price to be paid for decoupling.

The zero (; is “pinned” to the outputs corresponding to nonzero entries in z;:
the zero has to affect at least one of these outputs and it cannot affect any of the
outputs corresponding to zero entries in z;. This is illustrated in the following
example.

Example 13.2-2. The system

. A —s+1 —-s+1
P’Z(s)‘s+2( 1 2 )

has a zero at { = 1 with the direction 27 = (1,0). Because z; = 0, it can only
affect the first output of H — i.e., it is “pinned” to the first output. Pinned
zeros are nongeneric and therefore somewhat of a mathematical artifact. In the
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preceding example an infinitesimal change in the polynomial coefficients of pi; or
p12 removes the RHP zero altogether.

Corollary 13.2-1. Assume that the k" element zy, of the zero direction z; is
nonzero. Then it is possible to obtain “perfect” control on all outputs j # k with
the remaining output exhibiting no steady state offset.

This and the next result follow trivially from Thm. 13.2-2.

Corollary 13.2-2. Assume that P(s) has a single zero { and that the k'* element
zj, of the zero direction z is nonzero. Then H can be chosen of the form

1 o - 0 0 0 .0
0 1 es 0 0 0 - 0
H= ELS_ E'zi Br-15 -—s.+C /ik;ls . Bas (13.2 - 8)
s+¢  s+C s+¢ s4+¢ s+( s+¢
0 0 0 0 0 1
where
22j .
Bi=——"forj#k (13.2-9)
k

The interaction terms will be insignificant if 2 >> z; (Vj # k) - i.e., when
the zero is “aligned” predominantly with output k. If for some j, z; >> z; then
the zero is aligned predominantly with output j. It can be pushed to output k
only at the cost of generating significant interactions (large 3's).

As a demonstration of the alignment effect recall Ex. 13.2-1 with the zero
aligned with the first output (27 = (2, —1)). Pushing the effect of the zero to the
second output (HLT) leads to strong interactions (3 = 4), while aligning the zero
with the first output (HY7T) is much more favorable (3 = 1). Thus, if one-way
decoupling is contemplated the zero direction should be used as a guideline.

13.2.3 Summary

The concept of zero direction is a convenient tool to judge the feasibility of al-
ternate forms of decouplers. In the generic case when all elements of the zero
direction vector are nonzero all kinds of decouplers are feasible, in principal. How-
ever, if the zero is very close to the origin complete decoupling is not advisable
because it introduces more RHP zeros at this same location into the complemen-
tary sensitivity. Also, though generically the effect of a zero can be “pushed” to
any arbitrary output, this can cause large interactions and violent moves in the
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manipulated variables unless the zero direction is aligned with this output — i.e.,
it has a large component in the direction of this output.

13.3 Sensitivity to Model Uncertainty

We have learned that model uncertainty limits the achievable closed-loop perfor-
mance. The SSV introduced in Chap. 11 can be used to measure the performance
deterioration caused by uncertainty. The extent of the deterioration depends on
the (nominal) system, the controller and the type (structure) of the uncertainty.
It is desirable that the system be of such a kind that even with a simplistic con-
troller the sensitivity of closed loop performance to model uncertainty is small.
Then the modelling and controller design effort necessary to achieve good perfor-
mance will be small.

We know from Sec. 11.3.2 that in the presence of multiplicative output un-
certainty alone simple SISO-type design techniques suffice to achieve good per-
formance. On the other hand multiplicative input uncertainty (Sec. 11.3.3) can
cause serious performance problems if the plant condition number is high: with a
low condition number controller poor nominal performance is expected; when the
controller condition number is high, robust performance is generally bad. Thus,
high condition number plants should be avoided by appropriate process design

" and in particular by the appropriate choice of actuators.

In Secs. 11.2.5 and 11.2.6 we studied “element-by-element” uncertainty. A
large minimized condition number x*(P) is an indication that closed-loop perfor-
mance is sensitive to this type of uncertainty. We were able to correlate x*(P)
with the RGA A(P) and concluded that the stability and performance of plants
with large RGA elements is strongly affected by independent element uncertainty.
Example 11.2-2 illustrated, however, that this type of uncertainty description is
usually inappropriate because the transfer matrix elements do not vary indepen-
dently. In the following we will show that large RGA elements are also an indi-
cation of sensitivity to diagonal multiplicative input uncertainty, which is a good
model of actuator uncertainty. Actuator uncertainty is clearly always present to

some extent and therefore plants with large RGA elements should generally be
avoided.

13.3.1 Sensitivity to Diagonal Input Uncertainty

Let u denote the actual plant input and u. the input computed by the controller.
Let A; represent the relative uncertainty on the it manipulated input. Then u; =
uei(1+ A;) or in vector form u = uc(I + A;) where Ay = diag{A;}. Alternatively
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we may define the perturbed plant
P=PI+4), Ar=diag{A;} (18.3 ~ 1)

The loop gain matrix PC which is closely related to performance, may be written
in terms of the nominal PC

PC = PC(I+C™'AC) (13.3 — 2a)
= (I+ PAPYHYPC (13.3 — 2b)

For SISO plants, a relative input error of magnitude A results in the same relative
change in PC' = PC(1 4+ A), but for multivariable plants the effect of the input
uncertainty on PC may be amplified significantly as we will show.

For 2 x 2 plants the error term in (13.3-2a) may be expressed in terms of the
RGA of the controller C as follows

] A (C)A1 -+ )\Ql(C')AQ All(C’)ﬂl(Al s AQ)
o4 C:( = ) 1853
€= @)= - A) A@A +m(@)s,) 13379
where
AC) =C x (C™HT (13.3 — 4)

For n xn plants the diagonal elements of the error matrix C~'A;C may be written
as a straightforward generalization of the 2 X 2 case

(C'AC) = 3 il C)A; (13.3 - 5)
9=l

That is, the diagonal elements of C~!A;C depend on the elements of A(C) in the
same column and the magnitude of the uncertainty. Similarly, for 2 x 2 plants
the error term in (13.3-2b) may be expressed in terms of the RGA of the plant

A1AL + Ay —/\u%‘;‘(Al - AQ))

s 13.3-6
AE (AL = Ag)  AalAr+ Ay ( )

AP = (

For n x n plants the diagonal elements in (PA;P~!) depend on the elements of
A(P) in the same row:

(BAB 1), = jﬁle,.j(P)A,- (133 =17
J:

Controllers with large RGA-elements will lead to large elements in the matrix
C~'A[C, and plants with large RGA-elements will lead to large elements in the
matrix PA;P~!. Equations (13.3-2) seem to imply that either of these cases will
lead to large elements in PC' and therefore poor performance when there is input
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uncertainty (Ay # 0). However, this interpretation is generally not correct since
the “directionality” of PC may be such that the elements in PC remain small
even though C~1A;C or PA;P~! have large elements. This should be clear from
the following two extreme cases

1. Assume the controller has a small RGA. In this case the elements in the
error term C71A;C are similar to A; in magnitude (13.3-2a and 13.3-5).
Consequently, PC is not particularly influenced by input uncertainty, even
though the plant itself may be strongly ill-conditioned with a large RGA.

2. Assume the plant has a small RGA. In this case PC is not particularly
influenced by input uncertainty (13.3-2b and 13.3-6), even though the con-
troller itself may have a large RGA. (From a practical point of view, one
can argue that it is unlikely that anyone would design a controller with large
RGA-elements for a plant with small RGA-elements.)

From items 1 and 2 we conclude that for a system to be sensitive to diagonal in-
put uncertainty, both the controller and the plant must have large RGA-elements.
This is consistent with Sec. 11.3.3 where we found that for block input uncer-
tainty to cause robust performance problems the condition numbers of both the
plant and the controller have to be large. Thus the RGA plays a similar role for
diagonal input uncertainty as the condition number does for block input uncer-
tainty.

13.3.2 Sensitivity with Different Controller Structures

Inverse-based controller. For “tight” control it is desirable to use an inverse-based
controller C(s) = P~Y(s)K(s) (where I(s) is diagonal). A special case of such
an inverse-based controller is a decoupler. With C(s) = P~1(s)K(s) we find
PC = K(s) and A(C) = A(P7'K) = A(P7!) = A(P)T. Thus, if the elements of
A(P) are large, so will be the elements of A(C') and from the discussion above we
expect high sensitivity to input uncertainty. We also see directly from

PC = K(s)(I+ PA1P™) = K(s)(I+C™'AC) (13.3 - 8)

that large elements in PA;P~! (or equivalently large elements in C~'A;C) imply
that the loop transfer matrix PC is very different from nominal (PC’ ) and poor
response or even instability is expected when Ay # 0.

Decouplers have been discussed extensively in the chemical engineering lit-
erature, in particular in the context of distillation columns. The purpose of the
decoupler (D) is to take care of the multivariable aspects and to reduce the tuning
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of the control system to a series of single-loop problems. Let K (s) denote these
“single-loop” controllers. Then the overall controller C' including the decoupler
is C(s) = DK(s). Typical decoupler forms are:

Ideal Decoupling: —
D[ = P_lpdiay

Simplified Decoupling:
Ds =P (P Naieg)™"
Steady State Decoupling:
Dy = D;(0) or Dy = Dg(0)

where we used the notation Ay, = diag{ai1,...ann}. One-way decouplers are
triangular and chosen such that PC = PDI is triangular.

