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Chapter 10

FUNDAMENTALS OF MIMO
FEEDBACK CONTROL

In the first section of this chapter some concepts from linear system theory are
summarized. The singular value decomposition, which plays a key role in the rest
of the book, is covered in detail. The control problem formulation introduced
for SISO systems (model uncertainty description, input definition, performance
objectives) is generalized to multivariable systems. The Nyquist stability criterion
is extended to handle MIMO systems.

10.1 Definitions and Basic Principles

This introductory section is a self-contained summary. For the proofs and a
deeper understanding the reader is referred to a basic text on linear systems.

10.1.1 Modeling

In the time domain a linear time invariant finite dimensional system can be
described by the system of differential and algebraic equations

& = Az + Bu (10.1-1)

y=Cz+ Du (10.1 - 2)

where z € R",y € R", and u € R™ are the state, output and input vectors
respectively and A, B, C, and D are constant matrices of appropriate dimensions.
Taking the Laplace transform of (10.1-1) and (10.1-2) with zero initial conditions

sIz(s) = Az(s) + Bu(s) (10.1 - 3)

or
z(s) = (sI — A)~'Bu(s) (10.1 — 4)
y(s) = Cz(s) + Du(s) (10.1 - 5)
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and substituting (10.1-4) into (10.1-5) we find
y(s) = (C(sI — A)™'B + D)u(s) (10.1 — 6)

where

G(s)2C(sI-A)"'B+D (10.1 - 7)
is referred to as the system transfer matriz. The elements {g;;(s)} of G(s) are
transfer functions expressing the relationship between specific inputs u;(s) and

outputs y;(s). In this book, except for proofs and derivations we will use the
transfer matrix rather than the state space description.

The matrix G(s) will be assumed to be of full normal rank — i.e., rank [G(s)] =
min {m, n} for every s in the set of complex numbers C, except for a finite number
of elements of C.

In general, the elements {g;;(s)} will be allowed to include delays. The time
domain realization of transfer matrices with delays is complex and will not be
addressed here. In order to be physically realizable the transfer matrices have to
be proper and causal.

Definition 10.1-1. A system G(s) is proper if all its elements {gi;j(s)} are proper
and strictly proper if all its elements are strictly proper. All systems which are
not proper are improper.

Definition 10.1-2. A system G(s) is causal if all its elements {g;;(s)} are causal.
All systems which are not causal are noncausal.

10.1.2 Poles

Definition 10.1-3. The eigenvalues m;,i = 1,...,n,, of the matriz A are called
the poles of the system (10.1-1), (10.1-2). The pole polynomial w(s) is defined as

np

(s) = II(s - m) (10.1 - 8)

i=1
Thus the poles are the roots of the characteristic equation
n(s) =0 (10.1 - 9)
The ipoles determine the system’s stability. |
Theorem 10.1-1. The system (10.1-1), (10.1-2) is stable if and only if all its
poles {m;} are in the open left half plane.

The following theorem allows us to determine the system poles directly from

the transfer matrix G(s) without performing a realization and constructing the
matrix A first.
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Theorem 10.1-2. The pole polynomial w(s) is the least common denominator
of all non-identically-zero minors of all orders of G(s).

Example 10.1-1. Consider the matrix

Gls) = 1 ( (s—1)(s+2) 0 (s —1)? )

- (s+D(s+2)(s=1) \=(s+1)(s+2) (s=1)(s+1) (s- 1)(s+1)
The minors of order 1 are the elements themselves. The minors of order 2 are
1 2

12 _ 12 _
= EInery T EIDE+Y)
GH= ey
“ (s+1)(s+2)

(Here superscripts denote the rows and subscripts the columns used for compu-
tation of the minors). Considering the minors of all orders (i.e., orders 1 and 2)
we find the least common denominator

n(s) = (s +1)(s +2)X(s - 1)

10.1.3 Zeros

Recall that if ¢ is a zero of the SISO system g(s) then g(¢) = 0. Furthermore,
we know that ( is a zero of g(s) if and only if ¢ is a pole of g7(s). The following
definition consistently extends this concept of a zero to MIMO systems.

Definition 10.1-4. ¢ is a zero of G(s) if the rank of G(C) is less than the normal
rank of G(s).

In other words, since G(s) is assumed to be of full normal rank, the transfer
matrix G(s) becomes rank deficient at the zero s = . The zero polynomial {(s)
is defined as

¢(s) = ,ﬁl(s - (10.1 - 10)
where n, is the number of finite zeros of G(s). Thus the zeros are the roots of
¢(s)=0 (10.1 —11)
The following theorem provides a method for calculating the zeros.

Theorem 10.1-3. The zero polynomial ((s) is the greatest common divisor of
the numerators of all order-r minors of G(s), where r is the normal rank of G(s),
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provided that these minors have all been adjusted in such a way as to have the
pole polynomial n(s) as their denominator.

Example 10.1-2. Consider the system from Ex. 10.1-1. and adjust the denom-
inators of all the minors of order 2 to be 7(s)

e
12 5 iy = 1)2
@0
and so
((s)=(s—1)

O
As Exs. 10.1-1. and 10.1-2. show, MIMO systems can have zeros and poles
at the same location. Therefore it is generally not possible to find all the zeros
of a square system from the condition detG(s) = 0 because, when forming the
determinant, zeros and poles at the same location cancel.

Definition 10.1-5. A system G(s) is nonminimum phase (NMP) if its transfer
matriz contains zeros in the RHP or there exists a common time delay term that
can be factored out of every matriz element.

Note that the zero locations of a MIMO system are in no way related to the
zero location of the individual SISO transfer functions constituting the MIMO
system. Thus, it is possible for a MIMO system to be NMP even when all the
SISO transfer functions are MP and vice versa.

Example 10.1-3. The system

1 s+3 2
G(S)—s—}—l( 3 1)

has one finite zero at s = 43 though all the SISO transfer functions are MP. 0O |

10.1.4 Vector and Matrix Norms

Let E be a linear space over the field K (typically K is the field of real R or
complex numbers C). We say that a real valued function || - || is a norm on E if
and only if

|zl >0 Vze E,z+#0 (10.1 — 12a)



10.1. DEFINITIONS AND BASIC PRINCIPLES 209

lz] =0 z=0 (10.1 — 12b)
loz|| = |o| 2] Ya€K, VzeE (10.1 — 13)
lz+yll < llzll +llyll, Vo,yeE (10.1-14)

A norm is a single number measuring the “size” of an element of E. Given a
linear space E there may be many possible norms on E. Given the linear space
E and a norm || - || on E, the pair (E, || - ||) is called a normed space.

In this section let the linear space E be C*. More precisely € C" means that
z = (21, T2, ...2Z,) with z; € C,Vi. Three commonly used norms on C" are given

by

lellp 2 (J2al? + Joal? + ... + [2al?)  p=1,2,00 (10.1 - 15)

where ||z||« is interpreted as max; |z;]. The norm ||z||2 is the usual Euclidean
length of the vector z.

Let E = C"*", the set of all n X n matrices with elements in C. F is a linear
space. The following are norms on C**"

llAll = max 3 |as;| (10.1 - 16)
[ Alloo = max 3" |as;| (10.1 - 17)
j
3
lAllF = [ZE |a,~j|2] Frobenius or Euclidean norm (10.1 — 18)
i
l|Allz = max (A7 4) Spectral norm (10.1 — 19)

where the superscript H is used to denote complex conjugate transpose. The
eigenvalues \;(Af A) are (necessarily) real and nonnegative. Some useful rela-
tionships involving the spectral and Frobenius norms are

l4ll2 < | 4llr < VnllAll2 (10.1 - 20)

where A € C™*". These inequalities follow from the fact that A7 A is positive
semidefinite and

max Ai(A7 4) < ||A))% = trace[AT 4] < n max (AR 4) (10.1 — 21)
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Here we considered matrices as elements of a linear space. Next we shall consider
matrices as representation of linear maps and shall relate the matrix norms to
the vector norms of the domain and range spaces.

First let us adopt the following notation. From now on we shall use |- | for
norms on R" or C" and || - || for norms on function spaces (see Sec. 10.1.6.) or
for induced norms of linear operators. '

Let | - | be a norm on E and let A be a linear map from E into E. Define the
function

A N
|4 & sup 4z (10.1 — 22)
240 |2]
or equivalently
Al & sup |Az] (10.1 — 23)
Jzl=1

The quantity ||A|| is called the induced norm of the linear map A or the operator
norm induced by the norm |- |.

To interpret (10.1-23) geometrically, consider the set of all vectors of unit
length — i.e., the unit sphere. Then ||A|| is the least upper bound on the magni-
fication of the elements of this set by the operator A.

It is easy to show from the definition (10.1-22) that any induced norm satisfies

Ae| < [14] - Jo] (101 - 24)
llecAll = fo - [14] (101 - 25)
|4+ Bl < 14] + | B]| (101 - 26)
IAB] < |||l - 18] (101 - 27)

Any matrix norm N(-) which in addition to the axioms (10.1-12)-(10.1-14)
satisfies

N(AB) < N(4)N(B) (10.1 — 28)

is called compatible. (It is “compatible with itself.”) An induced norm is an
example of a compatible norm. It can be shown that for every compatible matrix
norm N (-) there exists a vector norm | - | such that

|Az| < N(A)|z] (10.1 — 29)

.




10.1. DEFINITIONS AND BASIC PRINCIPLES 211

We say that N(-) is an (operator) norm compatible with the (vector) norm |- |.

It is left as an exercise for the reader to show that the norms ||-||1, ||-||2 and |||l
are operator norms induced by the vector norms |- |y, |- |z and | - | respectively.
The Frobenius norm || - || is not an induced norm but it is compatible with |- |5.
Also, if A(A) is an eigenvalue of A and z is a corresponding eigenvector, then for
compatible matrix and vector norms

|Az] = M) - Jo| < [IA]l - |2 (10.1 - 30)

or

IAA)] < 4] (101 - 31)
Let p(A) be the spectral radius of A — i.e.,

p(A) = max [Xi(A4)] (10.1 — 32)
Because (10.1-31) holds for any eigenvalues of A

p(A4) < 1A (10.1 - 33)

Thus the spectral radius forms a lower bound on any compatible matrix norm.

10.1.5 Singular Values and the Singular Value Decomposition

The singular values of a complex n x m matrix A, denoted o;(A), are the k largest
nonnegative square roots of the eigenvalues of A A where k = min{n, m}, that
is

oi(A) = Xi(AFA) 1=1,2:: 5k (10.1 — 34)
where we assume that the o; are ordered such that o; > ;4. In the last section
we asked the reader to show that the maximum singular value is the matrix norm
induced by the vector norm | - | — i.e., the spectral norm. We can define the
maximum (&) and minimum (g) singular values alternatively by

= |Ax|2
= 3 = |4 10.1 —
|A~1.'L’2 i T . " .
a(A) = [Iilg(:)x |:c[2| = |A"Y; if A7 exists (10.1 — 36)
1Y 2] Az
=IWR |7 = min = min
z#0 lx'z z#0 lA“lajl2 z#0 la,lg
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Thus & and g can be interpreted geometrically as the least upper bound and the
greatest lower bound on the magnification of a vector by the operator A.

The smallest singular value g(A) measures how near the matrix A is to being
singular or rank deficient (a matrix is rank deficient if both its rows and columns
are linearly dependent). To see this, consider finding a matrix L of minimum
spectral norm that makes A + L rank deficient. Since A + L must be rank
deficient there exists a nonzero vector z such that |z|; = 1 and (A+ L)z = 0.
Thus by (10.1-35) and (10.1-36)

o(A) < |Asly = |Lals < L) = 5(L) (101 - 37)

Therefore, L must have spectral norm of at least g(A). Otherwise A + L cannot
be rank deficient. The property that

a(A) > (L) (10.1 — 38)

implies that A 4+ L is nonsingular (assuming square matrices) and will be a basic
inequality used in the formulation of various robustness tests.

Definition 10.1-6. A complex matriz A is Hermitian if A¥ = A.

Definition 10.1-7. A complex matriz A is unitary if A = A~1,

A convenient way of representing a matrix that exposes its internal structure

is known as the Singular Value Decomposition (SVD). For an n x m matrix A,
the SVD of A is given by

k
A=UTVH = ¥ g;(A)uv (10.1 — 39)
=1
where U and V are unitary matrices with column vectors denoted by
UF v iy Wy v 5 ) (10.1 — 40a)
V = (v1,v2,...,Um) (10.1 — 40b)

and ¥ contains a diagonal nonnegative definite matrix ¥; of singular values ar-
ranged in descending order as in

or

E=(E; 0); n<m (10.1 — 41)

5 S S
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and

¥y = diag {01,09,...,0k}; k = min{m,n} (10.1 — 42)

where

G=012092...20r=0
It can be shown easily that the columns of V and U are unit eigenvectors of A¥ A
and AA¥ respectively. They are known as the right and left singular vectors of
the matrix A. Trivially all unitary matrices have a spectral norm of unity. Thus
by SVD an arbitrary matrix can be decomposed into a “rotation” (V#) followed
by scaling (X) followed by a “rotation” (U).

Example 10.1-4. The SVD of the matrix

A_(O.8712 —1.3195)
T \1.5783 —0.0947

is

o=z 3)==0 ) v=3(4 )

It is interpreted geometrically in Fig. 10.1-1. O

Let A(A) be the eigenvalue of minimum magnitude of A and gz the associated
eigenvector. Then from (10.1-36) we find
. |Az|y _ |Az|s
g(A)=min—= < ——= =
D= Tl = Tah
Combining (10.1-33) and (10.1-43) we conclude that g and & bound the magni-
tude of the eigenvalues:

[A(A)] (10.1 — 43)

2(4) < IN(A)] < 5(4) (10.1 - 44)
If A is Hermitian then the singular values and the eigenvalues coincide.

Define u; = @, u, = u,v1 = 7, v, = 2. Then if follows that

Ab=0 a (10.1 — 45)

vL=a0 U (10.1 — 46)
From a systems point of view the vector %(v) corresponds to the input direction

with the largest (smallest) amplification. Furthermore @(w) is the output direction
in which the inputs are most (least) effective.
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Figure 10.1-1. Geometric interpretation of the SVD for Ex. 10.1-4.
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If A is square and nonsingular then

Al=vZly¥® (10.1 — 47)

is the SVD of A~! but with the order of the singular values reversed. Let £ =
n — j+ 1. Then it follows from (10.1-47) that

ci(A™Y) = 1/0,(A) (10.1 — 48)
uj(A™Y) = ve(A) (10.1 — 49a)
v;(A71) = ug(A) (10.1 — 49b)

and in particular
(A7) = 1/g(A) (10.1 — 50)
(A1) = »(A) (10.1 — 51a)
w(A™) = 5(A) (10.1 — 51b)

When G(iw) is a transfer matrix we can plot the singular values o;(G(iw))(i =
1,...,k) as a function of frequency. These curves generalize the SISO amplitude-
ratio Bode plot to MIMO systems. In the MIMO case the amplification of the
input vector sinusoid ue™* depends on the direction of the complex vector u: the
amplification is at least ¢(G(iw)) and at most (G (iw)).

10.1.6 Norms on Function Spaces

In this section we will illustrate the extension of the concept of a norm to linear

spaces whose elements are functions. Let us first consider the vector valued

function y(s) of dimension n. We define the set L} to be the set of all vector

functions with dimension n, which are square-integrable on the imaginary axis
. — l.e., for which the following quantity is finite:

, _ 1 (o o AT 2 .
lalls = [27r 7 yies) Ty (i) de (10.1 - 52)

Note that (10.1-52) defines the 2-norm of a function y(s) through an inner prod-
uct. For the special case when y(s) has no poles in the closed RHP, Parseval’s
theorem yields an equivalent time domain expression for the 2-norm of y(¢) (||y||2):

f\,
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1

lwlle = [}~ (@) y(@)ee] (10.1 - 53)

Assume now that the function G(s) is matriz valued with dimension m X n.
Then the definition (10.1-52) becomes

IGll2 = [-2-1; /_ °:o trace |G(iw) " G(iw)) dw] ’ (10.1 — 54)

where G(s) is in the set L3"*" of all matrix valued functions of dimension m x n
for which (10.1-54) is finite. Equation (10.1-54) cannot be interpreted easily in
a deterministic setting. We will discuss the implications later in our derivation
of the Linear Quadratic Optimal Control problem.

