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Chapter 7

FUNDAMENTALS OF
SAMPLED-DATA SYSTEMS
CONTROL

The chapters in this book dealing with the control of sampled-data systems are not
self-contained. It is assumed that the reader has mastered the preceding chapters
addressing the same topics for continuous-time systems. Indeed, some issues
which are essentially identical (for example, the design of two-degree-of-freedom
controllers) are completely omitted. In other cases only those features which
distinguish sampled-data systems from continuous systems are emphasized. The
equivalence of the classic feedback structure with the IMC structure was firmly
established for continuous systems. Therefore, rather than deriving all stability
and performance conditions first for the classic feedback structure (Chap. 2) and
then translating them to the IMC structure (Chap. 3) we will proceed directly
with the IMC structure after some general definitions and results for sampled-
data systems control.

Out treatment of sampled-data systems is different from that in many other
books in that we define performance in terms of the continuous plant output —
i.e., we pay close attention to the intersample behavior.

7.1 Sampled-Data Feedback Structure

The block diagram of a typical computer-controlled system is shown in Fig. 7.1-
1A. Thick lines are used to represent the paths along which the signals are contin-
uous (analog). The sampling switch is used to describe the A /D converter which
is modelled as an impulse modulator. When a signal a(t) is fed to a switch with
a sampling time T, it yields as an output the impulse sequence a*(t)

a*(t) = 3° a(KT)5(t — kT) (7.1-1)
k=0
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The Laplace transform of a*(t) is
. k
L{a*(®)} = a*(T) = ¥ a(kT)e (7.1-2)
3 k=0
Alternatively we can represent the impulse sequence by its Fourier series
1 & ko,
a*(t) == > a(t)e™ (7.1-3)
T k=—00

where w; is the sampling frequency

27
= 7.1-4
Ws T ( )
From (7.1-3) we obtain a different representation of £{a*(t)}
L{a*(t)} = a*(eT) = % o (7.1-5)
k=—00
The transformation

z=¢e7T (7.1 -6)

will be used throughout the book. Then a*(z) is the z-transform of the signal
a(t). The following notation describes (7.1-2) and (7.1-5).

a*(z) = ZL7Ha(s)} (7.1=17)

It is clear from (7.1-5) that a*(e™7T) is periodic in w with period w,. It is also
important to note that for a rational function a*(z) we have a*(2)? = a*(z%),
where the superscript # indicates complex conjugate, and therefore for /T <
w < 27 /T we have:

a*(ein)H _ a*(e—iuT) — a*(ei(w,—w))T (7'1 _ 8)

Hence, in addition to periodicity, a rational z-transform a*(z) has the property
that its values for frequencies larger than 7 /T are uniquely determined by those
for 0 <w < w/T.

For the signals in Fig. 7.1-1A we have
r*(z) = ZL7Hr(s)} (7.1-9)
d*(2) = ZL7Hd(s)} (7.1 - 10)
y*(2) = Z2L7Hy(s)} (7.1-11)
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Figure 7.1-1. Block diagram of computer controlled system. A: Sampled-data structure with thick
lines indicating analog signals. B: Discrete structure with all signals discrete.

The controller z-transfer function c(z) represents a difference equation, which
models the computer program. The zero-order hold hy(s) models the D/A con-
verter, which constructs the piecewise-constant input to the plant from the im-
pulse sequence described by u(z). We have
—sT
ho(s) = Lif-—— (11 ="12)
The block y(s) represents an analog anti-aliasing prefilter. Briefly one can
understand the problem of aliasing from (7.1-5). After substitution of s with
iw, it follows that the value of a* at a frequency w is the sum of the values of
the continuous signal a at the frequencies w + kw; divided by T. The result is
that after sampling, a high-frequency disturbance or measurement noise cannot
be distinguished from an equivalent low frequency one. The objective of the
prefilter is to cut off high frequency components from the analog signals before
sampling, when that is necessary. Its transfer function is stable.

Note that no measurement device block is included in Fig. 7.1-1. When the
dynamics of the measurement device function are significant they can be included
in the prefilter v(s).

When the continuous output y is not observed directly but after the prefilter
and only at the sampling intervals, then Fig. 7.1-1A can be simplified to Fig.
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7.1-1B.
di(z) = ZL Y y(s)d(s)} (7.1 —13)

yi(z) = ZL7{v(s)y(s)} (71 =14)
Here all signals are impulse sequences. The block pi(s) is the pulse transfer
function representing the zero-order hold equivalent of p(s)y(s). We define

pi(2) = ZL {ho(s)p(s)7(s)} (7.1-15)
and similarly
p'(z) = ZL " {ho(s)p(s)} (7.1 - 16)
Pulse transfer functions are always rational in z, although the continuous transfer
functions may include time delays. Time delays appear as poles at z = 0. It
should also be noted that in the case of pulse transfer functions, the definitions
of proper and causal in the spirit of Sec. 2.1 coincide.

Definition 7.1-1. A system g(z) is proper or causal if lim, .0g(z) is fi-
nite. A proper system is strictly proper if lim, .g(z) = 0 and semiproper if
lim, . |g(2)] > 0. All systems which are not proper are called improper or non-
causal.

A system g(z) is improper if the order of the numerator polynomial exceeds
the order of the denominator polynomial and proper otherwise. An improper
system is not physically realizable because it requires prediction.