For systems with large RGA the closed loop performance has been reported
to be sensitive to errors in the decoupler. This can be easily explained from the
results in Sec. 11.2.5 and 11.2.6. However, the most important reason for the ro-
bustness problems encountered with decouplers is probably diagonal (actuator)
and full-block input uncertainty. Because all decouplers (except one-way de-
couplers) lead to inverse-based controllers the closed-loop performance is highly
sensitive to input uncertainty when the plant is ill-conditioned or has a large

RGA.

Diagonal Controllers. Closed-loop systems with diagonal controllers are in-
sensitive to diagonal input uncertainty because A(C') = I when C is diagonal.
However, when P is ill-conditioned or has a large RGA, then the performance
with a diagonal controller is generally poor, except when for all inputs of interest
the disturbance condition number x4(PC) is close to unity.

In one special case a diagonal controller can lead to good performance for
arbitrary input directions even for an ill-conditioned plant: when the plant is
naturally decoupled at the input. Let the SVD of P be P = USV# and assume
V = I (or more generally that V' has only one nonzero element in each row and
column, so that the inputs can be rearranged to give V = I'). Then we can choose
the diagonal controller C(s) = ¢(s)T7! to get PC = ¢(s)U which has x4(PC) = 1
for allinputs d — i.e., good disturbance rejection independent of direction. Note,
however that the response is not decoupled (unless U is diagonal).

Also note that in this case
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= min #(DiUS
lr)r11,1612 k(DU Dy)
= mig K(D1UD,) =1

because ¥ is diagonal and U is unitary. Furthermore, because of (11.2-43), (11.2—
45) and (11.2-46) all elements of A have to be positive and smaller than one.

General Controller Structure. We have learned that an inverse-based controller
is generally bad for plants with a large RGA. (In this case A(C) is also large.)
We also know that for diagonal controllers (A(C') = I) the closed-loop system is
always insensitive to diagonal input uncertainty. This suggests that a plot of the
magnitude of the elements of A(C) as a function of frequency may be useful for
evaluating a system’s sensitivity to input uncertainty. In particular, a large A(C')
around the crossover frequency is undesirable.

We stress that a large A(C) does not necessarily imply sensitivity to input
uncertainty. For example, if A(P) is small there are no sensitivity problems as we
discussed. It is unlikely, however, that a controller with large A(C) would lead to
good nominal performance for a plant with small A(P). Thus, if the controller
is designed for good nominal performance, then A(C') should be a good indicator
of sensitivity to input uncertainty.

13.3.3 “Worst-Case” Uncertainty

It is of interest to know the “worst” possible input uncertainty — i.e., the “worst-
case” combination of A;’s. Consider (13.3-7). If all A; have the same magnitude
(1A;j] < 7r7) then the largest possible magnitude (worst case) of any diagonal
element in PA;P~! is given by r/||A(P)||e- To obtain this value the signs of the
Aj’s should be the same as those in the row of A(P) with the largest elements.

Example 13.1-3. Consider a plant with steady-state gain matrix

1 0.1 -2
P)={ 1. 2 -3
-0.1 -1 1

The RGA is
-1.89 -0.13 3.02

A(P(0)) =] 3.59 3.02 -5.61

-0.7 -1.89 3.59
Assume the relative uncertainties Ay, Ay and Aj on each manipulated input have
the same magnitude |A|. Then the second row of A(P) has the largest row

sum ([|[A(P)]|ec = 12.21) and the worst combination of input uncertainty for an
inverse-based controller is

Ap=Ay=-Ay=A
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We find

diag(PA[P™Y) = diag{-5.0A,12.2A,~6.2A}
Note that in this specific example we would arrive at the same worst case by
considering the first or third row. Therefore the worst case will always be obtained

with A; and A, with the same sign and Ay with a different sign even if their
magnitudes are different. a

In some cases we may arrive at a different conclusion by considering other
frequencies. Also note that, unless an inverse-based controller is used, it is not
guaranteed that the worst case uncertainties are deduced using this approach.

13.3.4 Example

The high-purity distillation column described by the simple one-time constant
model (see Appendix) will be used to demonstrate the effects of input (actuator)
uncertainty. Two control configurations will be compared. In one case reflux (L)
and boilup (V) are used for composition control, in the other case the distillate
flow (D) and the boilup (V). We will study the responses for two setpoint changes:
r1 = (1,0)T and ry = (0.4,0.6)7, where ry is roughly equivalent to the effect of
a change in feed flow to the column. The two configurations are compared in
Table 13.3-1. Two controllers were designed for each one of these configurations,
an inverse-based and a diagonal controller. The controller gains were adjusted
to guarantee robust stability for diagonal input uncertainty with a magnitude

bound wy(s) = 0.2(55+1)/(0.5s+1). Robust stability is guaranteed for this kind
of uncertainty if and only if (Ex. 11.2-1)

W(CP(I+CP)Y Y <1/|lwy], Vw

where the structured singular value g is computed with respect to a diagonal

matrix. The condition is shown graphically in Fig 13.3-1 for the controllers used
in this example.

Responses are obtained both for the nominal case (A; = 0) and with 20%
actuator uncertainty: A; = diag{0.2, —0.2} which yields the following error terms
(13.3-6) for PC when an inverse-based controller is used:

= = 35.1A; — 34.1A;  —27.7(A; — Ay) 13.8 —11.1
P o ( 1 2 1= &g ) _ ( )
P e 43.2(A; — Ag)  —34.1A; + 35.1A, 172 ~188

(PAP Yy = (0.45A1+0.55Ag 0.45(A; — Ag ) Y (»0.02 0.18>
5 IDV =\ —0.55(A; — Ag)  0.55A; +0.45A,) — \—0.22 0.02
The simulations shown in Figs. 13.3-2 to 13.3-5 illustrate the following points:




350

CHAPTER 13. PERFORMANCE LIMITATIONS FOR MIMO SYSTEMS

‘able 13.3-1. Comparison of LV and DV configurations.

LV DV
(dyd) 1y (0.878 -0.864) <(ll) (~0.878 0.014 )(dD)
dep) ~ T+ 1.082 —1.096) \dV ~1.082 -0.014/ \aVv
RGA A\ 35.1 0.45
RGA ARE ‘Aijl 138.3 2
K(P) 141.7 70.8
Ky» 7y 2 (1,007 110.7 54.9
KpyyTo = (0.4,0.6) 11.8 4.3
10~ —
1/]wy]|
_\____
1. -------"""-"''-f'-'-''w.—_~ N
1° N
10! \“\\ 2
cccoconne \\\\\\
5 SN
16 "
~
-3
0 7 T ] T 12
10 10 1. 10 10

Figure 13.3-1. Robust stability test: u(CP(({ + CP)™!) is shown for 1: Inverse-controller for LV-
and DV-configurations; 2: Diagonal LV-controller; 3: Diagonal DV-controller. (Reprinted with
permission from Ind. Eng. Chem. Res., 26, 2329 (1987), American Chemical Society.)
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e An inverse-based controller gives poor response when the plant has large
RGA-elements () is large) and there is input uncertainty (Fig. 13.3-2).

e A diagonal controller cannot correct for the strong directionality of a plant
with large RGA-elements. This results in responses which are strongly de-
pendent on the disturbance (or setpoint) directions (Fig. 13.3-3). The re-
sponse to ry (disturbance in F) is acceptable, but the response to the setpoint
change 71 is extremely sluggish. This system may be acceptable despite the
large value of Ay, provided setpoint changes are not important.

e An inverse-based controller may give very good response for an ill conditioned
plant even with diagonal input uncertainty, provided Ay; is small (Fig. 13.3-
4).

e A diagonal controller may remove most of the directionality in the plant if
V =~ I. However, “interactions” are still present because U is not diagonal

(Fig. 13.3-5).

13.3.5 Summary

To some extent actuator (diagonal input) uncertainty is present in every physical
system. From the RGA information can be obtained on the sensitivity of the
closed loop performance to input uncertainty for different controller structures.

1. Closed loop systems with diagonal controllers are insensitive to diagonal
input uncertainty. However when P is ill-conditioned or has a large RGA,
then the performance is poor, except when for all inputs of interest the
disturbance condition number x4(PC') is close to one.

2. An inverse-based (e.g., decoupling) controller should never be used for a plant
with large RGA because it leads to extreme sensitivity to input uncertainty.

3. Inverse-based controllers may give poor response even if the RGA is small.
This may happen in the case of a 2x 2 system if p1a/ps2 or pa1/p11 is large (see
13.3-6). One example is a triangular plant which always has A;; = 1, but
where the response obtained with an inverse-based controller may display
large “interactions” in the presence of uncertainty.