Let us look next at the linear system

y(s) = G(s)u(s) (10.1 — 55)

and pose the following problem: given a bound on ||ul|s what is the least upper
bound on ||y|ls? In other words, we are looking for the operator norm || - ||

induced by || - ||2-
Theorem 10.1-4. Let u € L} and G € LY*". Then y € LY and the norm of the
operator G induced by || - ||2 s

IG]l2 = sup&(G(iw)) 2 [|Glleo (10.1 — 56)
where |G(iw)||c 15 the co-norm of the function G in the frequency domain.

Proof. We will sketch the proof for the SISO case (y = gu) and leave the rest as
an exercise.

llyll3 = |lg(iw)u(iw)||? = _21_7r _0; g(iw)¥ g(iw)u(iw) T u(iw)dw

1 joo
3 2 4 A
< sup lg(iw)] - /_oo u(iw)” u(iw)dw
Thus

9113 < Ngllollul
This proves that ||g||e is an upper bound on the induced norm. To prove that it
is in fact the least upper bound and thus equal to the induced norm we have to
show that the bound can be reached for a specific u. The specific u is a “sinusoid”

modified to be square integrable and occurring at the frequency where |g(iw)| is
maximum. o
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To appreciate the difference between the 2-norm of an operator and the op-
erator norm induced by the 2-norm (co-norm) we refer the reader back to our
discussion of the SISO Hjy- and H..-optimal control problems (Chap. 2). We
found that for Hs-optimal control the performance for a specific input signal is
optimized which implies the minimization of the weighted 2-norm of the sensitiv-
ity operator. For H,-optimal control the performance for a set of 2-norm bounded
signals is optimized. This implies minimization of the norm of the sensitivity op-
erator induced by the 2-norm, which we showed to be equal to the co-norm of the
sensitivity function (Thm. 10.1-4).

10.2 Classic Feedback

10.2.1 Definitions

The block diagram of a typical classic feedback loop is shown in Fig. 10.2-1A.
Here C denotes the controller and P the plant transfer function. The transfer
function P, describes the effect of the disturbance d’' on the process output y.
P,, symbolizes the measurement device transfer function. The measured variable
Ym is corrupted by measurement noise n. The controller determines the process
input (manipulated variable) u on the basis of the error e. The objective of the
feedback loop is to keep y close to the reference (setpoint) r.

Commonly we will use the simplified block diagram in Fig. 10.2-1B. Here
d denotes the effect of the disturbance on the output. Exact knowledge of the
output y is assumed (P, = 1,n = 0).

10.2.2 Multivariable Nyquist Criterion

Consider the closed loop system in Fig. 10.2-1B when P is square (dim u =
dim y). Let the open loop transfer matrix P(s)C(s) be described in state space
by

& = Aoz + Bo(—e) (10.2-1)
y = Cox + D,(—e) (10.2 - 2)

where
e=y~—r (10.2 - 3)

Combining (10.2-1) — (10.2-3) we obtain

|
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dl
Pg
d
P y
n
A
d
r —»o<a C = P y
B

Figure 10.2-1. General (A) and simplified (B) block diagram of feedback control system.

i
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&= A.x + B.r (10.2 - 4)
y=C.x+ D, (10.2 - 5)
where
A.= A, — Bo(I+D,)™'C, (10.2 — 6a)
B, = B,(I+ D,)™ (10.2 — 6b)
C.=(I+D,)'C, (10.2 — 6¢)
D.= (I + D,)™'D, (10.2 — 6d)

We define the open-loop characteristic polynomial (OLCP)
| b = det{al — 4,) (10.2 - 7)
and the closed-loop characteristic polynomial (CLCP)

dor = det(sI — Ac) (10.2 - 8)

Stability is determined by the zeros of the CLCP. We wish to express the CLCP
in terms of P(s)C(s). We define the return difference operator F(s)

F(s) =I+ P(s)C(s) - (10.2 - 9)
and state the following lemma.

Lemma 10.2-1 (Schur’s formulae for partitioned determinants). Let the
square matriz G be partitioned as

Gn Gm)
G= (
G G

Then the determinant can be expressed as

detG = detGy; - det(Gag -:—GﬂGﬁlGlz) if detGy #0 (10.2 - 10)

or

detG = detGyy - det(G) — G19G3y Gar) if  detGa # 0 (10.2 ~ 11)
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The determinant of F'(s) can be expressed as

detF(s) = det(I + Co(sI — A,) !B, + D)
or by using (10.2-10)

sl — A, B,

detF(s) = det ( _c, I+D,

) =+ det(s] — A,)

— — 2
=det<I, B,(I+D,) )-det(SI A, B,

0 £ _c, I+Do) + det(sI — A,)

because the first term is unity. Combining the first two matrices we find

sI — Ay+ B,(I+D,)"'C, 0

detF'(s) = det ( _c, 14D,

) + det(sI — A,)

or

_ det(sI — A, + B(I+ D,)"'C,)

= - det D,
detF(s) det(s] — Ay) et(I + D,)
and because lim,_,o, F(s) =1+ D,
detF(s) = oL det F(co) (102 — 12)
dor

and finally

_ detF(s)
oL = ———detF(oo)¢OL

If the open-loop system is stable then all RHP zeros of ¢¢; have to be RHP
zeros of detF(s) = det(l + P(s)C(s)) and we can determine stability directly
from detF(s) = 0. If the open-loop system is unstable we can generally not do
so, because by forming the determinant unstable poles and zeros might cancel as
discussed in Sec. 10.1.3. Multiplication by ¢o; brings back any unstable zeros
which are cancelled when detF'(s) is computed. Just as in the SISO case we can
apply the principle of the argument to (10.2-12) and derive the multivariable
Nyquist Stability Criterion.

(10.2 — 13)

Theorem 10.2-1 (Nyquist Stability Criterion). Let the map of the Nyquist
D contour under detF(s) = det(I 4+ P(s)C(s)) encircle the origin np times in the
clockwise direction. Let the number of open-loop unstable poles of PC be npc.
Then the closed-loop system is stable if and only if
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np = =npc

Recall that for SISO systems we generally count the encirclements of (-1,0) by
p(s)e(s). This number is equal to the number of encirclements of the origin (0,0)

by 14 p(s)c(s).

10.2.3 Internal Stability

The concept of internal stability introduced in Sec. 2.3. applies to MIMO systems
as well. For internal stability all elements in the 2 x 2 block transfer matrix in
(10.2-14) have to be stable

(y) _ (PC’(I+PC)‘1 (I+PC)'P )(r) (10.2 — 14)

u/ \ CI+PC)"! -C{I+PC)'P)\u
The Nyquist criterion developed in the last section is another test for internal
stability. We will use both tests. Depending on the application one or the other
allows us to make conclusions more easily.

10.2.4 Small Gain Theorem

Consider again the closed-loop system in Fig. 10.2-1B when P is square (dim u =
dim y) and the controller has been included in P so that we can set C = I.

Theorem 10.2-2 (Small Gain Theorem). Assume that P(s) is stable. Let
p(P(iw)) be the spectral radius of P(iw). Then the closed-loop system is stable
if p(P(iw)) < 1, Yw or if ||P(iw)|| < 1, Yw where || - || denotes any compatible
matriz norm.

Proof. (By contradiction) Assume p(P) < 1, Vw and that the closed-loop system
is unstable. We will employ the Nyquist stability criterion (Thm. 10.2-1). Insta-
bility implies that the image of det(I 4+ P) encircles the origin as s traverses the
Nyquist D contour. Because the image is closed there exists an € € [0,1] and a
frequency w' such that

det(I + eP(iw')) = 0
(i.e., that the image goes through the origin).

& TN + eP(iw') = 0

& 14+ e\(P(iw')) =0 for some i
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7 1 :
& N(P(iw')) = == for some i
€
= |N(P(iw'))] > 1 for some i
which is a contradiction because we assumed p(P) <1, Vw. . a

Theorem 10.2-2 states that for an open-loop stable system, a sufficient con-
dition for stability is to keep the “loop gain” p(P) or ||P|| less than unity. It
is the multivariable extension of the Bode stability criterion for SISO systems
which requires |p(iw)| < 1, Vw for closed-loop stability. The Small Gain Theo-
rem provides only a sufficient condition for stability and is therefore potentially
conservative. It is useful because it does not require detailed information about
the system.

10.3 Formulation of Control Problem

As discussed in Ch. 2, the following essentials have to be specified for any de-
sign procedure to yield a control algorithm that works satisfactorily in a real
environment.

e process model
e model uncertainty bounds
e type of inputs (i.e., setpoints and disturbances)

e performance objectives

For a MIMO system it is much more difficult to make meaningful specifications
than for a SISO system. For SISO systems any design procedure addresses the
trade-off between performance and robustness and/or control action. For MIMO
systems there is also a performance trade-off among the different outputs as well
as a control action trade-off among the different inputs. These trade-offs are
affected in a complex manner by the specifications.

10.3.1 Process Model

Because all our analysis procedures (e.g., for robust stability and performance)
are frequency domain oriented, any linear time invariant model can be handled
with equal ease. Models of high order and/or with time delays do not cause
any problems. On the other hand, in particular for continuous MIMO systems,
controller synthesis procedures become extremely complex when time delays are
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Figure 10.5-1. Additive (A), multiplicative input (B), and multiplicative output (C) uncertainty.

accounted for exactly. This added complexity is not justified by the final results:
in practice the performance obtained with controllers based on Padé approxima-
tions is generally indistinguishable from that obtained with controllers based on
irrational models. Thus while it is very convenient to describe many chemical
processes with models involving time delays, it is unnecessarily cumbersome to
account for these time delays explicitly during controller synthesis.

10.3.2 Model Uncertainty Description

Just as in the SISO case we will describe model uncertainty in the following
manner: We will assume that the dynamic behavior of a plant is described not
by a single linear time invariant model but by a family II of linear time invariant
models. While there are many different ways of parametrizing this family we
concluded for SISO systems that a “Nyquist band” consisting of a union of disks of
specified radius at each frequency was entirely adecuate for most process control
applications. This magnitude bounded additive (or multiplicative) uncertainty
together with the Ho,-performance specification also allowed us to derive a very
simple and exact condition for robust performance.

We can postulate similar uncertainty structures for MIMO systems (Fig. 10.3-
1). For MIMO systems we have to distinguish multiplicative uncertainty at the
plant input (L;) and the plant output (Lp). The uncertainties L; and. Lo can
be loosely interpreted as actuator and sensor uncertainty respectively. The plant
P is related to the model P and the uncertainty in the following manner.
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P=P4+L, L,=P-P (10.3-1)
P=P(I+L;) L;y=PYP-P) (10.3 — 2)
P=({I+Lo)P Lo=(P-P)P! (103 ~8)

We can state a frequency dependent magnitude bound on these uncertainties in
terms of a matrix norm. In principle, any matrix norm defined in Sec. 10.1.4.
could be used. As we will see later, however, we can derive necessary and sufficient
conditions for robust stability and performance only if we use the spectral norm.
Thus we can state the following uncertainty bounds:

(L) < La(w) (10.3 — 4)
3(L1) < fy(w) (10.3 - 5)
5(Lo) < lo(w) (10.3 - 6)

Note that contrary to the SISO case the three bounds are not equivalent and
going from one uncertainty description to another generally increases the size of
the family II. For example, let us assume that we want to derive {p from ¢;.

From (10.3-2) and (10.3-3) we find

Lo = PL;P™! (10.3-7)

5(Lo) = 5(PLP™Y) < 6(P)a(P~Y)a(L;) < k(P);
where the first inequality follows from (10.1-27) and

x(P) 2 5(P)a(P™") = il (10.3 - 8)
a(P)
is the condition number of P. Thus
lo < K(P){; (10.3 - 9)

Note that if one wanted to derive ¢; from lp, one could write (10.3-7) as

Ly=P'L,P (10.3 - 10)

and obtain the following upper bound for /; by the same procedure:
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)

Figure 10.3-2. Input weight W; transforming normalized input v’ to physical input v.

7 < k(P)f (10.3 - 11)

If the plant is unitary then m(f’) =1 and o = ¢;. If the plant is ill-conditioned
— i.e., k(P) is large — then the bounds formed by the RHS of (10.3-9) or
(10.3-11) can be very conservative. Qualitatively, as we pass the uncertainty
from the input through the ill-conditioned plant to the output it is strongly
stretched in certain directions and the same happens when going from output to
input uncertainty. Because it is not “round” anymore, the singular value bound
describes it only in a conservative manner. '

This example makes clear that for MIMO systems it is important to model
uncertainty where it occurs and not necessarily where it is convenient mathe-
matically. From this point of view all three types of uncertainty descriptions
above are quite conservative because they “spread” the uncertainty (that might
be caused by a single parameter or a single transfer matrix element) over the
whole transfer matrix before defining a magnitude bound. In Chap. 11 we will
introduce less conservative uncertainty descriptions which are closer to physical
reality.

10.3.3 Input Specifications

As in the SISO case we will distinguish specific inputs and input sets. For nota-
tional convenience the inputs will be normalized (Fig. 10.3-2). It will be assumed
that an input v entering the control loop is generated by passing the normalized
input v’ through a transfer matrix block Wj(s), sometimes referred to as an input
weight . The two types of normalized inputs of interest are

Specific input (vector of impulses):

v'(s) = constant (10.3 - 12)
Set of bounded inputs (all inputs with 2-norm bounded by unity):

V= {v' YR = /_0:0 v y'dw < 1} (10.3 - 13)
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From these definitions follow the actual inputs v

Specific input:

v = Wi(s)v' (10.3 — 14)
Set of bounded inputs:

D ].
V= {v W ||E = ELZ(I/Vflv)fI(I’L’fIv)dw £ 1} (10.3 — 15)

In general, for MIMO systems the controller which optimizes performance for
a specific input [(10.3-12) or (10.3-14)], is not unique. The reason is that for
one specific input vector there are many different controller transfer matrices
which give rise to the same one manipulated variable vector and thus to the same
optimal output. As we will show later, we can often find a unique controller by
requiring it to be optimal in some sense for n different input vectors v'.

The set (10.3-15) can be interpreted as follows: If the spectrum of v is
narrow and concentrated near w* (i.e., the input looks almost like Re {z‘z’ei‘”"},
where #' is a constant complex vector), then the power of v is limited by
(Wit (iw*)d")H (W (iw*)?') < 1. We expect W to be large at low frequencies
and small at high frequencies. Treating sets of inputs is attractive because at the
design stage it is rarely possible to predict exactly what type of setpoint changes
and disturbances are going to occur during actual operation. In principle, it is
possible that if the input assumed for the design is not exactly equal to the input
encountered in practice the performance could deteriorate significantly.

10.3.4 Control Objectives

In order for the controller to work well on the real plant the following objectives
have to be met:

o Nominal stability
e Nominal performance
e Robust stability

e Robust performance

Nominal stability was treated in Sec. 10.2. The other objectives are going to be
discussed next.
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10.4 Nominal Performance

10.4.1 Sensitivity and Complementary Sensitivity Function
The most important relationships between the inputs and outputs in Fig. 10.2-1A
(Pij= Py I) are

e=(I+PC)yHd~r); forn=0 (10.4 - 1)

y=PC(I+ PC)!(r-n); ford=0 (10.4 — 2)
We define the sensitivity function
E(s)& (I+PC)™ (10.4 - 3)
the complementary sensitivity function
H(s) & PC(I+ PC)™! (10.4 — 4)
and the “generic” external input

vEd-r (10.4 — 5)

For good performance it is desirable to make the sensitivity function as “small”
as possible. This is only feasible over a finite frequency range because for strictly
proper systems

s_lg_noo PC =0 (10.4 - 6)
and therefore
v
Jim E(s) = lim (I+ POV l=] (10.4 — 7)
Note that
E(s)+ H(s)=1 (104 — 8)

which explains the name complementary sensitivity function. Ideally for perfor-
mance H(s) should be unity but because of (10.4-7) and (10.4-8) this can be
achieved only over a finite frequency range.

The trade-offs between good reference following and disturbance suppression
(E = 0) on one hand and suppression of measurement noise on the other (H = 0)
are apparent from (10.4-8). For SISO systems, in addition to measurement noise,
multiplicative uncertainty imposes a bound on the complementary sensitivity. We
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will see later that for MIMO systems, depending on the type of uncertainty, the
imposed bound usually takes a much more complex form.

10.4.2 Asymptotic Properties of Closed-Loop Response (System
Type)

In analogy to SISO systems, we wish to characterize the asymptotic closed loop
response for disturbances/setpoints of the polynomial type (s7*). For MIMO
systems the situation is potentially more complicated because we could classify
the behavior in each one of the channels separately. We will not do so here but
extend the SISO definitions from Sec. 2.4.3. directly.