It is useful to understand the relationship between the poles and the zeros of a
continuous-time system and of the corresponding discrete-time system. Poles are
mapped in a simple manner: if 7; is a pole of the continuous system then e™7 is

a pole of the corresponding discrete system (zero order hold included). It is not -

possible to give a simple formula for the mapping of the zeros. The zeros of the
discrete-time system depend on the sampling period. In particular, it is possible
for a discrete-time system to have zeros outside the unit circle (UC) even when
the corresponding continuous system is MP. The converse can also happen.

It is well known that poles of a continuous system can become unobservable
by sampling. We will assume throughout the book that the sampling rate has
been chosen such that all unstable poles of the continuous system p(s) appear in
the pulse transfer function pZ(z). With this assumption the internal stability of
the system in Fig. 7.1-1A can be assessed in terms of the system in Fig. 7.1-1B.

Theorem 7.1-1. The sampled-data system in Fig. 7.1-1A is internally stable if
and only if the transfer matriz in (7.1-17)

iy A . "

Yy} _ | Hphe  14pye r (7 1- 17)
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is stable — i.e., if and only if all poles of the four pulse-transfer functions are
strictly inside the unit circle (UC).

7.2 IMC Structure

The block diagram of the sampled-data IMC loop is shown in Fig. 7.2-1A. The
block p%(z) is the pulse transfer function representing the zero order hold equiv-
alent of p(s)v(s), where p(s) is the continuous plant model. We define

Py(z) = ZL7 {ho(s)p(s)v(s)} (7.2-1)

and similarly
B'(2) = ZL7 {ho(s)(s)} g
The same block manipulations as in the continuous case can be used here to
derive the relations between the feedback controller ¢(z) and the IMC controller

q(z):

q
c= = 72—3)
11—y (
c
= 7.2—-4
= 1+ p3c ( )

When c and g are related through (7.2-3) or (7.2-4), u(z) and y(s) react to inputs
7*(z) and d(s) in exactly the same way for both the classic feedback and the IMC
structure.

In Fig. 7.2-1B a different configuration is drawn for the sampled-data IMC
structure. This configuration is equivalent to that of Fig. 7.2-1A, but is not
suitable for computer implementation because of the presence of the continu-
ous model p(s). However Fig. 7.2-1B demonstrates the properties of the IMC
structure, that were discussed in Sec. 3.1, in a clearer way.

If only the sampled signals are of interest, then Fig. 7.2-1A and B are equiva-
lent to Fig. 7.2-1C where all signals are digital.

Finally, it should be noted that the implicit assumption has been made
throughout this section that an exact model is available for the anti-aliasing
prefilter y(s). The simplicity of this control-loop element makes this assumption
valid and allows us to avoid unnecessary complications.

7.3 Formulation of Control Problem

For the design of a discrete controller the same items have to be specified as in
the continuous case:
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Figure 7.2-1. IMC structure. A: Sampled-data structure; B: Structure equivalent to (A) but not
implementable; C: Discrete structure (all signals discrete).
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® process model
e model uncertainty bounds
e type of inputs

e performance objectives

The process model can be continuous or discrete. There are advantages to start-
ing with a continuous model (see Sec. 7.3.1). The inputs of interest, in particular
the disturbances, are continuous in nature. Therefore the same input specifica-
tions (specific inputs, sets of inputs) as discussed in Sec. 2.2.3 are relevant here.
In terms of performance, one is usually interested in the behavior of tne contin-
uwous rather than the sampled output. The fact that only the sampled output is
available to the controller leads to some complications in the specification of a
meaningful design objective which will be addressed in Sec. 7.5.

7.3.1 Process Model

Most popular identification schemes generate pulse transfer function models.
Such models are sufficient for control system design but do not allow the analysis
of the intersample behavior which can be significantly worse than the behavior
at the sampling points, as we will show later in this chapter. Furthermore, model
uncertainty is more naturally described in terms of the continuous system. Thus,
it is desirable that a continuous system model be available. The system itself will
be assumed to be linear and time invariant but not necessarily finite dimensional.
Systems with time delays do not cause any problems for the design of discrete
controllers.

7.3.2 Model Uncertainty Description

In Sec. 2.2.2 the additive and multiplicative uncertainty descriptions were pre-
sented, which assume that for each frequency w, the actual plant p(iw) lies in a
disk-shaped region of known radius around the model j(iw). For sampled data
systems we also need to know how far p?(e*T) lies from the known j%(e*T). This
information can be obtained from the information on p(s). Let p(s) belong to the
family IT of plants defined by

I = {p: |p(iw) - p(iw)| < Le(w)} 73 1)

or equivalently
pliw) = pliw) + L,(iw) (7.3-2)
[€.(iw)| < l(w) Vpell (7.3 -3)
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From the definitions (7.1-15) and (7.2-1) we find

py(eT) = B3(eT) = ZL71 {ho(s)y(s)(p(s) — B(s))} = Zﬁ_ll{ho(sh(s)f;(;)} 9
and by using (7.1-5) .