4. One-way decouplers are generally much less sensitive to input uncertainty.
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Figure 13.3-2. LV-configuration. Closed-loop responses y; and y, for inverse-based controller:

_0.7(T5s+1) ., 0.7(75s +1) (39.94 —31.49)
s G =

Cls) 39.43 —32.00

S S

(Reprinted with permission from Ind. Eng. Chem. Res., 26, 2329 (1987), American Chemical
Society.)
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Figure 13.3-3. LV-configuration. Closed-loop responses y; and y, for diagonal controller:

=(75.9—{—1)(1 0)
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(Reprinted with permission from Ind. Eng. Chem. Res., 26, 2329 (1987), American Chemical
Society.) :
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Figure 13.3-4. DV-configuration. Closed-loop responses y; and y, for inverse-based controller:

0.7(75s +1) .,y 0.7(75s+1) /—0.5102 —0.5102
Ofe) = s Gpy = (39.43 —32.00)

(Reprinted with permission from Ind. Eng. Chem. Res., 26, 2330 (1987), American Chemical
Society.)
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Figure 13.3-5. DV-configuration. Closed-loop responses y; and y, for diagonal controller:
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s)= . &= : 0 -50.8

(Reprinted with permission from Ind. Eng. Chem. Res., 26, 2330 (1987), American Chemical
Society.)
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Table 18.8-2. Guidelines for choice of preferred multivariable controller structure (“large” implies
a comparison with one, typically > 10), ||All4 = X ; [\l

l

mazgrkq( P)

Large Small

Large - Diagonal
IA(P) ] 4

Small Inverse-based Inverse-based

(V =I: diagonal) | (diagonal)

5. For a general multivariable controller designed for good performance a plot
of the magnitude of the elements of A(C') vs. frequency is a good indicator of
sensitivity to input uncertainty. In particular, a large A(C') in the crossover
frequency range is undesirable.

6. Table 13.3-2 is helpful for choosing between inverse-based (decoupling) and
diagonal controllers in extreme situations.

13.4 References

13.1. The ideas in this section were first presented by Skogestad & Morari (1987d).
Stanley, Marino-Galarraga & McAvoy (1985) also observed the dependence of the
performance on the disturbance direction and developed the Relative Disturbance
Gain as an indicator. Their observations regarding the behavior of high purity
distillation columns parallel those made for Ex. 13.1-1.

13.2. This section follows the paper by Morari, Zafiriou & Holt (1987). Zafiriou
& Morari (1987) presented a more general treatment removing some of the as-
sumptions. A discrete framework was used in this paper, which allows one to
handle multiple delays in exactly the same way as NMP zeros in one single step.

The transmission blocking interpretation of zeros is due to Desoer & Schulman
(1974).
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13.2.2. Holt & Morari (1985b) give a general overview of the effect of RHP
zeros on closed-loop performance. They review the concept of “pinned zeros”
introduced by Bristol (1980). Desoer & Giindes (1986) point out in a very general
context that additional RHP zeros can be introduced by decouplers.

13.3. Skogestad & Morari (1987c) discovered the RGA as an indicator of
sensitivity to diagonal input (i.e., actuator) uncertainty.

13.3.2. The use of decouplers for distillation control is discussed by Luyben
(1970) and Arkun, Manousiouthakis & Palozoglu (1984). Toijala & Fagervik
(1982) report high sensitivity to decoupler errors for systems with large RGA.

13.3.3. The method developed by Fan & Tits (1986) for computing the SSV
yields also the “worst-case” uncertainty.




Chapter 14
DECENTRALIZED CONTROL

14.1 Motivation

Let P(s) be an n x n rational transfer function matrix relating the vector of
system inputs y to the vector of system outputs u. Let  be the vector of reference
signals or setpoints for the closed loop system. Assume that u,y, and r have been
partitioned in the same manner: u = (ug, tg,...Um)",y = (Y1,Y2, - Um) 7,7 =
(r1,79,...,7m)’. In this book decentralized control means that the controller C
is block diagonal (Fig. 14.1-1)

U; = C,'(yi o 1',‘) (141 o 1)

(It should be obvious that any control system where every input u; and every
output y; are processed by a single controller block Cj, can be rearranged such
that C is diagonal.) The constraints on the controller structure invariably lead
to performance deterioration when compared to the system with a full controller
matrix. This sacrifice has to be weighed against the following two factors:

1. Hardware simplicity. If u;,y; are physically close but w;,y; (i # j) are
far apart, a full controller could require expensive communication links. Also,
the controller hardware costs could be high if an implementation through ana-
log circuitry is required. These considerations are relevant, for example, for large
networks of power stations where the distances between the stations can be signif-
icant. Hardware issues are generally irrelevant in the context of process control;
in all modern plants all measurement signals are sent into a central control room
from where all the actuator signals originate.

2. Design simplicity. If all the blocks P;; = 0 (i # j) then each controller C;
can be designed for the isolated subsystem P; without any loss of performance.
If Pyj (i # j) is “small” then it should still be possible to design the controller for
the essentially independent subsystem P;. The advantage is that fewer controller
parameters need to be chosen than for the full system. This is particularly relevant
in process control where often thousands of variables have to be controlled, which

359
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C,0...0 Piy Py o Py
4 .0 P21P22...P2
¥ 0 C2 . u.: g o .m &y
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g5 = Pm1Pm2"'pmm

Figure 14.1-1. General decentralized control structure.

could lead to an enormously complex controller. It is also important that at
least stability but hopefully also performance is preserved to some degree when
individual sensors or actuators fail. This failure tolerance is generally easier to
achieve with decentralized control systems, where parts can be turned off without
significantly affecting the rest of the system, provided that the controller blocks
are designed appropriately.

The designer of decentralized controllers is faced with two issues: (1) The
control structure or “pairing” problem — i.e., which set of measurements should
be used to affect which set of inputs. (2) The controller design problem — i.e., how
to tune the individual controller blocks. The pairing problem can be formidable.
Even for relatively small systems, there are many distinct decentralized control
system structures to choose from: For a 4 x 4 system there are 130 possibilities,
for a 5 x 5 system 1495, and so on. Thus efficient screening techniques are
needed which are capable of eliminating quickly all the control structures which
are definitely inappropriate according to certain criteria like failure tolerance.

All controller design techniques discussed in this book so far yield controllers
whose structure and order are determined by the structure and order of the
system to be controlled. In this section we will develop guidelines on how to
design controllers with a fixed (decentralized) structure which is usually different
from the structure of the system to be controlled. We will also develop a series
of so-called “Interaction Measures” (IM’s). Their purpose is, in general, to help
in the screening of different control structures and to guide the design of the
controller blocks. Some IM’s indicate, for example, if it is possible to design a
fault tolerant control system for a specific control structure. Others express the
performance degradation caused by the decentralized control structure.

After defining the decentralized control problem more rigorously, we will derive
a number of necessary conditions the plant and the associated control structure
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r—-br—s-—. K

Figure 14.2-1. System with ihtegra.tor and diagonal compensator K.

have to satisfy for the design of a fault tolerant decentralized control system to
be possible. These conditions can be used to screen alternate control structures.
Then we will present a decentralized design procedure which guarantees that
the overall closed-loop system satisfies certain robust performance conditions. To
simplify the notation we will often assume that the controller is fully decentralized
— l.e., that the controller matrix C' is diagonal rather than block diagonal. Most
results can be extended in a obvious manner to the block diagonal case. Usually
we will also assume that the square n X n plant P is stable. If we do so, then the
results do not carry over easily to systems which are open-loop unstable.

14.2 Definitions

Consider the block diagram in Fig. 14.2-1 where the diagonal controller C(s) is
stable and where K is a diagonal gain matrix with positive entries:

K = diag{k;} k50, i=ln (142 -1)

The factor s™' implies that the control system features integral control in all
channels. The following property is very desirable from a practical point of view.

Definition 14.2-1. A plant P is Decentralized Integral Controllable (DIC) if
there exists a diagonal controller CKs~! with integral action such that (a) the
closed loop system shown in Fig. 14.2-1 is stable and (b) the gains of any subset
of loops can be reduced to I, = diag{k;e;}, 0 < ¢; < 1 without affecting the closed
loop stability.

Condition (b) implies that any subset of loops can be detuned or taken out of
service (put on “manual”) while maintaining the stability of the rest of the system.
If a system is DIC then it is possible to achieve stable closed-loop performance
of the overall system by tuning every loop separately. DIC is a property of
the system and in particular of the selected control structure. It is desirable -
to select a control structure such that the system is DIC. Unfortunately, no
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necessary and sufficient conditions for DIC are available which can be used to
screen alternate control structures. There are some sufficient conditions but they
should be used for screening only with great caution because they might eliminate
attractive alternatives erroneously. Next we will define some properties which
are weaker than DIC. They will lead in turn to necessary conditions for DIC.
These necessary conditions are usually powerful enough to reduce the number of
alternatives drastically.