Definition 10.4-1. Let G(s) be the n x n open-loop transfer matriz and let m
be the largest integer for which

rank [k{% s’"G(s)] = )

Then the system G(s) is said to be of Type m. (Note that G(s) has at least n X m
poles at the origin.)

Theorem 10.4-1. Let the open-loop system G(s) be of Type m. Then the sensi-
tivity operator E(s) = (I + G(s))™! satisfies
Type m:
}zir%s_kE(s) =0 1<k<m (10.4 - 9)

Assume that the closed loop system is stable. Then as t — oo the closed loop

system perfectly tracks setpoint changes (perfectly rejects disturbances) of the form
m ,aks~* where aj are real constant vectors.

Proof. Follows directly from the Final Value Theorem.

10.4.3 Linear Quadratic (H;-) Optimal Control

In analogy to the SISO case we could minimize the 2-norm of the error vector

lell3 = 5= /2 eiw) e(iw)dw (10.4 - 10)

for a particular input v. For MIMO systems, however, some modifications are
required. First of all, some error components are usually more important than
others. Also, we might be primarily interested in rejecting errors in a certain
frequency range (for example, for low frequencies). This suggests the introduction
of a frequency dependent (output) weight W into the objective function (10.4-10)
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1
lle'll3 = o _Z(W26)H(er) dw (10.4 - 11)

Furthermore, as we explained above, the controller, which solves this (weighted
or unweighted) problem is not unique. Therefore we define an alternate problem:
“Excite the system in separate experiments with n different linearly independent
inputs v;. Find the controller which minimizes the sum of squares of the 2-
norms of the errors generated by the n experiments.” From (10.4-1) we find that
for one experiment the error is e; = Fv;. Let us define Wi = (vi,va,...,0s).
Then the columns of EW; are the errors from the n experiments. Consider now
premultiplication by the output weight W; to generate Wy EWj, the matrix whose
columns are the weighted errors e} from the n experiments. Then the controller
C which minimizes the sum of squares of the weighted error 2-norms is defined
implicitly by

min |W2EW||2 = min % L °; trace [(WLEW)H(WoEWY)|dw  (10.4 — 12)

The Hj-optimal control problem (10.4-12) can be interpreted as the minimization
of the average magnitude or, in mathematical terms, the minimization of the 2-
norm of the sensitivity operator E with input weight Wi and output weight Wa. It
should be compared with the equivalent formula for the SISO case in Sec. 2.4.4.
The weighted sensitivity is illustrated by the block diagram in Fig. 10.4-1: The
n normalized error vectors e are generated by the n normalized input vectors v}.
In v} only the i** component is unity and all the other components are zero.

The definition of the MIMO Hs-objective must appear somewhat artificial.
Though it is reasonable, it is certainty not something a control engineer would
naturally formulate. The main motivation for this objective function is that pow-
erful methods are available to minimize the weighted 2-norm of the sensitivity
operator as defined by (10.4-12). Also (10.4-12) has a nice stochastic inter-
pretation which will not be discussed in this book. Finally, more meaningful
deterministic interpretations of (10.4-12) are available for special cases and are
derived in Chap. 12.

The objective function (10.4-12) can be generalized to include, for example, a
penalty term for excessive variations of the manipulated variables. This is well
known and not discussed here.

The correct choice of weights for a particular practical problem is not trivial.
Just as in the SISO case the weights should be regarded as tuning parameters
which are chosen by the designer to achieve the best compromise between the
conflicting objectives. The weight selection is guided by the expected system
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W, E(s) W,

Figure 10.4-1. Sensitivity operator E with input weight W; and output weight W5.

inputs and the relative importance of the outputs. If step setpoint changes for
the different outputs are of primary importance then W; = s7!I is a reasonable
weight. If regulation is more important then W; = P, should yield good perfor-
mance for a vector d' of impulses. The error weight Wy should reflect the relative
importance of the errors as well as the relevant frequency range. A typical weight
which penalizes low-frequency errors (i.e., offset) heavily would be W, = s7IW,
where Wj is a constant diagonal matrix. Note, however, that there is no need to
include the factor s~! in both Wy and W if simply no offset to step-like inputs is
desired.

10.4.4 H.,~Optimal Control

The inputs v are assumed to belong to a set of norm-bounded functions with a
frequency-dependent weight as discussed in Sec. 10.3.3.

V={v:|Wil|} < 1} (10.4 — 13)

Equivalently we can define the set of normalized inputs v/ = Wi lv

Vi={v: |V} <1} (10.4 — 14)

(We refer to Fig. 10.4-1 for an interpretation of the weights.) This input class is
much more general than what we considered for the Hy-problem where v'(t) was
assumed to consist of impulses.

Each input v € V gives rise to an error e. This error is processed through
the output weight Wy (Fig. 10.4-1) which reflects the relative importance of the —
individual error components and also the frequency range over which the error
is to be made small. The controller is to be designed to minimize the worst
normalized (i.e., weighted) error €’ which can result from any input v € V.

min max le'lle = min may W2 EW ||, (10.4 — 15)

From Thm. 10.1-4 we find for V' defined by (10.4-14)
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I&lélv)’( ”WzEWl'Ul“Q = sup 5'(I/V2EW1(LO))) = ”WQE‘/Vl”oo (104 i 16)

With (10.4-16) the H,-optimal control problem becomes

mci‘n W2 EW |0 = mcip sup (W EW;(iw)) (104 — 17)

Thus, the Hy.-optimal controller minimizes the maximum magnitude or, in math-
ematical terms, minimizes the co-norm of the sensitivity function E with input
weight W, and output weight Ws. According to this frequency domain interpre-
tation the Hy-optimal controller minimizes the average value and the Hy,-optimal
controller the peak value of the weighted sensitivity function.

Let us assume for simplicity that W; and W, are scalar and let the optimum
value of the objective function (10-4-17) be k. Then for the optimal controller
the sensitivity function satisfies:

| Elloc = sup&(E(iw)) < k|W1W,|™! (10.4 — 18)

Inequality (10.4-18) implies that the maximum singular value of the sensitivity
function lies below the bound k|W,Ws|~. Typically this bound is selected by the
designer to be low at low frequencies and to increase with frequency. Often the de-
signer wishes to specify a minimum bandwidth and to limit the magnitude of the
sensitivity operator in order to avoid excessive disturbance amplification. In the
H, formulation this can be done explicitly by specifying W1 W, accordingly. The
H, optimal control objective is to minimize the average weighted sensitivity and
large disturbance amplification is (in principle) possible at certain frequencies.
In both cases (H; and H,,), however, the weights are basically tuning parame-
ters selected to reflect input types, relative importance of outputs and desired
sensitivity function shapes.

The Hy performance requirement is usually written as
[[W2EWq|leo < 1 (10.4 - 19)

where it has been assumed that W; and W3 have been scaled such that a unity
bound on the RHS makes sense. For example, in the case (10.4-18), when the
weights are scalars either W or W, are specified to include k.

Note that for high frequencies 5(PC) is small and therefore
FE)=a([+PC)HY=1 wlarge (10.4 — 20)

Thus tight performance specifications are only meaningful in the low frequency
range where PC is “large.” Then the performance specification (10.4-18) with
k=1 reduces to

a(I+ PC) = g(PC) > |W1Wy| w small (10.4 — 21)
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In analogy to the SISO case (Sec. 2.4) the smallest loop gain measured by g(PC)
has to be shaped to fall above the performance weight |W1W|.

10.5 Summary

The singular values provide a practical framework for extending the concept of
gain to MIMO systems. In particular the gain of the system G depends on the
direction of the input vector u but it is bounded by the smallest and largest
singular value.

L

a(G(iw))|u(iw)] < |Gliw)u(iw)] < 3(G(iw))|u(iw)| (10.1 - 35, 36)

The operator norm of G induced by the 2-norm (|| - ||2) is the oco-norm of the
transfer function matrix G:

Gl = sup 3(G(iw)) £ |G (101 - 56)
If signal magnitude is measured by the 2-norm, then, by definition, a signal
passing through the system G is amplified at most by ||G||c-

The closed-loop characteristic polynomial (¢¢r) can be obtained from the open
loop characteristic polynomial (¢or) by

_ detF(s)
pcr = detF(oo) dor (10.2 - 13)
where F'(s) is the return difference operator
F(s) = I + PC(s) (10.2 - 9)

Closed loop stability can be determined by checking the encirclements of the
origin by the map of the Nyquist D contour under detF(s) (Thm. 10.2-1).

An open-loop stable system is closed-loop stable if the loop gain (p(PC/(iw))
or ||PC(iw)||) is less than unity for all frequencies w (Thm. 10.2-2).

T

For MIMO systems we have to distinguish uncertainty at the process input -

P=P(I+L;), Li=PYP-P), &L <lw) (10.2 — 2,5)

and the process output

P=(I+Lo)P, Lo=(P-P)P", &(Lo)< lo(w) (10.3 - 3,6)
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In general, it is not possible to convert from one uncertainty description to the
other without introducing conservatism.

The controller design techniques aim to make a measure of the sensitivity
operator F

E=(I+PC)™! (10.4 — 3)

small. The Hj-optimal controller minimizes the 2-norm (“average”) of the sensi-
tivity operator with input weight W; and output weight Wy

min |WoEW,2 = min 51}- /_ °:o trace [(WoEW)* (WoEW)|dw  (10.4 - 12)

The Hs-optimal controller minimizes the co-norm (“peak”) of the weighted sen-
sitivity function

min | W2EWi o0 = min sup 5(W, EW: (iw)) (10.4 — 17)

10.6 References

10.1. Most of these concepts are covered, for example, by Kwakernaak & Sivan
(1972).

10.1.2 and 10.1.3. The definitions, theorems, and examples were taken from
Postlethwaite & MacFarlane (1979). Alternate definitions of zeros are available
and are summarized by Holt & Morari (1985a). Numerically it is most reliable
to find the poles by computing the eigenvalues of A and the zeros by solving a
generalized eigenvalue problem (Laub & Moore, 1978).

10.1.4-10.1.6.  This material is covered comprehensively by Desoer &
Vidyasagar (1975) who also prove Thm. 10.1-4. For a limited discussion in
the matrix context the reader is referred to Gantmacher (1959) and Bellman
(1970). A very good discussion on matrix and vector norms can be found in
Stewart (1973), where the term “consistent” instead of “compatible” is used.
The physical interpretation of SVD was adopted from Bruns & Smith (1982).

10.2.2. Lemma 10.2-1 can be found in Gantmacher (1959). The derivation
of the closed-loop characteristic polynomial was adopted from Postlethwaite &
MacFarlane (1979).

10.2.4. Desoer & Vidyasagar (1975) present the Small Gain Theorem in a
general context.
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10.3.2. The different types of uncertainty descriptions were used by Doyle &
Stein (1981).

10.4.2. More general definitions of System Type were proposed by Sandell &
Athans (1973) and Wolfe & Meditch (1977).
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Chapter 11

ROBUST STABILITY AND
PERFORMANCE

Many approaches can be taken to describe the uncertainty associated with a
MIMO model for a physical system. It must be emphasized that however attrac-
tive an uncertainty description may seem from a practical point of view it is only
useful if it permits the derivation of “tight” conditions for robust stability and
robust performance. Two types of descriptions will be discussed in this chapter:
“unstructured” and “structured” uncertainty. Both lead to “tight” (necessary
and sufficient) robustness conditions. The necessity is only meaningful, however,
if the assumed uncertainty is an accurate description of the true uncertainty. Oth-
erwise the mathematically tight robustness conditions can be very conservative
from a practical point of view (see the discussion of Thm. 2.5-1).

Unstructured Uncertainty. The uncertainty is expressed in terms of a specific
single perturbation of the type introduced in Sec. 10.3.2. Similar to the SISO
~ case, the conditions for robust stability can then be expressed as bounds on
transfer matrices which are directly related to performance [e.g., 3(H) or 5(E)].
Though the bounds derived using unstructured uncertainty are necessary and
sufficient, they are generally conservative from a practical point of view since the
actual uncertainty can rarely be lumped into a single norm-bounded perturbation
without including many more possible plants than actually needed.

Structured Uncertainty. The individual sources of uncertainty are identified
and represented directly — there is no need to lump them together. This generally
leads to an uncertainty description with multiple perturbations (A;’s). By assum-
ing norm bounds on these uncertainties (e.g., 5(A;) < 1), it is possible to derive
necessary and sufficient and, from a practical point of view, non-conservative con-
ditions for robustness using the structured singular value p. One disadvantage of
this procedure is that the resulting conditions are not in terms of a simple bound
on a(H ) or (E), but involve (M) where M may be a complicated function of
E and H.

To alleviate this problem, we will outline a general technique for deriving
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sufficient robustness conditions which can be expressed in terms of bounds on any
arbitrary transfer matrix of interest. Though these conditions are mathematically
conservative, they are appealing from an engineering point of view because they
allow the designer to see how particular forms of uncertainty restrict, for example,
the sensitivity operator.

11.1 Robust Stability for Unstructured Uncertainty

In this section, the uncertainty which may occur in different parts of the system is
lumped into one single perturbation L. We refer to this uncertainty as “unstruc-
tured.” More precisely, “unstructured” uncertainty means that several sources of
uncertainty are described with a single perturbation which is a full matrix with
the same dimensions as the plant P.

11.1.1 Uncertainty Description

Let P € II be any member of the set of possible plants II, and let P € II denote
the nominal model of the plant. To describe unstructured uncertainty the follow-
ing four single perturbations are commonly used: additive (L,4), multiplicative
output (Lg), multiplicative input (L;), and inverse multiplicative output (Lg)
perturbations (Fig. 11.1-1). Some of these were introduced in Sec. 10.3.2.

P=P+Ly or Ly=P-P (11.1-1)
P=(I+Lo)P or Lop=(P-P)P! (11.1-2)
P=P(I+L;) or Ly=PYP-P) (11.1 - 3)

P=(I-Lg)'P or Lg=(P-P)P! (11.1 — 4)

The conditions for robust stability are different depending on which single per-
turbation is chosen to describe the uncertainty.

In each of the cases above the magnitude of the perturbation L may be mea-
sured in terms of a bound on &(L)

(L) < l(w) Vw (11.1 - 5)

where

Hw) = max (L)
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Figure 11.1-1. Four common uncertainty descriptions involving single perturbations: multiplicative
input uncertainty (Ly); additive uncertainty (L.4); multiplicative output uncertainty (Lo); inverse
multiplicative output uncertainty (Lg).
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The bound £(w) can also be interpreted as a scalar weight on a normalized
perturbation A(s)

L(s) = I(s)A(s), G(A(w)) <1 VYw (11.1 - 6)

Generally the magnitude bound #(w) will not constitute a tight description of the
“real” uncertainty. This means that the set of plants satisfying (11.1-6) will be
larger than the original set II.

We will also assume that the set of uncertain plants is “connected.” This
implies that all plants in the set are obtained by continuously deforming the
model in the frequency domain — just like the Nyquist bands were generated for
SISO systems in Sec. 2.2.2.

11.1.2 General Robust Stability Theorem

When L is of the form (11.1-6) each one of the block diagrams in Fig. 11.1-1
can be put into the form shown in Fig. 11.1-2 where the perturbation A satisfies
d(A) < 1. (We will demonstrate this in detail in Secs. 11.1.3 through 11.1.5.)
If the nominal system is stable then A is stable and A is a perturbation which
can destabilize the system. The following theorem establishes conditions on M
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A

M

Figure 11.1-2. General M — A structure for robustness analysis.
so that it cannot be destabilized by A.

Theorem 11.1-1. Assume that M is stable and that the perturbation A is of
such a kind that the perturbed closed-loop system is stable if and only if the map
of the Nyquist D contour under det(I — MA) does not encircle the origin. Then
the closed-loop system in Fig. 11.1-2 is stable for all perturbations A (5(A) <1)
if and only if one of the following three equivalent conditions is satisfied:

det(I — MA(iw)) #0  Yw,YA 3 &5(A) < 1 (41 - T
s p(MA(Gw)) <1  VYw,¥AD35(A)<1 (11.1—8)
& o(M(iw)) <1 Yw (11.1 — 9a)

& |[M|lo <1 (11.1 — 9b)

Proof. Assume there exists a perturbation A’ such that 5(A’) < 1 and the

image of det(I — M A'(s)) encircles the origin as s traverses the Nyquist contour.
Because the Nyquist contour and its map are closed, there exists an € € [0, 1] and
an ' such that det(l — MeA'(iw')) = 0. Since d(eA") = ea(A") < 1, €A’ is just
another perturbation from the set. Thus the closed-loop system is stable for all
perturbations in the set if and only if (11.1-7) is satisfied.