? sk (W 1 - 4 -
pfr(e“"T) = prie = T k_z hovla(iw + ikws) (7.3 - 5)

With (7.3-3) we obtain the following bound

i ~% (4w 1 = , . o )
P (e = BN S 7 2 |Boy (1w + ihw,)[fa(w + kw;) 20 (w) (7.3 - 6)

= — 00

The above sum converges because |hgy(iw)|{,(w) — 0 faster than 1/w as w — oo.
This happens because |hyy(iw)| — 0 at least as fast as 1/w as w — oo, even if
v(s) = 1. Also a bound Z,(w) such that f,(w) — 0 as w — oo can always be
found since any physical system p(s) and its model p(s) are strictly proper and
therefore {,(w) — 0 as w — co. Note that if a prefilter v(s) is used, the property
Lo(w) — 0 as w — oo is not needed for convergence.

Let us now define the family IT* of plants p(s) as follows

IT* = {p(s) : [p3(e*T) — pi(e™“T)| < la(w)} (7.3=1)

Clearly IT* depends on the choice of T and 7(s). However, the steps to arrive at
(7.3-6) imply that if a plant p(s) belongs to II, then it also belongs to IT*.

Because of the step from (7.3-5) to (7.3-6) the description (7.3-7) is conser-
vative but not much so. The reason is that the sum in (7.3-5) and (7.3-6) has
only a few dominant terms: |y(iw)| is designed to be small for w > /T in or-
der to cut off high frequency components. Also ho(iw)/T is small for w > /7.
Therefore, the only dominant term in (7.3-5) and (7.3-6) is the one for which
—7/T < w+ kw, < 7/T. Hence for 0 < w < 7/T, the dominant term corre-
sponds to k = 0. Computationally it is rare that more than two or three terms
are significant.

7.4 Internal Stability

Assuming that the sampling time 7" has been chosen to avoid unobservable un-
stable poles in p} we only need to study the internal stability of the system in
Fig. 7.2-1C where all signals are digital. The internal stability conditions can
be stated in terms of pulse transfer functions and the arguments of Section 3.2.1
carry over directly.
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Theorem 7.4-1. Assume that the model is perfect (p(s) = p(s)); then the IMC
system in Fig. 7.2.1A is internally stable if and only if both the plant p(s) and
the controller q(z) are stable.

7.5 Nominal Performance

The objective is to keep the continuous error e between the plant output y and
the reference r small when the overall system is affected by external signals r and
d. Contrary to the continuous case, there is no transfer function between d and
e but the relationship is time varying. We will explain the problem in Sec. 7.5.1
and suggest meaningful approximations.

7.5.1 Sensitivity and Complementary Sensitivity Function

From the IMC structure of Fig. 7.2-1A or B we can easily obtain for p = p

y(s) = ho(8)p(s)g(eT)(r*(e*T) — di;(e“‘T)) + d(s) (7.5-1)

We are interested in finding transfer functions relating the external inputs r(s)
and d(s) to the error

e(s) = y(s) —r(s) (7.5 -2)

where r(s) is the Laplace transform of the continuous time function we wish
the plant output to follow. The signal r(s) is related to r*(e*T) through (7.1-9)
but it does not appear in the block diagrams since no hardware (A/D converter
modelled by the sampling switch) is actually used to obtain r*(e*T).

Simple inspection of (7.5-1) indicates that it is not possible to obtain transfer
functions relating r(s) and d(s) to e(s). Let us first consider the relation between
r(s) and e(s). Equations (7.5-1) and (7.5-2) yield

e(s) = ho(s)p(s)g(e T )r*(e*T) — r(s) (7.5~ 38)

Clearly there is no transfer function relating r(s) to e(s). The reason is that the
relation is time-varying — i.e., the response of e(s) to r(s) depends on the time
relative to the sampling instant at which the signal r(s) is applied. A transfer
function can be obtained in the special case when £7!{r(s)} remains constant
between sampling instants. In this case we have r(s) = ho(s)r*(e’T) and then
(7.5-3) yields

"((? - h0<Z>iS’ZLT) =1-§(s)g(e™) 2 &(s) (7.5=4)
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The complementary sensitivity function 7,(s) relating y(s) to r(s) can be obtained
by subtracting the sensitivity function é.(s) from unity.

ho(sgw(jze”) = p(s)a(e”) £ n(s) (7.5 -5)

Let us now consider the relation between d(s) and e(s) or equivalently d(s)
and y(s). From (7.5-1) we have

y(s) = d(s) - ho(s)p()g(eT)d} () (7.5-6)

Again the relation is time varying and there is no transfer function connecting
d(s) to y(s). If, of course, y(s) = 1 and £71{d(s)} remained constant between
the sampling instants, then we could proceed in a manner similar to that for r(s)
and obtain the same expression for the sensitivity function as in (7.5-4). The
assumption, however, that £71{d(s)} is constant between the sampling instants
is not realistic.

There are three possible approaches to deal with this problem:

1. The time varying sensitivity operator can be bounded by a “conic sector.”

2. The bandwidth of the disturbance signal d(s) can be assumed to be limited
and an approximate sensitivity function can be defined.

3. The plant output can be studied at the sampling instants only and an appro-
priate pulse-transfer function can be derived.

We will discuss the latter two approaches in the following.

Approzimate sensitivity function for bandlimited disturbance signal. We will

assume the disturbance to be approximately limited to the frequency band up to
n/T.