Definition 14.2-2. The system G = PC is Integral Controllable (IC) if there
exists a k > 0 such that (a) the closed-loop system shown in Fig. 14.2-1 is stable
for K = kI and (b) the gains of the loops can be reduced to K, =e€kl, 0 < e <1
without affecting the closed-loop stability.

For a system to be IC, stability must be preserved when the gains k are reducec
simultaneously, while for it to be DIC one must be able to change the gains
independently. We will show later than when P is not IC with a certain class o
compensators C then it cannot be DIC. Thus, control structures which fail the
IC test can be eliminated when searching for a system which is DIC.

Definition 14.2-3. The system G = PC is Integral Stabilizable (IS) if ther
ezists a k > 0 such that the closed-loop system shown in Fig. 14.2-1 is stable fo
K =KL

Clearly IS is necessary for IC. Easy tests for IS are available which can helj
to eliminate systems which cannot be DIC.

14.3 Necessary Conditions for Controllability

14.3.1 Results

We will start with some necessary conditions for IS and IC which will then lead ti
necessary conditions for DIC. In order not to interrupt the flow of the presentatios
all proofs are collected in Sec. 14.3.2.

Theorem 14.3-1. Assume G is a proper rational transfer matriz. G is IS onl
if detG(0) > 0.

Theorem 14.3-2. Assume G is a rational transfer matriz. G is IC if all th
eigenvalues of G(0) lie in the open RHP. G is not IC if any of the eigenvalues ¢
G(0) lLie in the open LHP (the test is inconclusive if any of the eigenvalues ar
purely imaginary).

Corollary 14.3-1. Assume g(s) is a proper rational transfer function. The SIS(
system described by g(s) is IS and IC if and only if g(0) > 0.
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Corollary 14.3-1 simply states the well known fact that positive feedback leads
to instability. An SISO system with positive steady state gain can only be con-
trolled with a negative feedback loop. Theorems 14.3-1 and 14.3-2 are generaliza-
tions of the negative feedback condition to multivariable systems. These theorems
involve steady state information only, the dynamic components of P(s) and C(s)
are not important. Because P(s) and C(s) are assumed to be stable it is always
possible to choose the dynamic elements of C'(s) conservatively enough for the
overall system to be stable and to remain stable with controller gain changes —

as long as the steady state requirements — expressed, for example, through Thm.
14.3-2 — are satisfied.

For a system to be DIC all the individual loops have to be stable. Therefore,
according to Cor. 14.3-1 the controller gains ¢;(0) have to be chosen such that
pii(0)c;(0) > 0. Alternatively we can define the matrix P*+(0) which is derived from
P(0) by multiplying each column with +1 or —1 such that all diagonal elements
are positive. Then for the individual loops to be stable we require ¢;(0) > 0 so
that p(0)c;(0) > 0. Now we can state necessary conditions for DIC in terms of
P*(0) as corollaries of Th. 14.3-1 and 14.3-2.

Corollary 14.3-2. Let P(s)C(s) be proper and rational. The system P(s) is
DIC only if det(P*(0)) > 0.

Corollary 14.3-3. The rational system P(s) is DIC only if all eigenvalues of
the matriz product P*(0)C(0) are in the closed RHP for all nonnegative diagonal
gain matrices C(0).

These corollaries follow from the fact that for DIC it must be possible to adjust
the controller gains k; > 0 or equivalently ¢;(0) > 0 arbitrarily without affecting
closed loop stability: if for some gain matrix C'(0) the system is not IS or not IC
then it cannot be DIC.

Finally it can be shown that the system is not DIC if any of the diagonal
elements of the RGA are negative.

Corollary 14.3-4. If the RGA element Aj;(P) < 0 then for any diagonal com-
pensator C(s) chosen so that P(s)C(s) is proper and any K the closed loop system
shown in Fig. 14.2-1 has at least one of the following properties. (a) The closed-
loop system is unstable. (b) Loop j is unstable by itself — i.e., with all the other
loops opened. (c¢) The closed loop system is unstable as loop j ts removed.

Conditions for DIC. In summary, a system P(s) is DIC with a controller C(s)
selected such that PC is proper only if all the following conditions are met:

(a) det(P*(0)) > 0
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(b) Re{\:(P*(0)C(0))} > 0 Vi, for all diagonal C(0) >0

(c) Re{X(P*(0))} 20 Vi

(d) Re{X\(L(0))} > =1 Vi, where L = (P — P)P~!, P = diag{p11,..-,Pnn}

(e) RGA: \;(P(0)) >0 Vi

Conditions (a), (b) and (e) follow from Cor. 14.3-2, 14.3-3 and 14.3-4 re-

spectively. Condition (c) and (d) are special cases of (b) for C(0) = I and
P*(0)C(0) = P(0)P(0)~!. Condition (a) is implied by (c) and is therefore redun-
dant. Condition (b) is difficult to test. Condition (c), (d), and (e) are popular

tools for screening control structures in terms of DIC. They are independent as
the following examples illustrate.

Example 14.3-1.

10 0 20
PO)=]02 1 -1
11 12 10

Xi(P*(0)) = {24.7,-3.0,—0.65}
Ai(L(0)) = {1.19,-0.59 + 0.232i}
RGA : /\ii = {4.6, ——2.5, 2.1}

Here X;(L(0)) is inconclusive, the other two tests indicate that the system is not
DIC. o

Example 14.3-2.
8.72 2.1 298 -15.80
6.54 —2.92 2,50 -—20.79

-5.82 099 -148 -7.51
~7.23 292 3.11 7.86

X(P*(0)) = {=9.7,4.7,6.1,19.9}
X(L(0)) = {—3.3,1.9,0.7 + i}
RGA )\ = {0.41,0.45,0.17,0.04}

Here the RGA is inconclusive, the other two tests indicate that the system is not
DIC. 0

Example 14.3-3.

P(0) =



o L e
e

SR e

%
.
.
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0.5 035 -0.005
POy=] 1 2 -0.01
-30 -250 1
Xi(P*(0)) = {3.43,0.036 & 0.324}
Ai(L(0)) = {1.7,~-0.85 + 0.38i}
RGA \;={-0.71,2,1.43}
Here only the RGA allows one to conclude that the system is not DIC. O
Note that sometimes it is not possible to find any control structure for which

a system is DIC. This is illustrated in the next example.

Example 14.3-4.

1 1 =01
P(D) = (0.1 2 -1 )
-2 =3 1
-1.89 359 -07
RGA = (——0.13 3.02 —1.89)
3.02 =561 3.59
Clearly it is not possible to permute the rows and columns of P(0) and equiv-
alently the RGA such that all elements on the diagonal are positive. Thus the
system is not DIC for any pairing of variables. O

For 2 x 2 systems much stronger results are available.

Corollary 14.3-4. For2x2 systems all tests (a)-(e) are equivalent and necessary

and sufficient for DIC. Moreover, for every 2 x 2 system, there is always a pairing
such that the system is DIC.

14.3.2 -Proofs

Proof of Theorem 14.8-1. The proof is based on the Routh test. The characteristic
equation (CE) for the closed-loop system in Fig. 14.2-1 is given by

é(s) - det(I + G’(s)g) =0 (143 -1)

where ¢(s) is the open-loop characteristic polynomial of G(s) = P(s)C(s). Ex-
press G(s) as G(s) = N(s)d7(s) where d(s) is the common denominator of the
elements of G(s) and N(s) is a polynomial matrix. Equation (14.3-1) can then
be expressed as

P(s)

sd(.é) - det(sd(s)I + EN(3)) =10 (14.3 — 2)
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Upon expansion of the determinant, this expression becomes

g%% <(8"d™(s) + ...+ k"detN(0)) =0 (14.3-3)

If G(s) is proper, the coefficient of the highest power of s in (14.3-3) will be
the coefficient of the highest power of s in d(s). This coefficient will be positive
because of the stability assumption. The closed-loop system will be stable only if
all the coefficients in det(sd(s)I +kN(s)) are positive. The constant coefficient is
det(kN(0)) and therefore for closed-loop stability it is required that det(N(0)) > 0
and det(G(0)) > 0. o

Proof of Theorem 14.3-2. Let the Nyquist D-contour be indented at the origin to
the right to exclude the pole of s7!G(s) at the origin. The system will be closed-
loop stable if none of the characteristic loci (CL) encircles the point (—1/%,0).
For IC it is necessary and sufficient that the CL intersect the negative real axis
only at finite values. An intersection at (—oc,0) could only occur because of the
pole of 1/s G(s) at the origin. Along the indentation, the small semicircle with
radius € around the origin, the CL can be described by

MOO)ZH# ~T<o< j=1n

for small €. Let A\;(G(0)) = r;je’; then the expression for the CL can be rewritten
as

Sl T<4<s  i=Ln
The CL do not cross the negative real axis if -7 < 0;+¢ < wor —7/2 < 0; < 7/2,
which means A;(G(0)), j = 1,n has to be in the open RHP. The characteristic
locus j crosses the negative real axis if 7/2 < 0; < 37/2, which means A;(G(0)) is
in the open LHP. Nothing can be said from this proof about the systems for which
the spectrum of G(0) is constrained to the closed right-half plane and includes
eigenvalues on the imaginary axis. ‘ (|

Proof of Corollary 14.3-4. Because the RGA element \;; is invariant under input
and output scaling we have for any diagonal C'(0)

Aij =(-1) P et (P(0))

(14.3 — 4)

5. =

Y3 1c(G(0)) Sada
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where the notation A% indicates that row i and column j of matrix A have been
deleted.