Assume now there exists a perturbation A’ and a frequency w' such that
p(MA'(iw')) < 1 but that

det(I — MA'(iw')) =0

& I — MA(iw)) = 0
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& 1- XN(MA'(iw')) =0 for some i

= p(MA'(iw")) > 1
which is a contradiction. Therefore (11.1-8) is sufficient for robust stability.
Because of (10.1-33), (11.1-9) is also sufficient.

To prove necessity of (11.1-8) assume there is a A’ for which §(A") < 1 and
p(MA') = 1. Then |\(MA')| = 1 for some i. A’ can always be chosen such that
Mi(MA') = +1 and therefore det(I — MA') = 0. To prove necessity of (11.1-9)
let (M) = 1. Define D = diag{1,0,...,0} and A’ = VDU¥, where U and V are
the matrices of the left and right singular vectors of M(M = ULVH). Clearly
5(A") = 1 and det(I — MA') = det(I — USVEVDUH) = det(I — USDU¥) =
det(I —XD) =0. o

Theorem 11.1-1 states that if 5(M) < 1, there is no perturbation A (6(A) < 1)
which makes det(I — MA(s)) encircle the origin as s traverses the Nyquist D
contour. Note that we assumed that the absence of encirclements is necessary and
sufficient for robust stability. This is the case, for example, when all perturbations
A\ are stable or when all members P of the set IT of possible plants have the same
number of RHP poles. We will generally assume one or the other. Using more
complicated arguments it can be shown that the number of RHP poles may
change as long as they appear and disappear by crossing the imaginary axis and
not by moving away from or toward RHP zeros. This is also what we meant by a
“connected” set of uncertain plants in Sec. 11.1.1. The connectedness condition
is very difficult to check however.

In principle we could use a different norm to bound the uncertainty A. Assume
IA]l € 1 where || - || is any compatible matrix norm. If A is stable, then it
follows directly from the Small Gain Theorem (Thm. 10.2-2) that the closed-loop
system in Fig. 11.1-2 is stable for all perturbations A (J|A|| £ 1) if ||M]| < 1.
The Small Gain Theorem is only sufficient, however, and therefore potentially
conservative. Thus even when ||[M| = 1, there is generally no A (||A]] £ 1)
which leads to instability. Our objective is to malke all tests for robust stability
and performance “tight” — i.e., necessary and sufficient. Therefore magnitude
bounds on the uncertainty will always be given in terms of the spectral norm.

Next we will use Thm. 11.1-1 to derive conditions for robust stability for
the different uncertainty descriptions (11.1-2)-(11.1-4). The derivation for the
additive uncertainty is left as an exercise.

11.1.3 Multiplicative Output Uncertainty
Let
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P=(I+Lo)PorLo=(P-P)P! (11.1 - 2)
By comparing Fig. 11.1-1 and 11.1-2 we find

M = -PC(I+ PC) % (11.1 - 10)

Corollary 11.1-1. Under the assumption of Thm. 11.1-1 the closed-loop system
is stable for all perturbations Lo (5(Lo) < £o) if and only if

F(PCI+PC)yNYep=6(H)lp<1, Yw & |Hlllo<1 (11.1-11)
This result is a direct extension of the SISO result expressed through Thm.
2.5-1.

The robust stability condition (11.1-11) can always be satisfied for open loop
stable systems since H = 0 (no feedback) is always possible. However, good
disturbance rejection and good command following require H £ I (i.e., 5(H) =
1). Condition (11.1-11) says that the system has to be “detuned” (5(H) < 1) at
frequencies where £p(w) > 1.

Note that for high frequencies PC is “small”
5(PC(I+ PC)™) =g (I +(PC)™!) = 5(PC)
and therefore (11.1-11) becomes

POy < &t w large

The design implication is that the controller gain for high frequencies is limited
by uncertainty. In analogy to the SISO case (Sec. 2. 5) the loop gain &(PC) has
to be “shaped” to fall below the uncertamty bound Z5'.

11.1.4 Multiplicative Input Uncertainty
Let

P=P(I+L)or Ly =P (P-P) (111 =48
By comparing Figs. 11.1-1 and 11.1-2 we find

M= —(I+CP)"'CPl; (11.1 ~12)
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Corollary 11.1-2. Under the assumption of Thm. 11.1-1 the closed loop system
is stable for all perturbations Ly (6(Ly) < £1) if and only if

GHN <1, Yw & |Hilo<1 (11.1 - 13)

where

H; =(I+CP)'cP (11.1—14)

H; is the nominal closed-loop transfer function as seen from the input of the
plant. It is desirable to have this transfer function close to I in order to reject
disturbances affecting the inputs to the plant. However, since performance is
usually measured at the output of the plant it may be of interest to use (11.1-13)
in order to derive a bound in terms of H. To derive this bound P is assumed to
be square and the inequality

5(H;) = 5(P'HP) < 5(P ™Yo (H)o(P) = x(P)a(H)
is used; the bound for robust stability is:

H(H)l(w) < R(lp) Voo (11.1 - 15)

Condition (11.1~15) has been used to introduce the condition number x(P) as a
stability sensitivity measure with respect to input uncertainty, but this is mis-
leading. The condition number enters the stability condition (11.1-15) mainly as
the result of the conservative step introduced by going from an input (11.1-13)
to an output uncertainty description (11.1-15). For x(P) large, (11.1-15) may be
arbitrarily conservative even though the uncertainty is tightly described in terms
of a norm-bounded input uncertainty such that (11.1-13) is both necessary and
sufficient.

Note that for high frequencies CP is “small”

(C(I 4+ PC)™'P) = ¢ V(I + (CP)™!) = 5(CP)
and therefore (11.1-13) becomes

FCP) < 51 w large

The design implication is that the controller gain for high frequencies is limited
by uncertainty. The loop gain 6(C'P), which is generally not equal to 5(PC) (see
Sec. 11.1.3), has to be “shaped” to fall below the uncertainty bound 7!.
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11.1.5 Inverse Multiplicative Output Uncertainty
Let

P=(I-Lg)*Por Lg= (P~ P)P! (11.1-4)
By comparing Figs. 11.1-1 and 11.1-2 we find

M = (I+ PC) 'y (11.1 — 16)

Corollary 11.1-3. Under the assumption of Thm. 11.1-1 the closed loop system
is stable for all perturbations Lg (6(Lg) < €g) if and only if

F(I+PC) Vig=6E)lg<1, Yo & |Elgleo<1 (11.1=17)

For minimum phase systems the nominal sensitivity function E may be arbi-
trarily small (“perfect control”) and (11.1-17) can always be satisfied. Therefore,
condition (11.1-17) seems to imply that for minimum phase systems arbitrarily
good nominal performance (E small) is possible regardless of how large the un-
certainty is. This is not quite true. The pitfall is that any real system has to be
strictly proper, and E = I as well as E = I must be required as w — co. Conse-
quently, to satisfy (11.1-17) it is necessary that 5(Lg) = 5((P — P)P~') < 1 as
w — oo for all possible P. This condition is usually violated in practice, because
the relative order of the actual plant is higher than that of the model.

Corollaries 11.1-1 and 11.1-3 prescribe two fundamentally different ways of
handling uncertainty: to guarantee robust stability Cor. 11.1-1 requires the sys-
tem to be detuned (low gain), while Cor. 11.1-3 requires that the control be
tightened (high gain). In practice, it is desirable to combine the two approaches:
By tightening the control at low frequencies, better performance is obtained.
Eventually, at higher frequencies, the system has to be detuned to guarantee ro-
bust stability. In fact, it can be shown that it is possible to combine Cor. 11.1-1
and 11.1-3 over different frequency ranges.

11.1.6 Example: Input Uncertainty for Distillation Column

Consider the distillation column described in the Appendix where the overhead
composition is to be controlled at yp = 0.99 and the bottom composition at x5 =
0.01 using the distillate D and boilup V' as manipulated inputs. By linearizing
the nonlinear model at steady state and by assuming that the dynamics may
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be approximated by a first-order system with time constant T = 75 min, the
following linear model is derived

p 1 (——-0.878 0.014 ) (11.1 - 18)

et 1 A ~1082 0014

A simple decentralized control system with two PI controllers is chosen

C(s) =

1+7’s(——0.15 0 ) (111 - 19)
8

0 -7.5

This controller can be shown to give acceptable nominal performance. Assume
there is relative uncertainty of magnitude w;(s) on each manipulated variable:

55+ 1
wi(s) = 0'26._58;?_1 (11.1 — 20)

This implies a relative uncertainty of up to 20% in the low frequency range which
increases at high frequencies, reaching a value of 1 at w & 1 min~". This increase
with frequency allows for a time delay of about one minute, and may represent
the effect of the low dynamics which were neglected when developing the model.
This relative uncertainty can be written in terms of two scalar multiplicative
perturbations Ap and Ay.

B = (1 + wl(s)AD)Dc, lADI o | Yw (11.1 - 21(1)

V =1+ wi(s)Ay)V,, |Av] <1 Yw (11.1 — 21b)

Here D and V are the actual inputs, while D. and V, are the desired values
of the flow rates as computed by the controller. Equations (11.1-21) can be
approximated by an “unstructured” single perturbation L; = w;Aj, where Ay is
a “full” 2 x 2 matrix

(3) =(I+w1(s)A1)(‘D/:), HAD <1  Vw (111 - 22)

with £7(w) = |wr(iw)|. Inequality (11.1~13) indicates that robust stability is guar-
anteed if (H;) < 1/0;(w) Vw. From Fig. 11.1-3 it is seen that this condition
is violated over a wide frequency range. By other means it can be shown, how-
ever, that the system is robustly stable. The reason for the conservativeness of
condition (11.1-13) in this instance is that the use of unstructured uncertainty
(11.1-22) includes plants not included in the “true” uncertainty description (11.1-
21). These problems may be avoided by using the structured singular value /1‘(.351 7)
as discussed in Sec. 11.2.
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-2
e 3 [P 'y 'y
10 - 10 10 1. 10 10

Figure 11.1-3. Robust stability for diagonal input uncertainty is guaranteed since p(Hjp) <
1/|wi], Yw. The use of unstructured uncertainty and &(Hj) is conservative. (Reprinted with
permission from Chem. Eng. Sci., 42, 1769 (1987), Pergamon Press, plc.)

P Vi, [ A (%

o

Figure 11.1-4. System with weighted additive uncertainty. Rearranging this system to fit Fig.
11.1-2 gives M = W,C(I + PC)~'W,.

leel4

11.1.7 Integral Control and Robust Stability

Because of the importance of integral action in the context of process control
we will derive specifically conditions under which controllers with integral action
can be designed in the presence of uncertainty. We will keep the uncertainty
description as general as possible. We define II4 as the set of plants which is
generated by a single weighted additive norm perturbation (Fig. 11.1-4)

My={P:P=P+Ls}, Li=WoAW;, 5(A)<1 Vw  (11.1-23)

IT4 includes additive uncertainty (11 1-1) (W = Ly, Wy = I), multiplicative
output uncertainty (11.1-2) (W) = Plp, W, = I) and multiplicative input un-
certainty (11.1-3) (Wy = I, Wy = P{;) as speudl cases.
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Robust stability for a system under “perfect control” (ff = I, VYw) will be
studied first. Though “perfect control” cannot be realized in practice it is a
useful conceptual tool.

Theorem 11.1-2. (Perfect Control). Let the set of plants be given by Il14.
Under the assumption of Thm. 11.1-1 robust stability may be achieved for the
system under “perfect control” (H = I) if and only if

WP W) <1 Vw (11.1 — 24)

Proof. Rearranging the block diagram in Fig. 11.1-4 into the form in Fig. 11.1-2
yields

M = —-WiC(I + PC)"'Wy = —-W, P~ HW, (11.1 - 25)
0
(11.1-24) follows from (11.1-9) for H = I.
Corollary 11.1-4. For specific choices of weighting matrices (11.1-24) is equiv-
alent to the following:
Additive Uncertainty:

ly < a(P) (11.1 — 26)
Multiplicative Uncertainty:
lo<lori;<1 (11.1-27)
Arbitrary Weights:
detP#0 Yw, VPelly (11.1 — 28)

Proof. (11.1-26) and (11.1-27) follow from (11.1-24) by substitution of the ap-
propriate weights. (11.1-28) is a direct consequence of (11.1-7), (11.1-9) and
(11.1-24). O

This corollary implies that robust “perfect control” is possible if and only if
none of the plants P in the set IT4 has zeros on the imaginary axis (i.e., detP # 0).
The necessity of this condition is obvious since perfect control (E = E = 0) is im-
possible for plants with RHP zeros. Also, because of the particular norm bounded
uncertainty description, RHP zeros can only arise from LHP zeros crossing the

.
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imaginary axis. Therefore, checking for zeros on the imaginary axis is sufficient
to guarantee that there are no plants with RHP zeros in the set Il4.

A general condition for robust stability for the set IT4 follows from (11.1-9)
with M defined by (11.1-25)

g(W P~ HW,) < 1 (11.1 - 29)

For stable plants (11.1-29) can be satisfied simply by setting H = 0 (open loop).
Integral action implies “perfect control” at steady state and imposes the perfor-
mance requirement H(0) = I. If (11.1-29) is satisfied for w = 0 with H(0) = I
then a controller with sufficient roll-off (H small enough) can always be found
such that the system is robustly stable. Thus we have the following theorem.

Theorem 11.1-3 (Integral Control). Assume all plants P € I14 are stable.
Then robust stability may be achieved for a system under integral control if and
only if

FWiP'Wy) <1  forw=0 (11.1 — 30)
or for specific choices of weighting matrices

Additive Uncertainty:

74(0) < a(P(0)) (11.1 - 31)
Multiplicative Uncertainty:
lo(0) < Lor £;(0) < 1 (11.1 - 32)
Arbitrary Weights:
detP(0)#0, VPelly (11.1 — 33)
Proof. Follows directly from Thm. 11.1-2 and Cor. 11.1-4 for w = 0. ]

Theorem 11.1-3 is the MIMO extension of Cor. 4.3-2. For MIMO systems the
requirement that the multiplicative error must not exceed 100% is equivalent to
the requirement that the gain matrix must remain nonsingular.



11.2. ROBUST STABILITY FOR STRUCTURED UNCERTAINTY 247

11.2 Robust Stability for Structured Uncertainty

11.2.1 Uncertainty Description

In this section, we will describe the uncertainty in a “structured” manner by iden-
tifying the sources and locations of uncertainty in the system. Usually, this leads
to an uncertainty description with multiple perturbations (4;). These perturba-
tions may correspond to uncertainty in the model parameters, uncertainty with
respect to the manipulated variables (input or actuator uncertainty) and the out-
puts (measurement uncertainty), etc. By using such a mechanistic approach, we
can norm-bound each perturbation (e.g., 5(4;) < 1) without introducing much
conservativeness and get a “tight” description of the uncertainty set.

However, we should not necessarily describe the uncertainty as rigorously
as possible. Rather, we should take an “engineering approach” and describe
the uncertainty only as rigorously as necessary. This means, for example, that
some sources of uncertainty (occurring at different places in the system) should
be lumped into an “unstructured” multiplicative perturbation, if this does not
add much conservativeness. This leads to a practical uncertainty description:
some sources of uncertainty are described in a “structured” manner (e.g., para-
metric uncertainty), while the rest (usually uncertain high-frequency dynamics)
is lumped into a single “unstructured” perturbation. This will be illustrated
through an example later.

Consider the uncertainty as perturbations on the nominal system. Each per-
turbation A; is assumed to be a norm-bounded transfer matrix

F(A) <1  Vw (11.2 - 1)

Weighting matrices are used to normalize the uncertainty such that the bound is
unity at all frequencies; that is, the actual perturbation L; is

L,' = I’VzA,’WI (112 e 2)

If A; represents a real parameter variation we may restrict A; to be real, but in
general A; may be any rational transfer matrix satisfying (11.2-1). Just like in
Sec. 11.1 the choice of the singular value & as the norm for bounding A; is not
arbitrary, but is needed to obtain the necessity in the theorems which follow.