From (7.1-5) we find
1 00
di(e*T) = T Y d(s+ ikws)y(s + thws) (7.5-17)
k=-—00

Because d is band limited and because v is designed to attenuate signals at
frequencies larger than /T, (7.5-7) can be approximated by

* (AW ~ 1 . . T
dy(e™T) = T(l(zw)'y(tw) 0<w< T (7.5 -8)
With this approximation (7.5-6) becomes
: * — ; 3 .
y(iw) = |1 - -fho(zw)p(zw)q(e""T)'y(zw) d(tw) 0<w< %:— (7.5-9)
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Defining the new “controller”

1 o
§(s) = mho(s)a(e)v(s) (7.5 - 10)
(7.5-9) can be rewritten as

y(iw) & (1 — pliw)§(iw))d(iw) £ &(iw)d(iw) 0<w < (1.5 - 11)

which is identical in structure with what can be obtained for the continuous
system. For continuous systems the expression is exact, while for sampled-data
systems it represents an approximation of a time-varying relationship.

Sensitivity pulse-transfer function. Sampling of (7.5-1) yields
V(2) = F'(2)a(2) (" () — d5() + (2) (7.5 - 12)

Then by assuming (s) = 1, we can obtain sensitivity and complementary sensi-
tivity pulse-transfer functions, connecting e*(z) to r*(z) and d*(z), where

e*(2) = ZLYHe(s)} (7.5 -13)
&(2)21 - p*(2)q(2) ' (7.5 — 14)
i*(2) £ p*(2)a(=) (7.5 -15)

However, disregarding the intersample behavior of the plant output may lead to
serious problems as will be illustrated in Sec. 7.5.3.

7.5.2 Asymptotic Properties of Closed-Loop Response

“System types” were defined in Sec. 2.4.3 to classify the asymptotic closed-loop
behavior. A “Type m” system, where m is a non-negative integer is defined as
a system which tracks perfectly, as time — oo, inputs r(s) and d(s) with all the
poles in the LHP except m or less poles at s = 0. The conditions that have to be
satisfied in order for this to happen impose certain requirements on the controller
q(z) and the anti-aliasing prefilter 7(s), described by the following theorem (see
for comparison Sec. 3.3.3).

Theorem 7.5-1. Provided that the closed-loop system is stable, the necessary and
sufficient conditions for the system to be “Type m” (m > 0) are the following:

k
lin% ;;‘l:z(l —p(2)¢(z)) =0, 0<k<m (7.5 - 16)
.
Lg%@(l——y(s)):& 0<k<m (7.5 -17)
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Proof. The disturbance d(s) goes through v(s) before it is sampled and therefore
we clearly need

lim £{d(s) — v(s)d(s)} = Lim(s(1 ~ 7(s))d(s)) = 0 (7.5 -18)

time—o00

Since (7.5-18) must be satisfied for all d(s) with m or less poles at s = 0, (1—-(s))
has to have m zeros at s = 0, which will be the case if and only if (7.5-17) holds.

We obtain from Fig. 7.2-1A or B

o = p*(2)a(2) (2} — d* (2 “(2) — r*(2 5

~ Condition (7.5-17) implies that
i Z7EE) - 4} =l - )@ @) — ) =0 (75-20)

Hence for tracking considerations, d(z) can be replaced by d*(z) in (7.5-19)

14 glph —f5) - P'q .

e(z) = - (7.5 —21)
o 1+4q(p; - p})
where v* = d* — r*. (7.5-17) also implies that
oim  Z7H(py —p)u'} =0 (7.5 - 22)

Thus, for tracking considerations p} can be replaced by p* and similarly Py by p*.
Then (7.5-21) becomes
1-pq
e'(z) = ————* 7.5 —23
=13 -7 ( )
Assume that v* has at most m poles at 2 = 1 and apply the final value theorem
to (7.5-23). Condition (7.5-16) follows directly. : o

The implications of (7.5-16) for the design of g(z) will be considered in Chap.
8. Let us discuss briefly the design of the prefilter v(s), whose objective is to cut
off high-frequency components. Most digital control books discuss different types
of anti-aliasing prefilters, which satisfy (7.5-16) for m = 1, like Butterworth and
Bessel filters. For the case of m > 1 a simple modification can be used. Let us
write

7(s) = 71(s)7m(s) (7.5 — 24)
where
TR L T S PR |
(7—3 + l)m——l

Ym(s) = (7.5 — 25)




7.5. NOMINAL PERFORMANCE 155

and v1(s) is an appropriate prefilter for m = 1. Then for a specified 7, (7.5~
17) can be used to compute the coefficients cy, ..., cn-1. Qualitatively it is clear
that the use of v (s) to satisfy (7.5-17) should not change the behavior of 7(s)
significantly. Condition (7.5-17) simply adds some properties at w = 0 and this
can be done without affecting the high-frequency properties of y;(s). A large 7
should be used to push the effect of y,,(s) toward w = 0. Indeed for a usual
second-order filter v(s) = w?/(s? + 2wo(s + w?) and for m = 2 (ramp inputs),
(7.5-17) yields ¢; = 7 + 2¢/wp and therefore for a sufficiently large 7,vm,(s) does
not affect the high-frequency performance of y(s) significantly.

7.5.3 Limitations on Achievable Performance

In Sec. 3.3.4 the concept of “perfect control” was discussed and three sources
of limitations on the achievable closed-loop performance were given, namely the
NMP characteristics of the plant, constraints on the inputs and model uncer-
tainty. In this section some additional sources, particular to sampled-data control
systems will be discussed.