If Aj; < O then one or three of the terms in (14.3-5) is negative.‘ _For property
(a) det(G(0)) < 0; for property (b) gj; < 0; for property (c) det(G?7(0)) < 0. O

The proofs of the other corollaries are straightforward and are left as an exer-
cise.

14.4 Stability Conditions — Interaction Measures
Let us define the term Interaction Measure (IM) more precisely with reference to
Fig. 14.4-1.

A controller '
C = diag{C},Cs,...,Cn} (144 -1)

is to be designed for the system

P 2 diag{Pi1. Py, ..., Pum} (144 - 2)

such that the block diagonal closed-loop system with the transfer matrices

H & pc(I+ Pc)™! (14.4 < 3)
E& (I +Pc)! (14.4 — 4)

is stable (6 = 0 in Fig. 14.4-1). An IM expresses the constraints imposed on the
choice of the closed-loop transfer matrix H or E for the block diagonal system,
which guarantee that the full closed-loop system

H = PC(I 4+ PC)™! (14.4 — 5)
E=(I+Pc)!
is stable (i.e., § = 1) in Fig. 14.4-1.

This definition of an IM has its limitations and therefore the results should
be interpreted with caution. The reason is that the IM is based on the block
diagonal H or E which might or might not be indicative of the actual full closed-
loop transfer matrix H or £. Though this definition of the IM guarantees the
system to be stable it can be very badly behaved. Even if the IM indicates “small”
interactions, the performance can be arbitrarily poor. The following matrices play
central roles in interaction analysis:

Ly=(P-P)pP! (14.4 — 6)
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P(s) - P(s)
0 Pyp.- - Py
Py 0 v - Py

Pml sz. wwm 0

C,0...0 P 0 v » B
r p of: 2o Heay
“lo 0. Cy " (')....Pn;m
C(s) P(s)

Figure 14.4-1. Block diagram representation of interactions as additive uncertainty.
Ly =PY(P-P) (144 -17)
L= (P~ PP (14.4 - 8)
They can be viewed as “relative errors” arising from the “approximation” of the
full system P by P.
14.4.1 Necessary and Sufficient Stability Conditions

The following two stability conditions follow from the multivariable Nyquist cri-
terion. Let us denote by N(k, g(s)) the net number of clockwise encirclements of
the point (k,0) by the image of the Nyquist D contour under g(s). Then we can
state

Theorem_ 14.4-1. Assume that P and P have the same number of RHP poles
and that H is stable. Then the closed-loop system H is stable if and only if

N(0, det(I+ LyH))=0 (14.4 - 9)

Proof. The return difference operator for the full system H can be factored as

(I+PC)=(I+LyH)I+PC) (14.4 — 10)
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Let the number of open loop unstable poles of P and P be py. H is stable if and
only if

N(0,det(I+PC)) = N(0,det(I+PC))+N(0,det(I+LyH)) = —pp (14.4 — 11)

Because H is stable by assumption

N(0,det(I + PC)) = —pg (14.4 — 12)
Substituting (14.4-12) into (14.4-11), (14.4-9) follows immediately. o

Theorem 14.4-2. Assume that P and P have the same number of RHP zeros
and that H is stable. Then the closed-loop system H is stable if and only if

. N(0,det(I — ELg)) =0 (14.4 — 13)
Proof. Consider the following identity

P I+ PC)= P NI+ PBCYI-ELg) (14.4 — 14)
Let the number of RHP zeros of P and P be z;. H is stable if and only if

N(0,det(P~Y(I + PC))) = N(0,det(P~Y(I 4+ PC))) + N(0,det(I — ELg)) = —z
(14.4 — 15)

Because H is stable by assumption and the number of RHP zeros of P is 2

N(0,det(P~Y(I + PC))) = —2 (14.4 — 16)
Substituting (14.4-16) into (14.4-15), (14.4-13) follows immediately. O

Theorems 14.4-1 and 14.4-2 form the cornerstone for much of the further de-
velopment and deserve some discussion. First note that the poles of P are always
a subset of the poles of P. Generically the subset is proper and therefore gener-
ically the number of unstable poles of P and P is not the same except trivially
for stable systems. Therefore for all practical purposes Thm. 14.4-1 is limited
to open-loop stable systems. By the same arguments Thm. 14.4-2 is limited to
minimum phase systems.

Requirement (14.4-9) can be interpreted as a “robustness” condition for H to
remain stable under the multiplicative perturbation Ly. Ideally one would want
to select H = I — i.e., perfect control. If P = P — i.e. P itself is block diagonal,
then (14.4-9) is trivially satisfied. Thus the closed loop system is stable regardless
of how H is chosen. If P # P, H has to be chosen such that (14.4-9) remains
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satisfied. Qualitatively, at least, it is clear that when Ly is “large” H has to be
made “small” to avoid encirclements. A small H i:vplies poor performance. IMs
derived from (14.4-9) provide a quantitative indication of the constraints on H
imposed by Ly.

Similarly (14.4-13) can be interpreted as a “robustness” condition for H to
remain stable under the inverse multiplicative perturbation Lg. Because E should
be small for good performance (14.4-13) seems easier to satisfy than (14.4-9).
However, for strictly proper systems lim,_. .o, E = I and therefore encirclements
can occur if Lg is too large.

14.4.2 Sufficient Stability Conditions

By invoking the Small Gain Theorem (Thm. 10.2-2) sufficient conditions for the
stability of the decentralized control system can be easily derived from Thm.
14.4-1 and 14.4-2.

Theorem 14.4-3. Assume that P and P have the same RHP poles and that H
18 stable. Then the closed loop system H is stable if

p(Lyg(iw)H (iw)) < 1 Yw (14.4 - 17)

or if

| Lr(iw)H(iw)]| <1 Vw (14.4 — 18)
where || - || denotes any compatible matriz norm.

Theorem 14.4-4. Assume that P and P have the same RHP zeros and that H
is stable. Then the closed loop system is stable if

p(E(iw)Lp(iw)) < 1 Yw (14.4 — 19)

or if
|E(iw)Le(iw)]| <1  Vw (14.4 — 20)
Several approaches can be taken to derive IMs — i.e., explicit bounds on

H from (14.4-17) and (14.4-18). There is a trade-off between the assumptions
made about the structure of H and the restrictiveness of the derived bounds.
Less restrictive bounds on the magnitude of H are obtained as more restrictive
assumptions are made about the structure of H. Assuming a highly structured

form for H — i.e., H(s) = h(s)I, leads to the following bound.

Corollary 14.4-1. Assume H(s) = h(s)I. Under the assumptions of Thm.
14.4-3 the closed-loop system H is stable if
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|h(iw)| < p~Y(Ly(iw))  Vw (14.4 — 21)

The form of H(s) assumed for Cor. 14.4-1 is very restrictive but p~ Y Ly(iw))
is the least restrictive magnitude bound that can be derived for H(s) from (14.4~
17). (A similar corollary can be derived from Thm. 14.4-4.)

If integral action is employed in all channels then 2(0) = 1 and the requirement
(14.4-21) becomes for w = 0, p(Ly(0)) < 1. If the system is open-loop stable
then it is always possible to satisfy (14.4-21) at all other frequencies (w # 0) by
rolling off h(s) sufficiently fast. Thus we have the following corollary.

Corollary 14.4-2. The stable system P is DIC if
p(Lr(0)) <1 (14.4 — 22)

The small gain condition (14.4-18) does not take into account the special
structure of the matrix H. Therefore it tends to be conservative though the
conservativeness depends on the type of norm used. It is natural to look for an
expression which takes into account the structure of A and represents an optimal
bound in the following sense. Let H be block diagonal and norm bounded

H(s) = diag {Hi(s), ..., Hu(s)} (14.4 — 23)
&(Hi(iw)) < §(w)  Vi,w (14.4 — 24a)

or equivalently
F(H(iw)) < §(w) Yw (14.4 — 240)

" A real positive function p(Ly(iw)) is desired with the property that (14.4-9) is
satisfied for all matrices H (iw) satisfying (14.4-23) and (14.4-24) if and only if

F(H(iw)) < p~ Y (Ly(iw))  Vw (14.4 — 25)
It follows directly from Thm. 11.2-1 that s is the structured singular value (SSV).

Theorem 14.4-5. Assume that P and P have the same RHP poles and that H
is stable. Then the closed loop system H is stable if

G(H(iw)) < p MLy(iw))  Vw (14.4 — 26)

This is the tightest norm bound, in the sense that if there is a system H; which
violates (14.4-26)

G(H(iw)) > p~ YLy (iw)) (14.4 — 27)
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then there exists another system Hj such that

for which (14.4-9) is violated and H is unstable.