The perturbations (uncertainties) which may occur at different places in the
feedback system can be collected and placed into one large block diagonal per-
turbation matrix

A wdiag {000 B} (11.2-3)
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which satisfies

F(A) <1 Vw (11.2 — 4)

The blocks A; in (11.2-3) can have any size and may also be repeated. For
example, repetition can be needed in order to handle correlations between the
uncertainties in different elements. The nominal closed loop system with no
uncertainty (A = 0) is assumed to be stable. The perturbations (uncertainty) give
rise to stability problems because of the additional feedback paths created by the
uncertainty. This is shown explicitly by writing the uncertainty as perturbations
on the nominal system in the form shown in Fig. 11.1-2. M is the nominal
closed-loop system “as seen from” the various uncertainties, and is stable since
the nominal system is assumed stable. More precisely, M is the interconnection
matriz, the nominal transfer function from the output of the perturbations A; to
their inputs. Constructing M is conceptually straightforward, but may be tedious
for specific problems. Many practical problems can be cast into the M — A
form shown in Fig. 11.1-2 as we will demonstrate through examples. Indeed
such a transformation is always possible when the plant is a linear fractional
transformation of the A;’s.

In analogy to the well known scalar case P is a linear fractional transformation
of A when it is of the form

P = Nij + NipA(I — NogA) ™' Ny

= Ny + Nio(I — ANy) " ANy,

where the V;;’s are matrices of appropriate dimension which do not involve A
and A is block diagonal.

11.2.2 Structured Singular Value

Let X, be the set of all complex perturbations with a specific block diagonal
structure and spectral norm less than v:

X, = {A = diag{A1, A, ... Ap}|a(A) < v} (11.2 - 5)

By following the steps in the proof of Thm. 11.1-1 but with A € X, it can easily
be shown that robust stability is guaranteed if and only if

det(I — MA)#0 VYAE€X, (11.2 — 6)

& p(MA)<1 VAEeX, (i1.2-"7)
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or

<v<a (M) (11.2 - 8)

Note that (11.2-8) is only a sufficient condition for (11.2-G). When we proved
necessity of the similar condition (11.1-9) we made use of the fact that the per-
turbation set includes all A(5(A) < 1). Here, however, we restrict the set of per-
missible A’s to X,,. In general (11.2-8) can be arbitrarily conservative. Therefore
as an alternative to & let us define the structured singular value which takes into
account the structure of the perturbation A.

Definition 11.2-1. The function p(M), called the Structured Singular Value
(SSV) is defined such that p='(M) is equal to the smallest 5(A) needed to make
(I = MA) singular — i.e.

p~ (M) = min {v|det(I — MA) = 0 for some A € X, } (11.2 - 9)

If no A exists such that det(I — MA) =0, then u(M) = 0.
Condition (11.2-6) and Def. 11.2-1 yield the following theorem for robust
stability.

Theorem 11.2-1. Assume that the nominal system M 1is stable and that the
perturbation A is of such a kind that the perturbed closed-loop system is stable
if and only if the map of the Nyquist D contour under det(I — MA) does not
encircle the origin. Then the closed-loop system in Fig. 11.1-2 is stable for all
perturbations A € X, if and only if

p(M(iw)) < 1 Yw - (11.2-10)

Theorem 11.2-1 may be interpreted as a “generalized small gain theorem”
which also takes into account the structure of A. The SSV is defined to obtain
the tightest possible bound on M such that (11.2-6) is satisfied. It is important
to note that u(M) depends both on the matrix M and on the structure of the per-
turbation A. u(M) is a generalization of the spectral radius p(M) and maximum
singular value 6(M): let the perturbations be of the form

X1 ={A|A =61, ]6] < 1}
Then it is easy to show that u(AM) = p(M). If the perturbations are unstructured
(A is a full matrix) then (M) = 5(M) as we know from Thm. 11.1-1.

The definition of x may be extended by restricting A to a smaller set — e.g.,
real A;’s or several identical A;’s (“repeated A’s”). A detailed discussion of these
issues is beyond the scope of this boolk.
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Definition 11.2-1 is not in itself useful for computing p since the optimization
problem implied by it does not appear to be easily solvable. Fortunately, several
properties of p can be proven which make it a powerful tool for applications.

Properties of p
1. p(aM) = |a|u(M), where « is a scalar.
2. From the discussion above we conclude

p(M) < u(M) < 5(M) (11.2 - 11)

|

3. Let U be the set of all unitary matrices with the same block diagonal structure
as A. If U € Y and A € X, then UA € X and u(MU) = pu(M). Therefore
from (11.2-11)

p(MU)< w(M) VYU €eU (11.2~12)

Indeed it can be shown that

rlrjxéta{p(l\lU) = p(M) (11.2 - 13)
This optimization problem is not convex.

4. Let D be the set of real positive diagonal matrices D = diag {d;I;} where the
size of each block (i.e., the size of I;) is equal to the size of the blocks A;. If
D €D and A € X, then DAD™! € X and u(DMD™') = p(M). Therefore
from (11.2-11)

W(M)<&e(DMD™) VDeD (11.2 - 14)

which suggests to determine an upper bound of u(M) from

g » 2l .
u(M) < géfvo(D‘MD ) (11.2 - 15)

It can be shown that the optimization problem is convex and that equality is
reached in (11.2-15) for three or fewer blocks. Numerical evidence suggests
that the bound (11.2-15) is tight for four or more blocks.

Extensive numerical experimentation has shown that the minimization of
|DM DY F yields very good approximations for the optimal D which mini-
mizes 5(DM D). This is theoretically justified from the property (10.1-20):
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\/LHHAHF <(4) < || Al

where n is the dimension of A. Clearly a significant reduction in |IDMD™Y|F
will result in a significant reduction of (DM D!). Hence the D that mini-

mizes |[DMD™!|| is usually a very good approximation of the D that min-

imizes G(DM D™1).

Minimization of || DM D7![p. Let m be the number of blocks in A. One of the
scalars can be kept constant (d,, = 1) without loss of generality. Obtain the
optimal dy,...,d,,_; as follows: for a specific j (1 < j < m — 1) partition

D = diag {D},d;I;, D¢}

M
M= (M}l
M
Then
DeM (D%t

DMD™ = ( d,-.M;:(D;?)—l1
DM (Dg)~

M M®
M} M]I-"’)
M M

M2 d; M}*(D5)™!

D¢M;2d;! D;M;’S(D;.)—l)
DsM;ed;'  DsM;P(D§)™!

IDMD 7 = |D§ M7 (D)~ |1} + | DEMP(DS) 1% + || M= 1%

HIDFM (D)5 + 1D M52 (D5) 1%

+d; (1M (D)~ |15 + || M (D5) 71 12]

+d;* [||DjaL;

F+ | D5M 3]

& o+ g+ df

where «;, 3;,7; are positive real numbers, independent of d;.

The optimal D is determined iteratively. Start with some initial guesses for
di,...,dm_1, e.8., D= 1T or D equal to the optimal D for the previous w that was

considered and set k = 0.

For iteration k:
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j =14 mod(k,(m — 1))
k:=k+1
dj :=7;/B;
This procedure converges rapidly.

Example 11.2-1. We continue the distillation column example of Sec. 11.1.6.
The input uncertainty is expressed through (11.1-21) or equivalently (11.1-22)
where the perturbation matrix A; is diagonal. The interconnection matrix M =
wy(s)H; and from Thm. 11.2-1 the system is robustly stable if and only if

pw(Hy) < |wi(w)|™ = FHw)  Vw (11.2 — 16)

where p(ﬁ 1) is computed with respect to the diagonal matrix A;. From Fig.
11.1-3 we see that (11.2-16) is satisfied and robust stability is guaranteed with
the controller (11.1-19). a

11.2.3 Simultaneous Multiplicative Input and Output Uncertainty

Consider the system in Fig. 11.2-1 with both multiplicative input and output
uncertainty. The possible plants are given by

P=(I+Lo)P(I+Lp) (11.2 - 17a)
Ly = Wy AfWhy, 5(A1) <1 Yw (11.2 —_ 17b)
Lo = WyoAoWio, d(Ap) <1 Yw (11.2 - 17¢)

The reader should verify that the plant is a linear fractional transformation of
the uncertainty A = diag{Ao, Ar}:

P = Ni1 + NisA(I — NogA) "INy

where
Ny=P
N =(Wyo PWyr)
. Wao P)
N = ( War
0 WyoPW,
Nyy = (0 200 11)
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Figure 11.2-1. System with weighted multiplicative input and output uncertainty.

The perturbation block Aj represents the multiplicative input uncertainty. If
its source is uncertainty in the manipulated variables, then

Ay : diagonal, Wiy = diag{wn}, Wu=1I (11.2 - 18)
where wy; represents the relative uncertainty of each manipulated input.

The block Ap represents the multiplicative output uncertainty. If its source is
uncertainty or neglected deadtimes involved in one or more of the measurements,
then

Ap : diagonal, Wio = diag{wo;}, Wi =1 (11.2 - 19)
where wp; represents the relative uncertainty for each measurement.  These
sources of input and output uncertainty are present in any plant. Ay and A are
restricted to be diagonal matrices, since there is little reason to assume that the
actuators or measurements influence each other. However, some of the unmod-
elled dynamics of the plant P itself, which has cross terms, may be approximated
by lumping them into A; and Ap, thus making either one of them a full matrix.

To examine the constraints on the nominal system imposed by the robust sta-
bility requirement for this uncertainty description, let A = diag {A, Ao} and
rearrange the system in Fig. 11.2-1 into the form in Fig. 11.1-2. The intercon-
nection matrix M becomes:

i [—-WUCP(I +CP)" "Wy Wy C(I + PC)"'Who }

WioP(I+ CP) "Wy  —WioPC(I + PC)~ Wy
_ [WU 0 } [—P:‘lﬁﬁ ~13-jﬁ] [Wy 0 ]
L0 W EP | 0 Wi
and robust stability is guaranteed for all A such that 5(A) < 1 if and only if
w(M) < 1,Vw. u is computed with respect to the structure of A which in turn

(118 = 38
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depends on the structure assumed for A; and Ag. Note that (11.1-11) and (11.1-
13) follow as special cases when the weights are assumed to be scalar, Ay and Ap
are full matrices and either Ay =0 or Ap = 0.

11.2.4 Batch Reactor: Simultaneous Parametric and Unstructured
Uncertainty

Consider a perfectly mixed batch reactor where an exothermic reaction is taking
place. The reaction temperature T is controlled by the temperature T, of the
fluid in the cooling jacket (the fluid in the cooling jacket may be boiling, and T¢
may be adjusted by changing the pressure). A heat balance for the batch reactor
gives

dr

Cp—d-t—

= (-AH,)r - UA(T - T,) (11.2 - 21)
where

T  reactor temperature (K)

T. coolant temperature (I{)

r  reaction rate (function of T') (mol/s)

AH, heat of reaction (negative constant) (J/mol)
C, total heat capacity of fluid in reactor (J/K)
UA overall heat transfer coefficient (J/sK)

Linearizing the reaction rate at the operating point 7°

r =10+ kp(T - T9)
results in a linear transfer function from 7T, to T'

UA/C,

T{e) = r

Te(s) (11.2 - 22)

where

UA - (-AH)k
a= ( : Jer (11.2 — 23)
Kt ‘
Two sources of uncertainty will be considered for the linear model (11.2-22): the
effect of nonlinearity expressed as uncertainty in the pole location a and neglected
high-frequency dynamics.

Pole Uncertainty (Ag). Most of the terms in (11.2-23) are nearly constant, except
kr = Or /0T which is a strong function of temperature. From (11.2-23) we see
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that the reactor may be open-loop stable (a > 0) at low temperatures where kr is
small, and unstable at high temperatures where the reactor is more temperature
sensitive. To describe the effect of temperature on a, let

la —al < rqa

where @ is the nominal pole location and r, the relative “uncertainty” of the real
constant a. If r, > 1 the plant may be stable or unstable. Equivalently, the
possible a’s may be written in terms of a norm-bounded perturbation Ag

a=&(1+TGAE), IAE‘ <1, Agp real (11'.2——24)

This uncertainty may be expressed as an inverse multiplicative perturbation (I +
wpAg)~! on the plant

R 1 wa(s) = T
sta s+a l+we(s)dg ' 1+s/a

(11.2 — 25)

Neglected Dynamics (Ap). Uncertainty in the high frequency dynamics cannot
be modelled in a “structured” manner using parametric uncertainty. It is most
conveniently expressed as multiplicative uncertainty, for example output multi-
plicative uncertainty (I + woAp). Physically, this uncertainty may account for
neglected (and unknown) dynamics for changing the cooling temperature T, (if T,
is manipulated indirectly with pressure), neglected actuator dynamics (the valve
used to control pressure) and neglected dynamics introduced by the heat capacity
of the walls.

The following considerations can assist in arriving at a choice for wq. Naturally
|wg| should be small at low frequencies and increase with frequency. One could
view the neglected dynamics as an unknown delay with upper bound 6. This
would lead to a multiplicative uncertainty of the form (4.6-4) which in turn can
be approximated by wy = 28s(8s + 2)~! (sce Fig. 4.4-2).

A block diagram representation of the uncertainty is depicted in Fig. 11.2-2.
Note that in general both blocks (Ap and Ap) are needed: We cannot lump the
pole uncertainty (Ag) into the output uncertainty (Ap) if the pole is allowed
to cross the imaginary axis. This would result in |wo(jw)| — oo at w = 0.
Similarly we cannot lump the output uncertainty into the pole uncertainty. The
reason is that the inverse multiplicative uncertainty description (Ag) cannot be
used to model neglected or uncertain RHP zeros (this would require an unstable
perturbation Ag). It is therefore not suited for handling neglected high-frequency
dynamics which most certainly include RHP zeros.
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Wy I“ Ag Ag Yo

Figure 11.2-2. Reactor control loop with parametric uncertainty represented as inverse multiplica-
tive output uncertainty Ag and unstructured multiplicative output uncertainty Ao.

Combining the two scalar perturbations into one block perturbation A =
diag {Ag, Ao} and rearranging Fig. 11.2-2 to match Fig. 11.1-2 yields the fol-
lowing interconnection matrix:

M= [“’Ef _wO’Zl (11.2 - 26)
WEeE —won
If, in addition to the real Ag’s, all complex Ag’s with |Ag| < 1 are considered
possible, then robust stability is guaranteed if and only if u(M ) < 1 or using Def.
11.2-1 if and only if

|lwgé| + |lwof] < 1 (11.2 - 27)

Because of the identity 7 + € = 1, this bound is impossible to satisfy if |wg| and
|wo| are both “large” (that is, close to one or larger) over the same frequency
range. For r, > 1 the pole may cross the imaginary axis, and |wg| > 1 for
w < w* =ay/r2 — 1 and |wg| < 1 for w > w*. In that situation, robust stability is
guaranteed only if the unstructured relative uncertainty given in terms of |wo(jw)|
reaches one at a frequency higher than w*.

If pole uncertainty were the only source of uncertainty (wp = 0), the robust
stability bound would be |¢| < |wg|™!. Since the plant is minimum phase, this
bound could always be satisfied by increasing the gain and making € small, re-
gardless of the size of r,.

In summary, the pole location uncertainty is handled by “tightening” the con-
trol at low frequencies. Indeed, € small (“tight” control) is needed in order to
stabilize an unstable plant. To realize robust stability in face of uncertain high-
frequency dynamics, however, it is necessary to detune the system and make 7
small (€ = 1) at frequencies where wo(w) is larger than one. Thus we cannot




11.2. ROBUST STABILITY FOR STRUCTURED UNCERTAINTY 257
stabilize an unstable plant if there are RHP-zeros or model uncertainty in the
same frequency range as the location of the unstable pole.

The reactor example in this section is meant primarily to illustrate the mod-
elling of uncertainty and the implications of different types of uncertainty on
controller tuning. The approximate analysis performed here does not guarantee
in any way stability of the nonlinear system (11.2-21).

11.2.5 Independent Uncertainty in the Transfer Matrix Elements

In many cases the uncertainty is most easily described in terms of uncertainties
of the individual transfer matrix elements. This kind of uncertainty description
may arise from an experimental identification of the system. In general, it is not
a good representation of the actual sources of uncertainty, but it is included here
because it has been proposed in the literature on several occasions.