(1) Intersample rippling
To demonstrate the problem we shall assume that p(s) = p(s) and d(s) = 0.
Let us consider the system

2
= 7.5—2
p(s) (24 125+ 1)(s+2) 7=
and choose a sampling time T = 1.8. Then
2> +1.01z + 0.0597
*(2) =04 7.5—27
P'(2) = 0483 {1757 10,1157 = 0.00315 ( 2
The behavior of two control algorithms will be examined:
ai(z) = (2p*(2)) ™ (7.5 - 28)
B . z—0.
- 1.0012 0.1162* + 0.118z — 0.00315 (7.5 — 29)

pe
The response to a step change in the setpoint r(s) is shown for both algorithms
in Fig. 7.5-1. Clearly ¢1(z) produces an unacceptable response. However if one
concentrated only at the sampling instants, which is equivalent to using (7.5-12)
instead of (7.5-1), then it would seem that ¢;(z) produces a perfect response
which reaches the setpoint in one sampling interval and remains there. On the
other hand, although ¢3(z) produces an excellent response, if one looked only
at the sample points it would seem inferior to that of ¢;(2) since it takes three
sampling intervals to reach the setpoint.
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Figure 7.5-1. Demonstration of intersample rippling. Dash: qq; Solid: ¢,.
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Figure 7.5-2. Bode plot of complementary sensitivity 7,.

The cause of the problem is the pole of ¢;(z) at z = —0.94. From (7.5-1), and
(7.5-12) we obtain for p(s) = p(s):

y(s) = p()g(e T ho(s)r* (T (7.5 - 30)

y'(2) = p'()a()r*(2) (7.5 - 31)
In (7.5-31) this pole cancels with the zero of p*(z) and its bad effect does not
show up in y*(z). This does not happen in (7.5-30), however, as is shown on
the Bode plots of 7,(s) in Fig. 7.5-2, where the pole of ¢;(z) at z = —0.94
causes a peak in |,(iw)|. Figure 7.5-1 clearly indicates that the problem appears
because g;(z) produces an oscillatory output u(z) with a period that matches the
sampling period and whose effect does not show up in the sampled output y*(z).
This is a characteristic of poles near (-1,0) on the z-plane. Hence, to avoid such
hidden oscillations (intersample rippling) one should use an IMC controller g(z)
which has no poles near (-1,0) or in general no poles with negative real part. A

controller ¢(z) which inverts the model p(z) cannot be used when p(z) has zeros
close to (-1,0).

(ii) Effect of sampling on performance

From a qualitative point of view, sampling clearly puts a limitation on the
achievable performance since one can obtain information on the system output
and change the control action only at every sampling point. We can demonstrate
this fact quantitatively by looking at 7,(s), given by (7.5-5) for p(s) = p(s). In
Fig. 7.5-3 a typical Bode plot of p(s) is shown. For perfect performance 7,(s) = 1
~i.e., g(e°T) should be equal to the inverse of p(s). However, as shown by (7.1-8),
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/T 2n/T 4n/T
FREQUENCY (RADIANS/TIME)
Figure 7.5-8. Effect of sampling on performance (logarithmic plot). Solid line: |p(iw)|. Dash and

dot line: |g(¢™7)|. Dashed line: |p(iw)g(e™7)|. (Reprinted with permission from Int. J. Control,
44, 716(1986), Taylor & Francis Ltd.)

g(e*7T) is periodic in w with period w, and its values for frequencies larger than
7 /T are uniquely determined by those for w < n/T. In Fig. 7.5-3 an ideal g is
plotted which inverts p(s) for w up to n/T. In order for this to be accomplished,
g has to be of infinite order. Even for this ¢, it is clear from Fig. 7.5-3 that

the closed-loop transfer function p(s)g(e®T) cannot have a bandwidth larger than
w/T.

7.5.4 Discrete Linear Quadratic (H;-) Optimal Control

In the continuous case, the objective of Hj-optimal control theory is to minimize
the integral of the squared error — i.e., the Hs norm of the error — for a particular
input. The Hj norm for a discrete signal e*(z) is given by

(o]
el = £ et (7.5 - 32)
where the sequence {e;} is defined from

{er} = Z7{e*(2)} (7.5 — 33)

The objective of the Hj-optimal controller §y is to minimize (7.5-32) resulting
from a particular reference and/or disturbance change. Recall that a discrete con-
troller is not effective in rejecting disturbances in the frequency range w > 7 /T.
Thus for the computation of the Hj-optimal control law it is not meaningful to
specify disturbances with large high-frequency components. Therefore ¢} should
be designed for the filtered disturbance d3 rather than d*. Then we find from Sec.
7.5.1

e'(2) = € (2)(d5(2) — r*(2)) (7.5 — 34)
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Let us define the combined inputs
v*(z) = d}(2) — r*(s) (7.5 — 35)

With the help of Parseval’s theorem we can rewrite the objective (7.5-32)
1 g ;
*112 S * 1012 oo
o'l = 5= [ le* ()P0 (7.5 - 36)
and upon substitution of (7.5-34) and (7.5-35)
"1 = 5= [ 1€X()er () s (15— 37)
T J-n
Thus, the Hj-optimal control problem becomes
min ||€*v*||2 = min ||(1 — p*q)v*||2 (7.5 —38)
a(2) q(2)

Note that in this formulation no attention is paid to intersample behavior. Ex-
perience has shown that the Hj-optimal controller can lead to unacceptable in-
tersample rippling.