A similar result can be derived from Thm. 14.4-2.

Theorem 14.4-6. Assume that P and P have the sume RHP zeros and that H
15 stable. Then the closed loop system H is stable if
F(E(iw)) < p Y (Lp(iw))  Vw (14.4 — 29)
Different IM’s can be derived readily from Thms. 14.4-1 through 14.4-6.

14.4.3 Diagonal Dominance Interaction Measures

Assume that P and H are diagonal and that the l-norm is used in (14.4-18).
Then (14.4-18) becomes

; |(pij (iw) /pjj(iw))hj(iw)] < 1 Vi, w (14.4 - 30)
itj
or '
=3
|hj(iw)| < ; pij(iw)/pjj(iw)] Vj,w (14.4 — 31)
i#j

This is the “IMC interaction measure” for column dominance. It expresses the
constraints the individual loops, h;(s) must satisfy for the overall system to be
stable. A plot of the RHS of (14.4-31) as a function of frequency is a good
. indicator of the bandwidth over which good control can be achieved.

Definition 14.4-1. Let P(iw) be diagonal. The complex matriz P(iw) is column
dominant if

I La(iw)lli <1 (14.4 — 32a)

or

§ lpij(iw)| < |pj;(i)] (14.4 — 32b)
i#j

When P(iw) is column dominant for all w, a fortunate and rare situation, then
the constraint (14.4-31) on |h;(iw)| is very mild

|hj(iw)] < @ where a>1 Vi, w
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and there are no limitations on the bandwidth imposed by the interactions.
Note that

det(I + (P — P)P™'H) = det(I + P"'H(P - P)) (14.4 ~ 33)

Therefore another sufficient stability condition which is similar to (14.4-18) is

| P~ (iw) H (iw)(P(iw) — P(iw))]| <1 Vw (144 = 34)

The IMC interaction measure for row dominance can be derived by employing
the oo-norm in (14.4-34).

14.4.4 Generalized Diagonal Dominance Interaction Measures

Assume again that P and H are diagonal. If the inputs of P are scaled by
a diagonal nonsingular matrix D, and the outputs by a diagonal nonsingular
matrix D; and if the controller C is scaled accordingly, the stability of the system
should be unaffected. This can be seen easily from (14.4-9)

det(I + (D1PD, — D1PDy)Dy*P~'Dt. DADY (14.4 — 35a)
= det(I + Dy(P — P)P~'AD[Y) (14.4 — 35b)

=det(I + D,(P - P)P'D{'H) (14.4 — 35¢)

=det(I + Ly H) (14.4 — 35d)

~ A similar development holds for the right-hand side of (14.4-33). Though stability

is indepernident of scaling the sufficient stability condition

VG < |Lali)] Yo (14.4 - 36)
derived from (14.4-18) is not. Therefore it is natural to seek the scaling which
makes (14.4-36) least conservative. Equation (14.4-35c) shows that for the error

matrix Ly(s) only one scaling matrix (D)) is necessary, the other one cancels.
Thus the minimization problems requiring solutions are

min || D1 L (iw) D1 (14.4 — 37a)
1
and

min | D5 'Ly () Dalles (14.4 — 37b)
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The solutions of (14.4-37) are provided by the Perron-Frobenius Theorem.

Theorem 14.4-7.

min | D1 Ly (iw) D7 |y = min | D3 L (iw) Dol = p(|Luiw)]) (144 — 38)

where |A| denotes the matriz A with all its elements replaced by their magnitudes.

Corollary 14.4-3. Assume that P(s) and P(s) have the same RHP poles and
that H(s) is stable. Then the closed loop system H(s) is stable if

()| < s (ILatiw)l)  Viyw (14.4 - 39)
Note the similarity between Cor. 14.4-1 and 14.4-3. Equation (14.4-21) is a
tighter bound than (14.4-39) because the spectral radius bounds any norm —

even when it is minimized — from below. However, for obtaining this tighter
bound H(s) had to be restricted to H(s) = h(s)I.

Definition 14.4-2. Assume P(iw) to be diagonal. The complez matriz P(iw) is
generalized diagonal dominant if

p(an(iw)D <1 (14.4 - 40)

When G(iw) is generalized diagonal dominant for all w then the constraint
(14.4-39) is very mild and there are no limitations on the bandwidth imposed by
the interactions.

It would be incorrect to view (14.4-39) as less conservative than (14.4-31). In-
equality (14.4-31) provides individual bounds for each of the single loop transfer
functions h;(s) and thus allows trade-offs between the different loops. The opti-
mization giving rise to (14.4-39) minimizes the worst bound and in the process
makes all the bounds even. However (14.4-39) has the advantage that inde-
pendent of the number of system inputs and outputs the design engineer can
determine from a single curve whether or not the selected control structure leads
to significant performance deterioration.

14.4.5 The p-Interaction Measure

Theorem 14.4-5 states that for stability the magnitude of the diagonal blocks
H;(s) has to be constrained by the reciprocal of the SSV p of the relative error
matrix

&(Hj(iw)) < Y (Ly(iw))  VYiw (14.4 — 41)
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The value of u depends on the structure assumed for H(s). In Sec. 11.2.2 we
found the bounds

p(Lr(iw)) £ p(Ly(iw)) < &(Ly(iw)) (144~ 42)

This confirms the finding of Cor. 14.4-1 that p~}(Ly(jw)) constitutes the loosest
bound but that it is only correct for the rather restricted structure H(s) = h(s)I.
The upper bound on p is consistent with the conservative result (14.4-36) when
the spectral norm is used and when no structural constraints are put on H(s).
Not surprisingly u(Ly(jw)) lies between the extremes when H(s) has no specific
structure at all and when H(s) = h(s)I.

From Thm. 14.4-6 we obtain the interaction constraint

5(Ei(iw)) < p Y (Le(ivw))  Vi,w (14.4 — 43)

for minimum phase systems. For strictly proper open-loop systems with integral
control H — 0, E; — I as w — oo and H; — I, E; — 0 as w — 0. Therefore
(14.4-41) can be easily satisfied at high frequencies and (14.4-43) at low frequen-
cies. Unfortunately it is not possible to combine these two bounds over different
frequency ranges.

If 4(Ly(0)) < 1 then the system is DIC. If the individual loops are designed
in accordance with (14.4-41) then they can be detuned or turned off without
affectinig the stability of the rest of the system. Thus, design constraint (14.4-41)
leads to controllers which have attractive practical properties.

Note that p treats both diagonal and block diagonal H(s) in a unified optimal
manner. Just as in the case of generalized diagonal dominance all loops are given
equal preference.

14.4.6 Interaction Measures for 2 x 2 Systems

The interaction measures for 2 x 2 systems which are most widely used industrially
are the RGA and the Rijnsdorp interaction measure

= 14.4 — 44
pu1(s)paa(s) ( )
It is related to the RGA through
W A D (14.4 — 45)
W1 — kale) ' '

It can be easily shown that these empirical IMs are closely related to those we
derived earlier on theoretical grounds.
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Corollary 14.4-4. Assume that P(s) and P(s) have the same RHP poles and
that H(s) is stable. Then the closed-loop system H(s) is stable if

[Ri(iw)| < |kp(w)| 7Y% = p"H(Ly(iw)) = = (Ly(iw))  Vi,w (144 — 46)

Corollary 14.4-5. The stable 2 x 2 system P is DIC if any one of the following
equivalent conditions is satisfied:

(a) P(0) is generalized diagonal dominant.
(b) p(Lu(0)) <1

(¢) p(ILu(0)]) <1

(d) u(Lu(0)) <1

(e) [nr(0)] < 1

(f) RGA: A1 (0) >

Compare these conditions with the necessary and sufficient conditions for DIC
derived in Sec. 14.3.

Re{Ai(L1(0))} = -1 (14.4 - 47)

RGA : );:(0)>0 (14.4 — 48)

The conservativeness of (b) and (f), and therefore of all IMs derived in this section
is immediately apparent.

14.4.7 Examples

Example 14.4-1. Consider the distillation column of Doukas and Luyben (1978).
The transfer function matrix for a 3 X 3 subsystem is shown in Table 14.4-1.

Line 1 in Fig. 14.4-2 shows a plot of u~!(Ly(iw)) for the fully decentralized
control system with (diagonal) pairings ((1.,1), (2,2), (3,3)). This curve shows
that a fully decentralized controller with integral action cannot be designed on
the basis of Thm. 14.4-5 since u~}(Ly(0)) < 1. This constraint can be relaxed
by considering a more complex controller structure. Line 2 in the same figure
shows a plot of u~!(Lg(iw)) for the block decentralized control system with pair-
ings ((1-2,1-2), (3,3)). In this case, a controller with integral action is possible
since u~!(Ly(0)) > 1. However, the interactions limit the achievable closed loop
bandwidth to about 0.2 rad min~!.
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Table 14.4-1. Distillation Column Transfer Matrix.