Let us assume that each element p;; in the plant P is independent, but confined
to a disk with radius a;;j(w) centered at p;; in the Nyquist plane

|pij — Bisl < aij (11.2 — 28)
or equivalently

|pij — Pis| < 7ijlPis] (11.2 - 29)
where a;; and r;; are the additive and multiplicative (relative) uncertainty respec-
tively. The main limitations of these uncertainty descriptions is that correlations

between the elements cannot be handled, which is potentially very conservative.
Defining the scalar complex perturbation A;; (11.2-28) becomes

Pij — Pij = Ayjaq, |A;4] <1 (11.2 - 30)
or equivalently, in matrix form
Anayr Apa

P—-P= Aglagl (112—-31)
Annann

Introducing weighting matrices W; and W; it is possible to rewrite (11.2-31) in
terms of the “large” diagonal perturbation matrix A,

P — P =WuyA W, (118 =39
where W, € 72"""2, W, € RP*" and A, € C*"* are defined as
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. ay ai;
Wa=(I I..I, Wa=| @ , m=|"%| (un2-33
Qn Qni
A, = diag{AllaAQh- . aAnn} y IAij! = 1

A block diagram representation of (11.2-32) is given in Fig. 11.1-4 with
Wy = Wy and Wi = W,;,. The interconnection matrix M (Fig. 11.1-2) is
M = -W,C(I+PC)'W,3 = —W, P~ HW,;. Thus we have robust stability for
the uncertainty (11.2-30) if and only if

p(WaP'HW,) <1 Vw (11.2 — 34)

For the special case H = #I, (11.2-34) provides an explicit bound on the comple-
mentary sensitivity

(H) = |i| < g (WP~ 'W,)  Yw (11.2 - 85)

11.2.6 Condition Number and Relative Gain Array as Sensitivity
Measures

We would like to learn for what class of systems independent element uncertainty
as discussed in the preceding section, imposes severe constraints on the comple-
mentary sensitivity [(11.2-34) and (11.2-35)]. We can then determine for each
system a priori if a detailed analysis of independent element uncertainty and its
effect on robust stability is justified. The proofs of all results in this section are
omitted because they are straightforward but tedious.

Theorem 11.2-2. (Condition number criterion.) Assume the nominal
response is decoupled, H = diag{7;}. Under the assumption of Thm. 11.2-1
robust stability is guaranteed for element uncertainty (11.2-29) if

1
] < ————=— Vw, Vi 11.2 - 36
rer /7 (D) ( )
Here we have used the following definitions:
Maximum relative uncertainty:
Tinge = MaAX Ty (112 = 37)
i

Minimized condition number:
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K*(G) = pig (D1GDy) (11.2 — 38)

where D; and D,; are real diagonal matrices. Note that because r;; and rnas
are independent of the scaling of the system inputs and outputs and because x*
is obtained by minimizing over all scaling matrices, the inequality (11.2-36) is
scaling invariant. It indicates that for systems with high condition number x*
only small errors r;; are allowed. Otherwise robust stability cannot be guaranteed.
Because (11.2-36) is only sufficient, a comparison with the necessary and sufficient
condition (11.2-35) yields

(W P~ W) < #mazv/nk*(P) (11.2 - 39)

Numerical experience suggests that this inecuality is quite tight. An exact con-
dition is available for 2 x 2 systems at steady state, as we will show next.

The uncertainty description (11.2-30) assumes that A;; are complez scalars.
This may be reasonable at non-zero frequencies, but does not make any physical
sense at steady state (w = 0) where P, P and A;; must be real Conditions
(11.2-35) and (11.2-36) may therefore be conservative at w = 0 where complex
perturbations cannot occur. If all perturbations are real and all bounds are equal
(rij =7 Vi,7) we find for 2 x 2 systems:

preal(Wer P 'Weg) = ri*(P)  (w =0) (11.2 — 40)
We know from Thm. 11.1-3 that for robust integral control for stable systems it

is necessary and sufficient to bound the steady state unceltalnty Thus we have
the following theorem.

Theorem 11.2-3 (2x2 systems). Assume that the uncertainties of the elements
in 15(0) are independent and real and have equal relative magnitude bounds r.
Then for open loop stable systems, robust stability and integral control may be
achieved if and only if

&*(P(0)) < r71 (11.2 - 41)

If the magnitude bounds on the relative uncertainties are not equal, and r is
replaced by 4z, then (11.2-41) provides a sufficient condition for robust stability
and integral control. A comparison with (11.1-33) indicates that (11.2-41) implies
nonsingularity at steady state.

Theorems 11.2-2 and 11.2-3 give clear interpretations of the minimized condi-
tion number as a sensitivity measure: fc*(13( 0)) and x*(P(jw)) are good measures
of sensitivity only if the plant uncertainties are given in terms of independent (un-
correlated) norm-bounded elements with equal relative error bounds. For other




g

260 CHAPTER 11. ROBUST STABILITY AND PERFORMANCE

uncertainty structures the minimized condition number may be misleading, and
bounds on the uncertainties such as (11.2-41) may be arbitrarily conservative.
This will be illustrated by a subsequent example.

Conditions (11.2-36) and (11.2-41) provide some insight into the effects of
plant ill-conditioning but from a numerical point of view they are hardly more
convenient than the general condition (11.2-35) because they involve nonconvex
optimization problems. Fortunately, accurate bounds on x* can be obtained from
the Relative Gain Array.

Relative Gain Array (RGA). The RGA A of a matrix M is defined as

AM)=M x (M~HT (11.2 - 42)

where x denotes the element-by-element (Schur) product. If M is a transfer
matrix then A(M) is a function of frequency. It can be easily shown that A(M)
has the following properties: all rows and columns of A sum to one

S h=3 A;=1 (11.2 — 43)
i J
and A is independent of scaling

A(D1MDy) = A(M) (11.2 — 44)

where D; and D; are arbitrary nonsingular diagonal matrices. Also a permutation
of rows (columns) of M leads to the same permutation of rows (columns) of A(AL).
When the argument M is omitted in A(M) we generally mean the RGA of the
plant, i.e., A = A(P). When we speak of a “system M with a large RGA” we
mean that some norm of A(M) is large.

The following inequalities show that plants with large elements in the RGA
are always ill-conditioned

K(P) > K*(P) 2 [ Alln — 1/6°(P) 2 [Allm — 1 (11.2 - 45)

where

lAllm = 2 - max {||Al|1, ||A]loo } (11.2 = 48)

Vice versa, a large value of x*(P) implies large elements in the RGA. At least for
2 X 2 systems we have

&*(P) < ||Allm (11.2-47
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and it is conjectured that a similar inequality holds for larger systems. We can
combine (11.2-45) and (11.2-47) to show the close relationship between x* and
A at least for 2 x 2 systems

Alln = =57 < °(P) < A (11.2 - 45)

Example 11.2-2. Let us examine again the distillation column introduced in
Sec. 11.1.6 but with reflux L and boilup V as manipulated inputs. The steady-
state gain matrix is

0.878 —0.864) (11.2 — 49)

) = (1.082 —~1.096

and

Ain =35.07, ||Alln = 138.275, &*(P)=138.268, ~(P)=141.7

From the high condition number x*(P), one might conclude that the plant may
become singular for very small perturbations. This would be true if the uncer-
tainty had the form of independent element errors, but not necessarily otherwise.
To illustrate this point consider conditions for using integral control (H(0) = I)
under two different assumptions about the uncertainty.

Case 1. The elements are assumed independent and norm bounded with equal
relative error r. Theorem 11.1-3 and (11.2-35) imply that robust stability with
integral control may be achieved if and only if u(WdlS‘lWez) < 1 for w =0,
where p is computed with respect to the real perturbation matrix A..

0.878 0
1010 1.082 0
We?“(o 10 1)’ Wa=r|"0" 0864
0 1.096

35.07 —-27.65 35.07 -27.65
34.07 -27.65 34.07 -27.65
43.22 —-34.07 43.22 -34.07
43.22 -35.07 43.22 -35.07

This gives prea(WelP~1W,3) = 138.268r which is equal to r&*(P) as expected
from (11.2-40). From Thm. 11.2-3 robust stability with integral action is possible
if and only if r < x*(P)~! = 0.0072. In practice, the variation in each element
(mainly due to nonlinearities) is much larger than 0.7%, and integral control does
not seem to be possible for this distillation column according to this analysis.

WauP Wy =r




262 CHAPTER 11. ROBUST STABILITY AND PERFORMANCE

Case 2. A more realistic uncertainty description for this high purity distillation
column is the following additive uncertainty

~ d —d
P“P“(—d d)

which may be written as in Fig. 11.1-4 in terms of one real scalar A-block with

P-B=waw, Wo=ld( '), m=0 -, lal<1

This structure of the uncertainty arises from the material balance constraints
which cannot be violated. Using Thm. 11.1-3, robust stability and integral
control (H(0) = I) are possible if and only if (W1 P~'W;) < 1 for w = 0.
Here Wi P~1W, = 0 - |d| and therefore robust stability and integral control are
possible for any value of d and the elements may even change sign without causing
stability problems. Thus, despite the high condition number, the system is not
at all sensitive to this physically-motivated model error. )

11.3 Robust Performance

11.3.1 H-Performance Objective

We require that the performance objective defined in Sec. 10.4.4 be satisfied for
all plants P in the uncertainty set IT

IW2E(P)Willew = sup5(WoE(P)W1) <1 VP €Il (11.3=1)

Note that W; and Wy are the performance weights and are entirely unrelated
to the uncertainty weights in Sec. 11.2 for which the same symbols were used.
In order to be able to evaluate (11.3-1) we assume the uncertainty to be norm
bounded and of the form introduced in Sec. 11.2.1. Thus after appropriate scaling
it can be expressed as a block diagonal matrix

A, = diag{Ay,. .., Am} U189

which satisfies

FA) <1  Vw (11.3 - 3)

(Here the subscript « stands for “uncertainty.”) In a procedure similar to the one
for constructing M in Sec. 11.2.1 we can construct the matrix G shown in Fig.
11.3-1A. The input vector consists of the outputs from the uncertainty block A,
and the normalized inputs v'. The output vector is formed by the inputs to the

-

B
T
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A B

Figure 11.8-1. Block diagram structure for checking robust performance. Full perturbation matrix
A, in (B) leads to robust performance test via SSV.

uncertainty block A, and the normalized outputs e'. If we partition G into four
blocks consistent with the dimensions of the two input and two output vectors we
can identify G1; as the matrix M shown in Fig. 11.1-2 and Gg as the weighted
nominal sensitivity function WyE(P)W.

The robust performance objective (11.3—-1) can now be expressed in terms of

G.

IF(G, Au)lloo = sup 3(F(G, Ay)) < 1 (11.3 - 4)

where the transfer matrix from v' to €'

e = F(G, A )Y (11.3 - 5)
is described by the Linear Fractional Transformation (LFT)

F(G,A,) = G + GauAy(I — G11A) G2 (11.3 - 6)

Comparing condition (11.1-9) for robust stability and the formally identical
condition (11.3-4) for robust performance we conclude: the system F(G,A,) sat-
isfies the robust performance condition (11.3-4) if and only if it is robustly stable
for the norm bounded matriz perturbation A, (5(A,) < 1). (Here the subscript
p stands for “performance.”) We have expressed this equivalence between robust
performance and robust stability in Fig. 11.3-1B: conditions (11.3-1) and (11.3—
4) are satisfied if and only if the system G is robustly stable with respect to the
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block diagonal perturbation
A = diag {Ay, A}, g(A) <1 (11.3-17)

A, is generally a full matrix of appropriate dimensions. A necessary and sufficient
condition for robust stability in the presence of norm bounded block diagonal

perturbations can be expressed in terms of the structured singular value p (Thm.
11.2-1).

Theorem 11.3-1. The nominally stable system G (Fig. 11.3-1) subjected to
the block diagonal uncertainty A, (6(A,) < 1) satisfies the robust performance
condition ||F(G, Ay)|le < 1 if and only if

ua(G) <1 Yw (11.3 - 8)

where p is computed with respect to the block diagonal perturbation A =
diag {Ay, Ap}.

Theorem 11.3-1 is probably the main reason for measuring performance in
terms of the co-norm and bounding uncertainty in the same manner. It is then
possible to express robust performance in terms of robust stability and to test
for either one in a nonconservative manner by calculating p. Indeed, if the un-
certainty is modeled ezxactly by A, — i.e., if all plants in this norm-bounded set
do actually occur in practice, the conditions for robust stability and performance
are necessary and sufficient.

Some care is necessary to interpret the robust performance test correctly when
p(w) = B(w) > 1. It means that if each one of the uncertainty blocks is reduced
by a factor 37! then the relazed performance specification &(WoEW;) < 3 can be
met. p > 1 does not give any explicit information on how much the performance
violates the specification (11.3-1) for the uncertainty A,.

Because A; = diag{A,,0} and A, = diag{0,A,} are special cases of
A (6(A) £1) we find

1a(G) > max {pa,(Gu), pa,(Ga) = 5(G)} (11.3-9)

Inequality (11.3-9) implies that for robust performance (ua(G) < 1) it is nec-
essary that the system is robustly stable (ua,(G11) < 1) and satisfies the per-
formance specifications in the absence of uncertainty (6(Ga) < 1), which is not
very surprising. This suggests that robust performance might not always be a
very important issue: If both the nominal performance and the robust stability
condition are satisfied with some margin then the robust performance condition
should also be satisfied. The next two sections will shed some light on this issue.
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Figure 11.3-2. System with multiplicative output uncertainty and performance weight w.

11.3.2 Multiplicative Output Uncertainty

Consider the robust performance problem for the system depicted in Fig. 11.3-2.
The set of plants is described by

II={P = (I+2A0)P; 5(Ao) < 1} (11.3 — 10) |

The H,, performance specification places a bound on the sensitivity operator

G(Bw) <1 VYw,VP eIl (11.3 - 11)

where w is a scalar weight. Defining v/ = d' = w™'d and €' = e we can put the
block diagram in Fig. 11.3-2 into the form shown in Fig. 11.3-1 with

. (-Htp —Hw
G= ( B ) (11.3 - 12)
According to Thm. 11.3-1, the robust performance condition (11.3-11) is met
if and only if u(G) < 1 where p is evaluated with respect to the block diagonal
matrix A = diag {Ay, A,} and A, and A, are full. Alternatively, we can start

from (11.3-11) and derive a sufficient condition. Straightforward algebra yields
for the multiplicative output uncertainty (11.1-2), (11.1-6)

E = B(I+lpAoH)™ (11.3 - 13)
We substitute (11.3-13) into (11.3-11)

g(wE(I + lpAoH) ™) < 1
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&= 5(wE)a(I + loroH) ! < 1
& 5(wE) < a(I + loAoH)
& 6(wE) < 1-5(loAoH)

& 5(wE)+6(lpH) < 1 (11.3~ 14)

For the specific case of a multiplicative output uncertainty (11.3-14) is a sufficient
condition for robust performance and therefore an upper bound on u.

u(G) < G(wE) + 5(LoH) (11.3 — 15)

A comparison with Thm. 2.6-1 or an examination of the steps leading to (11.3-
14) reveals that (11.3-15) is an equality for SISO systems. Because the “robust
stability term” (5(fH)) and the “nominal performance term” (5(wE)) appear
additively, robust performance can be easily achieved by satisfying both robust
stability and nominal performance with some margin (5({pH) < o, 5(wFE) < 1—
@, a < 1). This is exact for SISO systems but can be somewhat conservative for
MIMO systems. Thus, “robust performance” is not very critical for SISO systems
or MIMO systems with multiplicative output uncertainty: an examination of
robust stability and nominal performance suffices as an approximate check for
robust performance.

11.3.3 Multiplicative Input Uncertainty

Next we study the robust performance problem for the system shown in Fig.
11.3-3. The set of plants is described by

I={P=PI+0A), 5(Ar) <1} (11.3 — 16)

The performance specification is again given by (11.3-11). The interconnection
matrix G (Fig. 11.3-1A) derived from the block diagram in Fig. 11.3-3 is
6= (—P:lf{f?(?, —leﬁw>
EP/{; Ew
and robust performance is guaranteed according to Thm. 11.3-1 if and only if
#(G) < 1 for G defined by (11.3-17) and u evaluated with respect to the block
diagonal matrix A = diag {A,, Ap} where A, and A, are full. Similarly as in the

last section we can start from the requirement (11.3-11). Comparing Fig. 11.3-2
and 11.3-3 we find

(11.3 - 17)
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Figure 11.3-3. System with multiplicative input uncertainty and performance weight w.

e

loAo = {1 PAP (11.3 - 18)

We substitute (11.3-18) into (11.3-13) to obtain the condition for robust perfor-
mance

G(wE(I + G PAPTIH)Y ) < 1 (11.3 - 19)
< o(wE) < o(I + L PAPH)
< &(wE) <1-5({;PA;PH)

<« 5(wE) +&(P)a(P~Y)a(l;H) < 1

& 5(wE) + k(P)a((;H) < 1 (11.3 — 20)
We can rewrite (11.3-19) as

F(w(I +LHCAC)T'E) < 1 (11.3 - 21)

and follow the same steps as above to find

a(wE) + x(C)a(f;H) < 1 (118 =20
We leave it to the reader to show that conditions similar to (11.3-20) and (11.3-
22) but involving the sensitivity and complementary sensitivity (11.1-14) at the
plant input can be derived, which are sufficient for robust performance.
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k(P)&(wEr) + &(fHy) < 1 (11.3 - 28)

k(C)a(wEr) +&(£1Hy) < 1 (11.3 ~ 24)

We will concentrate the following discussion on (11.3-20) and (11.3-22). Con-
ditions (11.3-23) and (11.3-24) can be interpreted similarly.