7.5.5 H, Performance Objective
In Sec. 2.4.5 we introduced the H,, performance objective
lew|lo < 1 , (2.4 — 20)

We found it particularly relevant for disturbance rejection because rather than
restricting the disturbance to a specific function it assumes the disturbance to
belong to a set. Usually this is more realistic. Because of the time varying nature
of the sampling operation there exists no sensitivity function for sampled-data
systems and thus (2.4-20) cannot be defined. We can, however, state an objective
similar to (2.4-20) for the approximate relation (7.5-11).

We assume the disturbance to be approximately limited to the frequency band
up to m/T. This implies for the weight w

lw(w)] << 1, w>% (7.5 — 39)

Therefore (2.4-20) can be approximated by
lew|] <1, 0<w< % (7.5 — 40)

Using (7.5-11), (7.5-40) can be expressed as
1= Biw)i()uw@)] <1, 0<w< (7.5 — 41)
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Note that (7.5-41) is exactly equal to (2.4-20) if the disturbance d has no com-
ponents at frequencies higher than /7.

Let us assume that the performance specification for disturbance rejection has
been stated in the form of (2.4-20) in terms of the continuous input and output
signals. Then (7.5-41) can be used to assess if these specifications can be met
with the digital controller ¢(z).

7.6 Robust Stability

We wish to derive a condition that guarantees stability of the control loop for
all plants in the family IT* defined by (7.3-7). The Nyquist stability criterion as
applied to discrete systems can be used to obtain such a condition in exactly the
same way as for continuous systems. Hence in the same way as in Sec. 2.5 we
can derive the following theorem, where for consistency with the continuous case
we define

(W) = G(w)/ 15" (e*T)] (7.6-1)
Theorem 7.6-1 (Robust Stability). Assume that all plants p(s) in the family

H*

I = {p(s) : [p(e“T) — 5 (T)
have the same number of RHP poles and that these poles do not become unob-
servable after sampling. Let c¢(z) be a controller that stabilizes the system in Fig.
7.1-1A for the nominal plant p(s). Then the system is robustly stable with the
controller c if and only if the complementary sensitivity function 7j*(z) for p(s)
satisfies

< Gw)} (7.3-17)

|7 (e D)(w) <1, 0<w< /T (7.6 - 2)
(Note that the periodicity and (7.1-8) imply that (7.6-2) holds for all w if it holds
for 0 <w < w/T.) '

The IMC structure can be used for control system implementation only when
the plant is stable. Then the robust stability condition is described by the fol-
lowing theorem.

Theorem 7.6-2 (Robust Stability). Assume that all plants p(s) in the family
II* are stable, that q(z) is stable, and that c(z) is related to q(z) through (7.2-3).
Then the systems in Figs. 7.1-1A and 7.2-14 are robustly stable if and only if

|7 (e )|(w) <1, 0<w< /T (7.6 — 3)
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7.7 Robust Performance

In a similar manner as in Sec. 7.5.5 we will develop an approximate sensitivity
function on the basis of which we will assess robust performance. It follows from
Figs. 7.2-1A or B that y(s) and d(s) are related by the time-varying expression

- hoop(s)ae®) . )
¥() = d) ~ e ey < e o) T7=1

When d is bandlimited we can use the approximation

; 1 s
w (Wl o = (2 il E o —
dy(e"") = Td(zw)'y(zw) 0<w< T (7.5 -8)
derived in Sec. 7.5.1. We can use the arguments of Sec. 7.3.2 to justify
i ol w ~ 1 . . . ™
Pi(eT) = (€T & Zho(iw)(iw)la(iw) 0w < T (1.7-2)
With (7.5-8) and (7.7-2), (7.7-1) becomes
. 1 — ho(iw)p(iw)g(e“T)y(iw) /T ,, . T
=] : d <w< = 7.7-3
Y(iw) & T i) g (@ (i) (i) T ) 0S@ ST ( )
With the “controller” i
(s) = a(eYha(s)(s) (7.5 - 10)
equation (7.7-3) can be rewritten as
o 1= piw)g(iw) m
&= - q <w< = A -
y(iw) T £(i0)3() diiw) 0<w< 7 (7.7-4)

Equation (7.7-4) is identical in structure with what can be obtained for the
continuous system. For continuous systems the expression is exact, while for
sampled-data systems it represents an approximation of the time-varying rela-
tionship between y and d. We can take advantage of this structural similarity
and restate approximate conditions for sampled-data systems which were derived
for continuous systems in Sec. 2.6.

7.7.1 H, Performance Objective

To estimate the worst error that can occur when a specific controller is used for
a family II of plants we can use the expression derived from (7.7-4)

(1= B(iw)ilis)d(iw) P
T Zofw) (i)

~ 1 /T
max lell} = = [ dw (7.7~ 8)

2@ J=x/T




162 CHAPTER 7. FUNDAMENTALS OF SAMPLED-DATA SYSTEMS CONTROL
Because of the robust stability condition (7.6-2)
Lu(@))d(iw)] < B(w)lg*(e“T)] < 1 (1.7-6)

and the integrand in (7.7-5) is always bounded. Because of the approximations
made to arrive at (7.7-4), (7.7-5) is valid only when the bandwidth of d is limited
to m/T. Furthermore, it is optimistic — i.e., the error bound is underestimated
because (7.7-2) underestimates the uncertainty.