S S A 5

Reflux Ratio | Side Draw | Reboil Duty
' 3 Qe 7158 —11.3¢=3.70s _9.8]1¢-1-59s
Sl I Deotn (22.25+1)? (21.74s+1)° (11.365+1)
g
1 —1.986¢=0-71¢ 5.94e—80s 5.04e—2-24s
/ TOluene m tOPS (66.673“{'1)"’ (4UOS+I) (14.298-}-1)
.
3 - " 0.204¢~0-59s 0.33¢—0-684 9.88e—0-428
Benzene in side draw GATTERVE ey i)
s .
5 18
3
% E|
% 3
! N 2
i 1.

T 10 2 1 ! 1.

Figure 14.4-2. Interaction Measures. Line 1 = u~!(E(jw)) for fully decentralized controller; line 2 =
p Y E(jw)); line 3 = p~(|E(jw)|) for block decentralized controller. (Reprinted with permission
from Automatica, 22, 316 (1986), Pergamon Press, plc.)
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The generalized diagonal dominance hound p~'(| Ly (iw)]) for the block decen-
tralized controller is shown as line 3 in Fig. 14.4-2. A comparison of lines 2 and
3 demonstrates the conservativeness associated with p~}(|Ly(jw)|) as IM. o

Example 14.4-2. Assume now a fully decentralized control structure for the
system in Table 14.4-1 implemented on the variable pairs ((1,2),(2,1),(3,3)). The
objective is to demonstrate the response of the closed-loop system when the three
controllers are designed on the basis of Thm. 14.4-5. Figure 14.4-3 shows a plot
of p~}(Ly(iw)) (Line 1). The interactions limit the closed loop bandwidth to
about 0.08 rad min~!. Figure 14.4-3 also shows plots of |h;(iw)], (¢ = 1,3), for
three different sets of controllers. In the first case, the three controllers are chosen
such that

hi(s) =e ™ (4s+1)"° i=1,3 (14.4 — 49)

while in the second and third cases the controllers are chosen such that

hi(s) = e ™ (10s+1)%  i=1,3 (14.4 — 50)

and

hi(s)=e™(25s+1)2  i=1,3 (14.4 - 51)

respectively. Here, 7, (i = 1,3), are the time delays in p;3, pa1, and pas, respec-
tively. The responses of the closed-loop systems for these three sets of controllers
were tested for step changes in ry. The responses corresponding to (14.4-49 to
51) are shown in Fig. 14.4-4. It is apparent that as the ;(s) are moved away from
the stability bound (Line 1) and thus made more conservative, the closed-loop
responses become more sluggish but less oscillatory. O

14.5 Robust Performance Conditions

In the spirit of the previous section we will derive bounds on the magnitude of the
sensitivity E and the complementary sensitivity H. These bounds will have the
following property: If each block ¢ of the decentralized controller is designed such
that E; or H; satisfies the corresponding bound, then robust performance (in the
H, sense) of the overall coupled system is assured and not just nominal stability
as before. Because robust stability is just a special case of robust performance,
it is not discussed separately.



-
1

14.5. ROBUST PERFORMANCE CONDITIONS 379

{
18

TN

llllllll lll”lll IR ARLL

g L i iits

1

Figure 14.4-8. Line 1 = pY(E(jw)); lines 2-4 = amplitude ratio for (14.4-49), (14.4-50) and (14.4-
51), respectively. (Reprinted with permission from Automatica, 22, 317 (1986), Pergamon Press,
ple.) '

14.5.1 Sufficient Conditions for Robust Performance
Let us assume that the robust performance requirement is expressed as
w(M) <1, Yw (14.5-1)

We will proceed in three steps:

1. Express M as an LFT of H
2. Express H as an LFT of H

3. Express M as an LFT of H. Based on this LFT state a bound on &(H)
which guarantees RP of the overall system — i.e., (14.5-1).

The same procedure can be defined for E instead of H. It is based on the
results in Sec. 11.4 where we show how robustness conditions can be expressed
in terms of bounds on specific transfer matrices related to M by LFT’s.

1. Ezpress M as an LFT of H or E. In Sec. 11.4 we showed in detail how
such an LFT can be constructed if it is not obvious from inspection. In general
it has the form

= VT, + NBTN (145 - 2)
where T = H or T = E.
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Figure 14.4-4. Closed-loop response to unit step change in 7(s) for different loop designs h;; A:
(14.4-49), B: (14.4-50), C: (14.4-51). (Reprinted with permission from Automatica, 22, 317 (1986),
Pergamon Press, plc.)
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2. Express H(E) as an LFT of H(E). It can be easily verified that

H=PP'HI+ LyH)! (14.5 - 3)

E=E(I - LgE)'PP! (14.5 — 4)
3. Ezpress M as an LFT of H(E) and compute a bound on &(H)(5(E)) which
guarantees robust performance. Substitute (14.5-3) into (14.5-2) to obtain M as
an LFT of H:
M=N{ + NEPP'H(I+ LyH)'Ni (14.5 - 5)
Similarly from (14.5-4)

M = NE + NEE(I — LpE)"'PP'N§ (14.5 — 6)
The following theorem follows directly from Thm. 11.4-1.

Theorem 14.5-1. The overall system satisfies the robust performance condition
w(M) < 1,Vw if the individual subsystems satisfy

o(H) < cg or 6(E) < cg Yw (14.5-7)

where at each frequency cy and cp solve

NE N{?Z'PP‘1> B "
ﬂA (N{{CH —-LHCH == ) (14.0 = 8)
Nf; N ),_

and p is computed with respect to the structure A = diag{A,C}.

We will first use an example to illustrate the construction of the LFT’s. Then
we will propose a design procedure based on Thm. 14.5-1.

Example 14.5-1 (Robust Performance with Input Uncertainty). In Sec.
11.3.3 we found that robust performance is achieved if and only if u(M) < 1,
where

(14.5 — 10)

M= <—15—1f115(—’1 —P‘ll:fw)

EP[; Ew

By inspection M may be written as LFT’s in terms of H and E
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_ 0 e S v
M:N{{-}—N{éHN;{:(pOEI I'w>+( )H(PKI Tw) (14.5-11)

~ ——— 7 —— ~_1‘ -—1 -~ A —
M=N5+N{§EN;{=( o “’) 3 (P )E(Pf, w) (14.5-12)

Thus ¢y and cg have to solve

0 0o -pF
pa| Py Tw —-PP'|=1 (14.5 - 13)
Plicy ITwey —Lpycy

and

~It; — Py p-t

pal 00 I |=1 (14.5 - 14)
Plicg PP‘lch Lpce

O

14.5.2 Design Procedure

Consistent with the other tests and techniques discussed in this section we will
assume that each one of the “loops” is designed separately. We propose the
following procedure: find a decentralized controller which yields individual loops
(H and E) which are stable and in addition satisfy

1. Nominal Stability: Satisfy 6(H) < p~'(Ly) (14.4-41) at all frequencies or
satisfy 5(E) < p~Y(Lg) (14.4-43) at all frequencies. It is not allowed to
combine (14.4-41) and (14.4-43).

2. Robust Performance: At each frequency satisfy either 5(H) < cy or&(E) <
cg (14.5-7). Combining the two conditions over different frequency ranges
is allowed.

Thus, in general, two separate conditions must be satisfied by the individual
design: one for nominal stability and one for robust performance. Usually the
bound 6(H) < cy is satisfied for high and the bound &(F) < ¢g for low frequen-
cies. In some rare cases a single bound can be satisfied over the whole frequency
range. Assume &(H) < cy,Vw. Because ¢y solves (14.5-8), pa(Nf) < 1,Vw.
From (14.5-5) this is equivalent to pua(AM(H = 0)) < 1,Yw. Thus, in order for
G(H) < cg,VYw the performance requirements have to be such, that the robust
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performance condition is satisfied for H = 0. This may be the case if we are
interested in robust stability only.

Assume on the other hand 6(E) < cg,Vw. Because cp solves (14.5-9),
pa(NE) € 1,Vw. From (14.5-6) this is equivalent to pa(M(E = 0)) < 1,Vw.
Thus, in order for 5(E) < cg,Vw, the uncertainty has to be so small, that the
robust performance condition is satisfied for £ = 0. This may be the case if we
are interested in nominal performance only.

In these extreme cases, it turns out that if the individual stable loops satisfy
the robust performance bound (e.g., 3(H) < ¢y, Vw) for the overall system, then
its nominal stability is implied automatically; Step 1 of the proposed design
procedure can be omitted.

This again can be seen easily from the following argument. If 5(H) < ¢y, Yw,
then cy solves (14.5-8) for all values of w and p.(Lgcy) < 1or ey < ' (Ly), Vw.
This implies that the robust performance constraint is tighter than the robust

stability constraint (14.4-41). A similar derivation involving the sensitivity £ is
possible.

We want to stress that, in general, when neither of the individual bounds
in (14.5-7) holds over the whole frequency range, then nominal stability is not
implied by robust performance: for nominal stability either one of the two bounds
(14.4-41 or 14.4-43) has to be satisfied for all frequencies. These bounds cannot
be combined over different frequency ranges.