Note first that even when robust stability and nominal performance are sat-
isfied with a reasonable margin (5({;H) < 1 and &(wE) < 1) the robust per-
formance condition can be violated by an arbitrarily large amount if either the
controller C or the plant P is ill-conditioned. On the other hand if either x(P) or
x(C) is small, the input uncertainty can be treated more or less like output uncer-
tainty and it is not necessary to pay special attention to robust performance. It
should be emphasized, however, that both (11.3-20) and (11.3-22) are only suf-
fictent. If the plant is ill-conditioned, any controller designed for good nominal
performance will also be ill-conditioned because it tends to invert the plant. Un-
der these circumstances (11.3-20) and (11.3-22) can be arbitrarily conservative
compared to the exact condition involving pu.

Nevertheless, (11.3-20) and (11.3-22) give rough guidelines for controller de-
sign to avoid robust performance problems. For a well-conditioned plant a simple
decoupling (inverse-based) controller is also well conditioned and should give good
robust performance. For a badly conditioned plant decoupling should be avoided
and for robust performance much attention has to be paid to the modelling of
the uncertainty and the control system design.

11.3.4 Hjy-Performance Objective

We wish to evaluate a bound on the 2-norm of the weighted sensitivity

1 foo
W EW |2 = 5 [ tracel(WoEWY)H (W, EW:)|dw (11.3 — 25)
for a family II of plants. Assume that a bound Sy(w) can be found such that
iu;&&(WbEYVI) = Bo(w) (11.3 — 26)
B

Then, because for A € C™*", trace(A7A) < ng?(A)

V2 < 2 [© 52
sup [WoBWAll} < 5 [ Bi(w)dw (11.3 - 27)

where n is the maximum rank of WyEW;(w). For the type of norm-bounded
uncertainty introduced in Sec. 11.2.1 the bound By(w) can be found from p as
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Figure 11.3-4. Robust performance block diagram with additional block ~'1.

follows. Modify the block diagram in Fig. 11.3-1 by introducing an additional
block 8711 (8 > 0) as shown in Fig. 11.3-4. Define

o = (ﬂ_‘fém ﬁ_cfgm) (11.3 — 28)
Then
WG'(B) =1 B=p (11.3 — 29)
defines a function fy(w) such that
sup 3(F(G,A)) = Bolw) (11.3 = 30)

F(Au)<1

where F' is the perturbed weighted sensitivity described by the LFT (11.3-6).
Equation (11.3-26) follows directly from (11.3-30).

Inequality (11.3—-27) provides only a bound for the Hs objective, which can be
conservative. Alternatively we can compute for one specific input v the worst
ISE that can result from any plant in the set II or equivalently for any A € X.
This can be done ezactly without conservatism as shown next.

The 2-norm of the weighted error for a specific input v (||WaEv||2) is given by
(11.3-25) with

Wi=@w 0 (11.3 - 31)
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where the O-matrix is chosen to make W; square. Because W3 EW; is now of
rank one and trace(A” A) = 52(A) when A is of rank one, (11.3-27) becomes the
equality

| 0 .
WoEw|2 = WoEWL |2 = — 2(w)dw 11.3 =32
sup |[WBoll} = sup W2 EWAll} = o [ B5(w) ( )

For the specific case of an SISO system with multiplicative uncertainty, Wy =
1, Wi = v, and we can find G’ from (11.3-12) or (11.3-17)

L "ﬁzr_n "ﬁv .
G = (ﬁqgﬂm /3—*160) (11.3 — 33)

Here we know from Sec. 11.3.2

w(G") = |ilm| + |8~ e (11.3 — 34)
Setting pu(G') = 1 and solving for 3 we find

Bo = [&v|(L = |7&m])™" (11.3 - 35)

Substituting this expression for §y in (11.3-32) we find the same result as in
Section 2.6.1.

Definition (11.3-29) implies that at each frequency that value of 8 has to be
found which makes the SSV unity. It is obvious that u(G'(8)) is a monotonic
function of 3: as (3 increases the destabilizing effect of the uncertainty decreases.
More precisely, if the system in Fig. 11.3-6 is stable for 8; and A;,5(A;) < 1,
then it is also stable for any 8y > (1. Therefore u(G'(B82)) < u(G'(61)). In the
computations we usually employ the upper bound of u rather than pu itself. The
following theorem makes the iterations necessary to solve (11.3-29) in terms of
the upper bound very simple.

Theorem 11.3-2. Let

(11.3 — 36)

M = ( My My )

.’1}]\'.{21 .’E]\lgg

where © is a positive scalar and let D = diag {D;, D2}. Then the upper bound of

the SSV u(M?®), infpep 5(DM=D™Y), (see (11.2-15)), is a non-decreasing func-
tion of x.

Proof. Let 0 < z9 < z;. Then we can write 9 = ar; where 0 < a < 1. From
(11.3-36) we have
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spi— (B 0Y(1 O Vampi (I 8) parmp
DND“(ODQOaIAID_OaIDAID

I 0

= T, | _
= 5(DM*D™) 50(0 e

) s(DM* D)
& 5(DM*D™) <&(DM*D') VDeD
= inf 6(DM*D™) < inf 5(DM™ D)

DeD DeD

11.3.5 Application: High-Purity Distillation

Consider the distillation column described in the Appendix where the overhead
composition is to be controlled at yp = 0.99 and the bottom composition at zp =
0.01 using the reflux L and boilup V as manipulated variables. After linearization
the model is

~ 1 (0.878 —-0.864) (11.3 - 37)

P=a1\1.082 —1.09

In a similar manner as in Sec. 11.1.6 we will assume a full block input uncertainty
with weight

5541
= 0. 11.3 -
wi(s)=0 20.53-}-1 (11.3 — 38)
The performance specification is simply
(E) < |lwp|™*  VPeI, Vw (11.3 - 39)
where
10s 41
wp = 0.5 108 (11.3 — 40)

The performance weight wp(s) implies that we require integral action (wp(0) =
00). It allows an amplification of disturbances at high frequencies by a factor of
two at most (lim,_. |wp(iw)|™ = 2). A particular sensitivity function which
exactly matches the performance bound (11.3-40) at low frequencies and satisfies
it easily at high frequencies is E = 232&[ . This corresponds to a first order
response with time constant 20 min.

For robust performance
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Table 11.3-1. State space realization of “u-optimal” controller, C,(s) = C(sI — A)"'B + D.

4. 000 = 107 0 0 0 0 0
0 3972 . 10 0 0 0
A 0 0 ~0.1510 0 0 0
. 0 0 0 ~9.032 0 0
0 0 0 0 —538.2 0
0 0 0 0 0 —586.8
—65.13 —90.09
72.24  90.31
B = 5.492 —4.394
T -90.86 —113.6
1867 —1494
672.2  840.3
C_(O.6564 0.7171 4.949 5.033 —1691 —311.2)
T \0.6555 0.5425 4.941 —5.040 —1689 311.6
D_(5866 ——3816)
~\ 5002 -—4878
u(G) <1 Yw (11.3 — 41)

where G is defined by (11.3-17) with £; = wy and w = wp. We will consider three
different controllers: an inverse-based controller Ci(s) (in this case equivalent to
a steady state decoupler with PI controllers), a diagonal PI-controller Cy(s) and
a “p-optimal” controller C)(s), found by approximate minimization of the LHS

of (11.3-41).
Ci(s) = c1(s)Grh(s) (11.3 — 42a)
ci(s) = 0.7s71 (11.3 — 420)
| Cals) = es(s) (é _01) (11.3 — 43a)
ca(s) = 2.4(75s8 + 1)s7! (11.3 — 43b)

C,(s): Table 11.3-1
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Figure 11.3-5. Performance and robustness bounds for multivariable loop shaping.

One way of designing controllers which meet the nominal performance and
robust stability specifications is to use multivariable loop shaping. For nominal
performance, g(PC) must be above |wp| for low frequencies (Sec. 10.4.4). For
robust stability with input uncertainty, (CP) must lie below 1/|w;| for high
frequencies (Sec. 11.1.4) (Fig. 11.3-5).

For the inverse-based controller (11.3-42) we get 5(C1P) = a(PC}) = |c1| and
it is trivial to choose a c;(s) to satisfy these conditions. The choice ¢;(s) = 0.7s7!
yields a controller which has much better nominal performance than required,
and which can allow about two times more uncertainty than assumed. This is
also seen from Fig. 11.3-6 and 11.3-7 where the nominal performance and robust
stability conditions (10.4-19) and (11.1-13) are displayed graphically.

For the diagonal controller (11.3-43) we find 5(CyP) = 1.972|cy| and g(PC,) =
0.0139|cz|, and the difference between these two singular values is so large that
no choice of ¢y is able to satisfy both nominal performance and robust stability.
This is shown in Figs. 11.3-6 and 11.3-7 for cy(s) defined by (11.3-43b).

The sufficient conditions for robust performance (11.3-20) and (11.3-22) sug-
gest that the ill-conditioned controller Cy (k(C}) = 141.7) for the ill-conditioned
plant P (k(P) = 141.7) may give very poor robust performance even though
both the nominal performance (5(wpE) < 1) and robust stability conditions
(5(wrHp) < 1) are individually satisfied. On the other hand, for a controller with
a low condition number (k(C2) = 1) we expect to get robust performance for
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=3 T -2 | -1 | | |
10 ” 10 2 10 . L. 10 : 10 2

Figure 11.3-6. Nominal performance test for controllers C; and Cs.

3 1T 2 | -1 | | |
19 ? 10 Z 10 . 1. 10 ! 10 2

Figure 11.3-7. Robust stability test for controllers C, and Cs.
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4— RP

Figure 11.3-8. p-plots for inverse-based controller C(s).

“free” provided nominal performance and robust stability are satisfied. However,
as we saw for Cy in Fig. 11.3-6 it is rarely possible to achieve good nominal
performance for an ill-conditioned plant with a scalar controller.

The exact test for robust performance (11.3-41) is plotted in Figs. 11.3-8 and
11.3-9 for C and Cjy. As expected, the inverse-based controller Cy(s) is far from
meeting the robust performance requirements (pgp is about 5.8), even though the
controller was shown to achieve both nominal performance and robust stability.
On the other hand, the performance of the diagonal controller Cy(s) is much less
affected by uncertainty (ugrp = 1.71).

The p-synthesis method used to design the “u-optimal” controller gives con-
trollers of very high order, but by employing model reduction, we were able to find
a “p-optimal” controller with six states (Table 11.3-1). The robust performance
test for this controller is shown in Fig. 11.3-10. (The u-plot is not quite flat as it
should be for the truly optimal case.) The peak value for p is 1.06, which means
that this controller almost satisfies the robust performance condition. This value
for prp is significantly lower than for the diagonal PI controller Cs.

The time responses in Fig. 11.3-11 confirm the predictions by pu. Note in
particular the poor performance of C; in the presence of model uncertainty. The
large value of u(0) for the diagonal PI controller leads to a very sluggish approach
to steady state when compared to the p-optimal controller.
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Figure 11.8-9. p-plots for diagonal controller Cy(s).
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Figure 11.3-10. p-plots for “u-optimal” controller C(s).
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Figure 11.3-11. Time responses for the three controllers for a setpoint change r = (1,0)T. Left
column: no model error, right column L; = diag{0.2, —0.2}.
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11.4 Robustness Conditions in Terms of Specific Transfer
Matrices

In Secs. 11.2 and 11.3 we derived necessary and sufficient conditions of the form

ua(M) < k(w), Yw (114-1)

for robust stability and performance. The implications of (11.4-1) may not be
easy to understand for the engineer. A simple robustness bound of the form
&(T) < k'(w) Yw may provide more insight, where T’ denotes a transfer matrix of
engineering significance — e.g., the sensitivity E — the complementary sensitivity
H or the loop gain PC. The goal of this section is to derive such bounds.

More specifically we will show first that in all cases of practical interest M
can be related to the transfer matrix T of engineering significance by a Linear
Fractional Transformation (LFT)

M = Ny + N12T(I - NQZT)~1N21 (11.4 - 2)

(Sometimes a superscript on N — e.g., N7 — will be used to denote the depen-
dence of N on the particular choice of T'.) Then we will derive from NV a bound on
&(T) which guarantees that (11.4-1) is satisfied. Since one objective is to assist
the engineer with the bound in the controller design, it is important that N be
independent of C.

11.4.1 How to find the LFT

In many cases the LFT (11.4-2) can be found by inspection. In other cases the
following three-step procedure may be used (Fig. 11.4-1).

1) Write M as a LFT of C:

M = Gy + G12C(I — GC) Gy (11.4 - 3)
The matrix G is easy to construct by inspection of the block diagram.
2) Write the controller C' as a LFT of the transfer matrix of interest (T').

C = Jiu+ JiuT(I = JooT) ™ oy (11.4 — 4)

J is most easily found by solving the expression T'(C') for C.
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] A
— A A e
A sl |
> -~ P ]
=~ 0 O & & o N
M
A >
T

Figure 11.4-1. Equivalent representations of system M with perturbation A.

3) Given G and J, N follows easily because any interconnection of LET’s is
again an LFT

N = (Nll le) _ (Gu + GrpJu(I — GogJ11)'Gay Gll - J11G22)_1J12 )
Na Ny TIor(I = GooJ11) " G Ja2 + J21G22(I—£ JUGQQ);lJIQ
114-5

For the special case Jy; = 0 this reduces to
Gu Gi2J12 )
N= ( 11.4-6
Jo1Gar  Jog + Jo1GagJhg ( )

Without proof we remark that when T is a closed-loop transfer function' then
Ny = 0.

If N¥ is known, then it is easy to derive N for other closed-loop transfer
functions T'. Note that H is an LFT of E:

H=I-E (11.4 —7)
Let

H=Jy+ JpEI - JnE) 'y (11.4 - 8)
then we find by comparing (11.4-7) and (11.4-8)

J=(§ “OI) (11.4-9)
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Figure 11.4-2. Tllustration for finding N¥ from N¥.

The transformations are interpreted in the block diagram in Fig. 11.4-2. The
matrix N¥ can be found from (11.4-5) with N instead of G, and J defined by
(11.4-9)

e = (M MENE -1
N& 0

Here we have set N& = 0 as explained above.

(11.4 — 10)

Example 11.4-1. Consider the system with simultaneous multiplicative input
and output uncertainty studied in Sec. 11.2.3. For Wiy = Wip = wl and
War = Wyo = I, (11.2-20) becomes

(11.4 — 11)

.. (-—CP(I +CP)1 —c(+ BC)yt )

P(I+CPy! . -PCcd+ BCyt

Recall that A = diag{A, Ap}. Let us express M as a LFT of H using the
three-step procedure

(1) It is easier to find the matrix G directly from Fig. 11.2-1 than from (11.4-11):

0 0 —-I
G=|P 0 —P) (11.4 - 12)
P I -P

Note that Gy; is the upper left 2 x 2 block of G corresponding to A.
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(2) Solving

H=PC(I+PC)! (11.4 - 13)
for C yields
C=PH(I-H) (11.4 — 14)
Comparing (11.4-14) with (11.4-4) we find

g P .
- 415
7 ( v ) (11.4 - 15)

Substituting (11.4-12) and (11.4-15) into (11.4-5) yields

_p=l -

N{{:(Q D), N{.g':( P ) NI=(P I), Nf=0 (11.4-16)

To find M as a LFT of E, use N¥ and (11.4-10) to get:

Y o .
Nﬁ:(o 5 ) Nf;:( - ) NE=(P I), NE=0 (11.4-17)

O

11.4.2 New Properties of u

The results in this section apply to any complex matrices although in our case
these will be transfer matrices.

Theorem 11.4-1. Let M be written as a LFT of T

M = Nyy + NpoT(I — NyyT)"'Nyy (11.4 - 18)
and let k be a given constant. Assume pa(N11) < k and det(I — NooT') # 0. Then

pa(M) < k (11.4 — 19)

&(T) < ¢r (11.4 — 20)

where cr solves
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Nu N2 )
N =k 421
Ha (kCTNzl kerNag k (81 )

and A = diag{A,T}.

Proof. Assume that T is defined such that 5(T") < er vT. Then at each frequency
holds

ua(M) <k VT
o det(I+MA)£0 VA3 5(8) <17k, VT
I+NpA  —NpT

Ny A I — NyT
The last step follows from (11.4-18) and Schur’s formula (Lemma 10.2-1).