7.7.2 H, Performance Objective

Based on the approximation (7.7-4), the Hy objective (2.4-20) for robust per-
formance can be stated
1 — p(iw)§(iw) 1
14 4, (tw)g(iw)| ~ w(w)’

Ve, 3 | (iw)| £ l(w), 0L w<a/T (7.7=17)

where the weight w(w) is designer specified. Note however that w(w) cannot be
chosen arbitrarily large because even for ¢, = 0, the left hand side of (7.7-7) may
be nonzero. The selection of w(w) will be discussed in Sec. 8.4.1.

The following conditions are completely equivalent to (7.7-7)
|1 — p(iw)g(iw)|w(w)

1 = £o(w)]g(iw)|
G lalw) + 11 - Biw)i@)o() <1, 0Sw< /T (17-9)

Condition (7.7-9) is identical in structure with the result for continuous systems.
While it is exact for continuous systems, (7.7-9) is generally optimistic because
of the approximation (7.5-8) and (7.7-4).

<l, 0<Lw<n/T (7.7 -8)

7.8 Summary

The basic IMC concepts carry over to the discrete case without major modifica-
tions. Because of the sampling operation an anti-aliasing prefilter y(s) has to be
included in the control system (Fig. 7.2-1) and the process model f%(z) (7.2-1)
has to be defined accordingly. When the classic feedback controller ¢(z) and the
IMC controller g(z) are related through

T
4 - P3q

(72-8)

B
- 1+ e

q (7.2-4)
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then the input-output behavior of the IMC structure and the classic feedback
structure is the same. The IMC structure can be used for implementation only
if p and ¢ are stable. The classic feedback system is internally stable for p = p if
and only if g defined by (7.2-4) is stable (Thm. 7.4-1).

For the design of a discrete controller the following has to be specified:

e process model
e model uncertainty bounds
e type of inputs

e performance objectives

In order to account for the intersample performance the availability of a contin-
uous plant model is essential. Model uncertainty bounds for the discrete model
can be obtained from the bounds ¢, for the continuous model:

: o 1 S - "
) = BN < 75 8 hor(io + ikl + ko) & Bw)  (73-0)
T ,

If the reference trajectory r is assumed to be constant between samples (r(s) =
ho(s)r*(e*T)) then the sensitivity and complementary sensitivity can be defined

in the usual manner:
&(s) =1 - p(s)q(e’T) (7.5—4)
in(s) = B(s)g(e™) (7.5-5)
The disturbance d is usually not constant between samples. Then the relation-

ship between d and y is time varying and a transfer function cannot be defined.
However, if d is band limited up to 7/T then approximately

y(iw) = (1 - pliw)j(iw))d(iw) 0<w < -;f,- (7.5 — 11)
. where q
q(s) = T’TIO(S)EI(GST)’Y(S) (7.5 -10)

For asymptotically error-free response to polynomial inputs (i.e., Type m be-

havior) the controller ¢ and anti-aliasing filter v must have the following properties
. '

lim E—-E(l —-p*(2)g(z)) =0, 0<k<m (7.5 — 16)

z—1dz

ot .,
£1i%a;;(l~’y(s))=0, 0<k<m (7.5 - 17)
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Apart from the factors which limit the closed loop performance of continuous
systems (NMP characteristics, constraints and model uncertainty) two more lim-
itations arise for discrete systems: intersample rippling caused by poles of the
controller ¢ close to (-1,0) and a limitation of the effective closed loop bandwidth
to /T caused by the sampling operation.

The two performance objectives discussed in this book for discrete systems are
the sum of the squared errors

1 ‘ T 3 !
* *112 . = sk (10N k102 _
Hy: el = 5= [ 1€(e”)o(e?)Pa8 (7.5 - 37)
and a bound on the sensitivity utilizing the approximate relationship (7.5-11):
Ho: |(1-pliw)iliw))ww)| <1, 0<w< -;2 (7.5 — 41)

The robust stability condition for discrete systems is formally similar to that for
continuous systems

7" ()| (w) <1, 0<w< (7.6 — 3)

Nl

An approximate (somewhat optimistic) condition for robust performance in the
H, sense can be derived for (7.5-11):

|§(iw)lla(w) + 11 = piw)d(iw)ww) <1, 0Sw< (7.7-9)

B
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erators, like the sensitivity operator or the sampling switch, with “conic sectors.”

7.5.2. For a list of anti-aliasing prefilters for “Type 17 systems, see Astrom
and Wittenmark (1984, p. 28).



Chapter 8

SISO IMC DESIGN FOR STABLE
SAMPLED-DATA SYSTEMS

As in the continuous case the IMC design procedure consists of two steps.

STEP 1: Nominal Performance
The controller §(z) is selected to yield a “good” system response for the in-
put(s) of interest, without regard for constraints and model uncertainty.

STEP 2: Robust Stability and Performance
The controller §(z) is augmented by a lowpass filter f(z) (¢(z) = §(2)f(2)) to
achieve robust stability and robust performance. .

8.1 Nominal Performance

In the continuous case § is designed so that it minimizes the integral of the squared
error for a particular input. The analogous approach in the discrete case would
be to design the controller to minimize the sum of the squared errors for some
external setpoint or disturbance input. Although such a controller may suffer
from the problem of intersample rippling as exhibited in Sec. 7.5.3, it can be
used as a starting point for the design of ¢(z). In Sec. 8.1.1 the design of the
discrete linear quadratic optimal controller will be discussed and in Sec. 8.1.2
an appropriate simple modification of this controller will be introduced to avoid
intersample rippling.