14.5.3 Example

We continue Example 14.5-1 on robust performance with diagonal input uncer-
tainty. Consider the following plant

~0.8783=02 0.014

5 1 140.2s (145 )

. 14.5 - 15
14 75s 51=0.25 11=0.2s
‘1-0821+0.2s "0-0141+8.2s

Physically, this may correspond to a high-purity distillation column using dis-
tillate (D) and boilup (V) as manipulated inputs to control top and bottom
composition (Appendix). We want to design a decentralized (diagonal) controller
for this plant such that robust performance is guaranteed when there is 10% un-

certainty on each manipulated input. The uncertainty and performance weights
are

fifs) =01 (14.5 — 16)
s+ 1
w(s) = 0.25 ’37”: (14.5 - 17)
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The weight (14.5-17) implies that we require integral action (w(0) = co) and
allow an amplification of disturbances at high frequencies by a factor of four
at most (wp(co) = 0.25). A particular sensitivity function which matches the
performance bound (14.5-17) exactly for low frequencies and satisfies it easily for
high frequencies is B = 2§§i1I . This corresponds to a first order response with
time constant 28 min.

Nominal Stability (NS). The nominal model has p(Ly(0)) = 1.11. Consequently,
it is impossible to satisfy the NS-condition (14.4-41).

The NS-condition (14.4-43) for 5(E) cannot be satisfied either. Firstly, P has
one RHP-zero, while the diagonal plant has two. Secondly, the plant is clearly
not diagonal dominant at high frequencies, and p(Lg(iw)) is larger than one for
w > 4 min~!. The simplest way to get around this problem is to treat the RHP-
zeros as uncertainty. This is actually not very conservative, since RHP-zeros limit
the achievable performance anyway. To this end define the following new nominal
model

P=

1 (-—0.818 0.014 ) (14.5 — 18)

14755 \—1.082 —-0.014

and include the RHP-zeros in the input uncertainty by using the following new
uncertainty weight

5s+1
0.25s+1

|€1(3w)| reaches a value at one at about w = 2 min~'. This includes the neglected

RHP-zeros since the multiplicative uncertainty introduced by replacing i;ggi by

£1(s) =0.1 (14.5 — 19)

lis|1— i;g:gz |, which reaches a value of one at about w = 3 min~'.

With the new model (14.5-8) we still caunot satisfy the NS-condition (14.4-
41) for &(H). However, the NS-condition (14.4-43) for 5(E) is easily satisfied
since P and P have the same number of RHP-zeros (none), and u(Lg) = 0.743
at all frequencies. The only restriction this imposes on E is that the maximum
peaks of |€;| and |€2] must be less than 1/0.743 = 1.35. This is easily satisfied

since both p1; = Z_?_?s’ss and Pgg = 12705194 are minimum phase.

In the remainder of this example the model of the plant (P) is assumed to be
given by (14.5-18) and the uncertainty weight ({;) by (14.5-19).

Nominal Performance (NP). From the overall performance requirements

NP & &(E)<|w|? Vw (14.5 — 20)
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Figure 14.5-1. NP is satisfied if and only if 5(£) < [w|~! which is satisfied if 5(E) < enp

we would expect that the individual loops have to satisfy at least, a(E) < |w|™
However, this is not necessarily the case, as illustrated by the example: Condition
(14.5-20) is equivalent to pa(M) < 1 with M = wE and A = Ap (Ap is a full
matrix). From (14.5-7) we find the following sufficient condition for NP in terms
of E:

NP « 5(E)<cyp Ww (145 -21)

where cyp solves at each frequency

0 wl

Ha (CNPPP_1 CNPLE> =1 A% =2
and A = diag{Ap,C}. In our example Ap is a “full” 2 x 2 matrix, and C is a
diagonal 2 x 2 matrix. The bound cyp is shown graphically in Fig. 14.5-1 and is
seen to be larger than |w|™! for low frequencies. Consequently, the performance
of the overall system may be better than that of the individual loops — that is,
the interactions may improve the performance.

Robust Performance (RP). Bound on 5(H). The bound cy defined by (14.5-8)
is shown graphically in Fig. 14.5-2 (g in (14.5-8) is computed with respect to
the structure A = diag{Ar, Ap,C}, where A is a diagonal 2 x 2 matrix, Ap is
a full 2 x 2 matrix and C is a diagonal 2 x 2 matrix). It is clearly not possible
to satisfy the bound &(H) < cy at all frequencies. In particular, we find ey < 0

. The reason is that the performance weight w] > 1 in

for w < 0.03 min™".

& %
P
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Figure 14.5-2. Bounds g~ (Lp) and ¢y on &(I).

this frequency range, which means that feedback is required (i.e., H =0 is not
possible).

Bound on &(E). The bound cg defined by (14.5-9) is shown graphically in Fig.
14.5-3 (u is computed with respect to the same structure as above). Again it
is not possible to satisfy this bound at all frequencies. In particular, we find
cg < 0 for w > 2 min~!. The reason is that the uncertainty weight |¢;] > 1 in
this frequency range, which means that perfect control (£ = 0) is not allowed.

Combining bounds on 5(H) and 5(E). The bound on &(E) is easily satisfied at
low frequencies, and the bound on &(H) is easily satisfied at high frequencies.
The difficulty is to find an E = I — H which satisfies either one of the conditions
in the frequency range from 0.1 to 1 min~'. The following design is successful
(Fig. 14.5-4).

i 7.5s
N = Ny = ————— €] = €y = ————— 14.5 —
=l * T ETYR R (bd5-23)

The bound on |&]| is satisfied for w < 0.3 min™', and the bound on || for
w > 0.23 min~!. The controller which yields (14.5-23) is

_ (L4 75s)

8§

=1

== 0

& (0-3“’ o ) s R=0.133 (14.5 — 24)
0014

Because the bounds ¢y and cp are almost flat in the cross-over region, the result is

fairly insensitive to the particular choice of controller gain: for 0.06 < & < 0.25 the

design satisfies either 5(E) < cg or 5(H) < ¢y at each frequency and thus has RP.



14.6. SUMMARY 387

10

-1

i0

-2

10 —r—
1073

Figure 14.5-8. Bounds p~'(Lg) and cg on &(E).

Figure 14.5-5 shows that RP of the overall system is guaranteed (u(A) < 0.63)
as expected from the design procedure. The fact that p(A) is much smaller than
one, demonstrates some of the conservativeness of conditions (14.5-7) which are
only sufficient for RP.

14.6 Summary

Decentralized controllers are popular in practice because they involve fewer tuning
parameters than full multivariable control systems and because it is easier to malke
them fault tolerant. Our approach is to design the controllers for the individual
subsystems independently but subject to some constraint which guarantees the
stability and (robust) performance of the overall system. In order for this to be
possible with integral action in all channels the system has to be Decentralized
Integral Controllable (DIC). The following conditions are necessary for DIC (Sec.
14.3.1) and can be used to identify attractive control structure candidates

Re{M(PHO)} >0 Vi

Re{\(L(0)} > -1 Vi

where
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Figure 14.5-4. RP is guaranteed since |&| < ¢ for w < 0.3 min~! and |7;] < g for w > 0.23 min~".
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Figure 14.5-5. pu(M) as a function of frequency. RP of the overall system is guaranteed since
w(M) < 1 for all frequencies.
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L= (P~ P)p!

From different variations of the Small Gain Theorem we derived different bounds
on the magnitude of the individual loop transfer functions which, when satis-
fied, guarantee the stability of the overall system. We call these bounds which
constrain the individual designs interaction measures. For example, the IMC
interaction measure for column dominance recuires

=1
|h;(iw)] < ; |pij (iw) /pj;(iw)]| Vj,w (14.4 - 31)
i#j

and general dominance requires

|hj(iw)| < p~ (|Lu(iw)]) Vi,w _ (14.4 — 39)

The least conservative norm bound is provided by the p-interaction measure

o(H;(iw)) < p~(Ln(iw)) Vi,w (144 - 41)

Given an uncertainty description in terms of a block diagonal A and an Hy
performance specifications, bounds ¢y and cg of a similar type can be derived on

5(H;) and &(E;)

5(;[) < ¢y or 5(E) £ Ch (14..5 —_ 7)

They guarantee robust performance of the overall system if the nominal system P
with the decentralized controller is stable. Here cy and cg are defined implicitly
through (14.5-8) and (14.5-9).
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14.4.3. The stability condition based on the IMC interaction measure was
derived by Economou & Morari (198G). Rosenbrock (1974) expresses an entirely
equivalent stability condition in terms of “Gershgorin bands”.

14.4.4. A proof of the Perron-Frobenius theorem is available from Seneta
(1973). The concept of generalized diagonal dominance for control system design
was introduced by Mees (1981) and Limebeer (1982).

Both the diagonal dominance and generalized diagonal dominance concept can
be extended to block diagonal system (Feingold and Varga, 1962; Limebeer 1982).
The bounds on ||H;(iw)|| obtained by this approach are excessively conservative
and therefore not very useful in most practical applications.
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