@det( );eo VA 5 5(A) < 1/k, VT

1
@det{I-’r(’f?\ff“ "’TN”) (’“A ° )];eo VA3 5(A) < 1/k, VT
N2

crNo2 0 —-clT—T

wns(fi o) <t T
wus(Nn hava) <* T
< Ha (kczz.l’\lfm ’vg}\zfn) <k, T

1

In general, cr can be found numerically using the implicit expression (114~

21). This search is straightforward because of Thm. 11.3-2. In the special case
when Nyjp = Nog =0, crcan be computed explicitly.

Theorem 11.4-2. Assume Ny = Nyp = 0. Then cr satisfying (11.4-21) is given
by

er = kpzz(;; N”) (11.4 — 22)

Proof. Let A = diag{A1, A2}, F(A;) £ 1; A may have additional structure

3 0 J\Tl2> .
Ha (kCTJ\Tﬂ 0 <k
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w0 (0 )
@dEt[I+L(chl\ 0 )lo a,)]70

£ DV 12A2 )

e (CTN21A1 # o

& det(I — %N12A2N21A1) #0

cT.
@det( y ‘/:N”A?);eo

VENu A, I
- ( 0 J\fm)_ &
Fa\Ng 0 ) T \er

a

Let us first discuss the assumptions made in Thm. 11.4-1. In general, the
bound (11.4-19) results from a robust stability or robust performance condition
and T is a particular transfer matrix of interest (e.g., H or E). In this case M
is (internally) stable and det(I — NpT') # 0 Vw as required by the assumption.
Furthermore since pa(M) > pa(N11), the condition pa(Ni1) < k is necessary for
a solution of (11.4-21) to exist. If (M) < k(w) is a robust stability (performance)
condition, then the condition p(N11) < k(w) is equivalent to requiring that the
robust stability (performance) condition be satisfied for 7' = 0 at this frequency.

Condition (11.4-20) is necessary and sufficient for (11.4-19) if (11.4-19) is to
be satisfied for all T’s satisfying &(T') < cr. (This follows directly from the proof
of the theorem.) In most cases we are interested only in a specific M (and a
specific T'), and condition (11.4-20) is only sufficient for (11.4-19).

However, the value of c¢r solving (11.4-21) provides the least conservative
bound which may be derived on &(T') such that (11.4-19) is satisfied.

Note that (11.4-21) is computed based on the structure of A and of T. The
least restrictive bound on &(T') (er large) is found when T' = tI is assumed, where
t is a scalar, and the most restrictive bound (er small) when T is a full matrix.
The reason is that by requiring 7' = ¢, the class of perturbations is restricted,
and the magnitude of the perturbations is allowed to be larger.

Theorem 11.4-1 may be used to derive a bound on any transfer matrix 7" which
is related to M through a linear fractional transformation (LFT). Note that these
bounds (e.g., on &(H) and 5(E)) may be combined over different frequency ranges
since Thm. 11.4-1 applies on a frequency-by-frequency basis. This provides a
powerful method for deriving simple robustness bounds.
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Table 11.4-1.
Case /,LQA (g 3)
1 | AandT full 5(A)aB
9 T =tI pa(AB)
3 A =61 pr(BA)
4 |A=6I,T =1I|p(AB) = p(BA)
5 B=1 pra(A)

The theorem below which follows directly from Thms. 11.4-1 and 11.4-2 is
useful in specific applications.

Theorem 11.4-3: Let A = diag{A,T}. Then

(11.4 — 23)

pa(ATB) < 5(T)pk ( 0 A)

B 0

(Note that ATB and T are square matrices, while A and B may be non-square.)

B 0
shown in Table 11.4-1.

In spectal cases ;% ( 0 ) may be evaluated in terms of other quantities as

Proof. From Thms. 11.4-1 and 11.4-2 for the case N;; = Nyg = 0:
e 9 [ 0 Np
uA(ngTNm) <k if O‘(T),LLA N 0 <k (114 s 24)
21
Since (11.4-24) holds for any choice of k it is equivalent to

= 0 N
HA(NHTNQI) < O’(T)N% (N21 012)

Inequality (11.4-23) follows by choosing Ni; = A, Noy = B.

The relations in Table 11.4-1 are proved next. Let Ay and A have the same
structure as A and T in the theorem. Define A = diag{A;,As}, 5(A;) < 1
Then :
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[
o
(S5

0 4
H%(B 0)<1/k

0 kA
@,uA(B 0 <1
0 KA\ (A o” e
@det[[—&—(B 0)(0 A #0 VAL,
T kAA,
@det(BAl ; )%o VAL Ag

=4 det([ - kAAgBAl) = det(] — kBAlAAQ) # 0 VAL, Ay

1

=4 ,LLAl(AAQB) < E, VA, (11.4 = 25)
1
© ua(BAA) <, VA (11.4 - 26)
< p(AAQBAl) = /)(BAlAAQ) < % VA, Ay (114 - 27)

1: From the basic properties of norms p(AA;BA;) < 5(A)5(B). We now
have to show that this holds as an equality for some choice of Ay, Ay. Let A =
UaZaVE and B = UpTpVA. Since A; and A, are full we may choose them
such that AyUp = V4 and VA, = UY. Then p(AAyBA) = p(UsS4ZpUY) =
p(EAEB) = 5‘(A)5‘(B)

2: From (11.4-25); 3: From (11.4-26); 4,5: From (11.4-27). O
11.4.3 Examples

Example 11.4-2 (Input Uncertainty.) If there is only multiplicative input
uncertainty of magnitude 5(A;) < w(w) we find [see (11.4-11)] the necessary and
sufficient condition for robust stability

w(PHP) < w(w) (11.4 — 28)
Here p is computed with respect to the structure of Ay which may be a diagonal

matrix. The least conservative bound on &(H) which may be derived from (11.4-
28) is found using Thm. 11.4-3:

" 4
G(H) < 1/u? (}Q: PO ) w(w) = Robust Stability (11.4 — 29)
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@ in (11.4-29) is computed with respect to the structure diag{As, H}. Note
the following special cases:

- ) .
(i) Ay and H are both full matrices: p* (IQD PO ) = r(P), where x(P) is the

condition number of the plant (compare Sec. 11.1.4).

o P!
b o hE 2 = o
(i) H=hl:p (P P ) 1

Example 11.4-3 (Robust Performance for SISO Plant.) For multiplicative
uncertainty ([€(iw)| < wo) we find the necessary and sufficient condition for
robust performance (&(Ewp) < 1)

u(M) <1 (11.4 — 30)
where (see Sec. 11.3.2)
(_ (woll vl )
M= (wa e (11.4 — 31)

The SSV in (11.4-30) is cor£1p11ted~wit11 respect to the diagonal 2 X 2-matrix
diag{Ao, Ap}. Bounds on 5(H) = |H| and 5(E) = |E| are easily derived using
Thm. 11.4-1 with k = 1. Write M as a LFT of H:

0 0 w
vie(8 0} n= () M= b W=

Theorem 12.4-1 provides the sufficient condition for robust performance: |H| <
cy, Yw where cg solves at each frequency

plwp wp —wp|=1 (11.4 — 32)

CH CH 0
The SSV p in (11.4-32) 1is computed with respect to the structure

diag{Ao, Ap, H} —ie.,a diagonal 3 x 3 matrix. Note that (11.4-32) is indepen-

dent of the plant model P. However, M (and therefore H) must be stable, and
this implicitly makes the allowable H’s dependent on P. An analytic expression

for ¢y may be derived for this simple case.

1 — |wp

| < e = TooT+ Twel

= Robust Performance (11.4 — 33)

]
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Similarly, a condition in terms of E is derived

|E| < cg = —-1—_—J—L—L—’O-t—— = Robust Performance (11.4 — 34)
|lwol + |wp|
The expressions for ¢y and cp in (11.4-33) and (11.4-34) are most easily
derived from the identity (see Sec. 11.3.2)

(U’OI? U’OIEI

= lwoH| + lwpE 1.4 -35
wpB 'wa) lwoH| + |wpFE| (114 )

combined with the triangle inequality (e.g., use |E| = |1 — H| < 1+ |H]| to
derive (11.4-33)). Note that (11.4-33) is impossible to satisfy at low frequencies
where tight performance is desired and |wp| is larger than one (corresponds to
#(N11) > k in Thm. 11.4-1). Similarly, (11.4-34) is impossible to satisfy at
high frequencies where the uncertainty exceeds 100% z}xid |wo| is larger than
one. However, we may combine the bounds: (11.4-30) is satisfied if (11.4-34)
is satisfied at low frequencies and (11.4-33) at high frequencies. The bounds
(11.4-33) and (11.4-34) (even when combined) tend to be conservative around
cross-over where |H| and |E| have similar magnitude. This means that there will
be systems which satisfy (11.4-30), but do not satisfy (11.4-33) and (11.4-34).

Conditions (11.4-33) and (11.4-34) are shown graphically in Fig. 11.4-3A for
the choice wo(s) = 0.2(0.5s+ 1) and wp(s) = 0.5(14+s~1). Assume that the plant
is minimum phase such that H = (s + 1)~! is an allowable (stable) closed-loop
transfer function. This corresponds to a nominal first-order response with time
constant one. This choice is seen to satisfy (11.4-33) for w > 1.2 and (11.4-34)
for w < 2 (Fig. 11.4-3B). Consequently, (11.4-30) is satisfied at all frequencies
and robust performance is guaranteed. 5

11.5 Summary

The simplest uncertainty description for MIMO systems is in terms of a sin-
gle norm-bounded perturbation matrix with the same dimensions as the plant.
Typical examples are multiplicative output (Lo) and multiplicative input (L)
uncertainty: ’

P=(I+Lo)P; Lo=(P-P)PY &(Lo(iw)) < lo(w),Yw (11.1~-2,5)

P=P(I+L;); Li=PYP-P); &(Li(w)<lw),Vw (11.1-3,5)
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Figure 11.4-3. Graphical representation of conditions (11 4-33) and (11. 4—34) Robust performance
is guaranteed since |E| < ¢z for w < 2 and |H| < cg for w > 1.4.
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The advantage of these uncertainty descriptions is that they lead to very simple
necessary and sufficient robust stability conditions:

G(PC(I + PC)Y Nl =6(H)lp <1 VYw (11.1 = 11)

F(C(I+ PC) Py =a(H)l <1 VYw (11.1 - 13)

It follows directly that robust integral control is possible for an open loop stable
system if and only if 2o(0) < 1 or £;(0) < 1. This implies that the gain matrix
must remain nonsingular for all perturbations (Thm. 11.1-3).

It is often difficult to model the physical uncertainty accurately and non-
conservatively with single perturbations. Therefore an uncertainty description
involving multiple norm-bounded perturbations A; was introduced. Employing
weighting matrices W and W the actual perturbation is

L; = WolA; W, (11.2 - 2)

where A; may be any rational transfer matrix satisfying 6(4;) < 1, Vw. The
individual perturbations are combined into one large block diagonal perturbation
matrix

A =diag{Ay,...,An}; 5(A) < 1 (11.2 - 3,4)

Many practical uncertainty problems can be cast into the M — A structure shown
in Fig. 11.1-2 where A is of the form (11.2-3,4). Assuming that M is stable a
necessary and sufficient condition for robust stability can be established via the
Structured Singular Value (SSV) u

pa(M(iw)) < 1 Yw (11.2 - 10)

where the subscript A indicates that u is computed with respect to the structure of
A. Among the problems which can be treated in this framework are simultaneous
input and output uncertainty (Sec. 11.2.3), and independent uncertainty in the
transfer matrix elements (Sec. 11.2.5). The latter type imposes severe constraint
on performance if the plant is ill-conditioned: if the nominal response is decoupled
— i.e., H = diag{7;} — then robust stability is guaranteed if

" 1 :
‘ﬂzl < m Yw, Vi (11.2-—36)

where Tpg, is the maximum relative element uncertainty, n the dimension of
the system and «* the minimized condition number. Tighter conditions can be
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derived for 2 x 2 systems. The minimized condition number £* is closely related
to the Relative Gain Array A:

£ (P) 2 | Al for k*(P) large

where

[Allm = 2 - max {[|All1, [|Allo} (11.2 - 46)

Thus, systems with large RGA are very sensitive to independent element uncer-
tainty. In practice, however, the variations of the transfer matrix elements are
usually highly correlated.

The major advantage of the H,, performance objective is that it allows us to
express the robust performance test as a robust stability test in the presence of
a structured perturbation (Thm. 11.3-1): the nominally stable system G (Fig.
11.3-1) subjected to the block diagonal uncertainty A, (3(A,) < 1) satisfies the
H,, robust performance condition if and only if

ra(G) <1 Yw (11.3 - 8)

For multiplicative output uncertainty the SSV in (11.3-8) can be approximated
by

pa(G) < 5(wE) + (Lo H) (11.3 - 15)

and for multiplicative input uncertainty by

pa(G) < 5(wE) + k(P)&(loH) (11.3 — 20)

1a(G) < F(wE) + k(C)5(LoH) (11.3 = 22)
Thus, multiplicative output uncertainty does not cause any robust performance
difficulties: if both the nominal performance (5(wE) < 1) and the robust stability
(6(8oH) < 1) conditions are satisfied with some margin, then robust performance
is guaranteed automatically. On the other hand input uncertainty causes robust
performance problems when either the plant or the controller is ill-conditioned.

Sometimes, it is attractive to express robust stability and performance condi-
tions in terms of bounds on transfer functions of direct engineering significance
(e.g., H or E) rather than in an implicit manner (11.3-8). This is possible if the
transfer matrix G is related to the transfer matrix T' of interest through a linear
fractional transformation (Sec. 11.4). However, contrary to condition (11.3-8)
these bounds are only sufficient for robust stability and performance.
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11.6 References

Sections 11.1 through 11.3 closely follow the paper by Skogestad & Morari
(1987b). All the examples in these sections are also taken from that paper.

11.1.2. The general robust stability theorem is covered in the paper by Doyle
& Stein (1981). They emphasize, in particular, the necessity of the theorem.
The proof presented here is patterned after that by Lehtomaki (1981). A de-
tailed explanation of what is meant by a “connected” set of plants is provided by
Vidyasagar, et al. (1982) and Postlethwaite & Foo (1985).

11.1.5. Postlethwaite & Foo (1985) show that Cor. 11.1-1 and 11.1-3 can be
combined over different frequency ranges.

11.1.7. A condition for robust integral control similar to (11.1-33) was proved
by Garcia & Morari (1985a).

11.2.2. The Structured Singular Value was introduced by Doyle (1982) who
also discussed its properties and a generalized gradient search procedure to mini-
mize its upper bound. Osborne (1960) developed the iterative scheme to minimize
|DMD=Y||r. An efficient procedure for computing the SSV based on its lower
bound was proposed by Fan & Tits (1986).

11.2.5. Alternative sufficient stability conditions in the presence of element by
element uncertainty were derived by Kantor & Andres (1983) and Kouvaritakis
& Latchman (1985). The claim about necessity in the latter paper is incorrect.

11.2.6. Morari (1983a), Morari et al. (1985) and Grosdidier, Morari & Holt
(1985) argued in a somewhat qualitative manner that for robust stability the
minimized condition number is a measure of sensitivity with respect to uncer-
tainty. Bristol (1966), in his original paper on the RGA, pointed out its simi-
larity with the condition number. A quantitative relationship between the two
was first established by Grosdidier et al. (1985) and then extended by Nett &
Manousiouthakis (1987). Tighter but more complicated conditions for robust

stability involving the condition number were derived by Skogestad & Morari
(1987b).

11.3. Doyle & Wall (1982) and Doyle (1984) pointed out the equivalence
between robust stability and robust performance and proposed the SSV as a tool
to assess robust performance.

11.3.2, 11.3.3. The sufficient robust performance conditions in the presence of
multiplicative input and output uncertainty were derived by Stein (1985).

11.3.4. The method in this section was proposed by Zafiriou and Morari
(1986b).
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11.3.5. The example is taken from the paper by Skogestad, Morari & Doyle
(1988). The procedure described by Doyle (1985) was used to find the “u-optimal”
controller.

11.4. This section follows closely the paper by Skogestad & Morari (1988c).
Postlethwaite & Foo (1985) also derive robustness conditions in terms of bounds
on transfer matrices of interest. However, in particular for structured uncertainty,
their bounds are not as tight as the bounds derived here.

11.4.1. Doyle (1984) showed that Nyy = 0 when T is a closed loop transfer
function. -