8.1.1 H3;-Optimal Control

The Hj-optimal controller ¢y (z) is designed by solving the following minimization
problem

min |le*|ls = min ||(1 = p*(2)qu(2))v*(2)|l2 (7.5 - 38)
Gu(z) qu(=)
subject to the constraint that Gy (z) be stable and causal.

165
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The following theorem which provides the solution of (7.5-38) will be proven
in Chapter 9 for the general case of unstable plants.

Theorem 8.1-1. Assume that p is stable. Factor the model p*(z) into an allpass
part py(z) and piy(2)
p'(z) = Pa(2)pu(2) (81-1)
e (1= E=)
~ -N  \Sy 2=
Z) =7
e = LT oG- @)

j
and (j, 3 =1,...,h are the zeros of p*(z) which are outside the UC. The positive
integer N is chosen such that pj,(z) is semi-proper — i.e., its numerator and
denominator have the same degree, which is equivalent to saying that N is such
that 2N p*(2) is semi-proper.

h
(8.1-2)

Factor the input v*(z) similarly — i.e.,
v*(2) = vi(=)vi(2) (81-9)

£ o gt F (L =16E TN = Gy)

A= A G- @

where Cy;, = 1,...,hy are the zeros of v*(z) outside the UC and N, is such that
zNvu*(2) is semi-proper. The Hj- optimal controller Gy (z) is given by

(8.1 —4)

Gu(2) = 2(Bhva) ™ {5 k), o (81-9)

where the operator {-}. denotes that after a partial fraction expansion of the
operand only the strictly proper and stable (including poles at z = 1) terms are
retained.

Note that §x(2) is stable and causal. Also note that in order for the system to
be Type m when G (2) is used as the controller, the input v(s) for which Gy(z)
is designed must have m poles at s = 0.

The evaluation of (8.1-5) for specific inputs v* yields the results shown in
Table 8.1-1. As an illustration, let us compute the Hj-optimal controller for two
different inputs.

Example 8.1-1.
vt =vjy = z(z - 1) (Step)
B = G- ) = (- 1)

Gu(z) = z(Pyvy) Mz = D)7 = it
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Table 8.1-1. Hj-optimal controller for some typical input forms.

Input Input Countroller
v(s) v(2) dn(z)
1 z ~% A,
- ey (B ()"
- /T -1 ~T/r
To+1 z—e~T17 (Bar(2)) (Pale ))
1 2 l_e—T/r _1(1—5 A =1, ~T/T\,~T/T z ~*—-l ~T/r ] e—T/f
s(rs+1) (z—(l)(z—-e-T)/T) (pA ( )) e k (1_1-;$r)z S e
1 X = o
312 (zl_“i)z (pM /’) 1(N+E41)2—N

z

where Z £ LB (=)z

b =

K C”)-
Lj=1 T=g) (1= (c =
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Example 8.1-2.

e T
vo= Uﬂ[ = — e*—T/T'
-1 % o r k=T /r\\— 1/T
{2 'p 1UM},, &= {PA . __é—T/'r}* = (Pale T/ ) lwz_e*;r/r
= sk ok N=lg o~k ¢ T\~ 1/ T
Gn(2) = 2(Bhevi0) " Fa(e ™)L = B (e )

8|
The derivation of gy for the other inputs listed in Table 8.1-1 is left as an exercise.

In the case of setpoint following, one sometimes has available and supplies to
the controller future values of the setpoint, which the system output is to follow
after IV, time steps. By doing so, better servo-behavior is accomplished. In this

case §g(z) can be obtained from
qu(2) = z(Ppvis)” 1{ Bk vy LUX{ (8.1 -16)

8.1.2 Design of the IMC Controller ¢(z)

The Hj- optimal controller §u(z) obtained in Sec. 8.1.1 may exhibit intersample
rippling caused by poles of §y(z) close to (—1,0) as explained in Sec. 7.5.3. Hence
a modification is necessary to obtain §(z) from §g(z). We can write

4(2) = qu(2)d-(2)B(2) @1-17)"

where ¢_(z) cancels all the poles of Gy (2) with negative real part and substitutes
them with poles at the origin. B(z) is selected to preserve the system type. The
introduction of poles at the origin aims at incorporating into the design some
of the advantages of a deadbeat-type response while at the same time avoiding
known problems of deadbeat controllers like overshoot or undershoot.

Let ki, i = 1,..., p be the poles of ¢y (z) with negative real part. Then we can
write ,

™

_._,,3].

§-(z) = ="

(8.1 —8)

=11 = K;

m—1

B(z) z_ bz~ (8.1-09)

where m is the system type and the coefﬁcwnts bj, 3 =0,...,m —1 are chosen
such that G(z) satisfies (7.5-16). By construction Gy(z) satisfies (7.5-16). Then
it follows that ¢(z) satisfies (7.5-16) if and only if
d
hm——-—(l——q (z)B(z)) =0, E=0,1,...,m—1 (8.1 —10)

-
]
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For the important special cases of m = 1 and 2 we find

Typel: B(z) =1 (8.1 -11)
Type 2: B(z) = by + bz} (8.1 -12)
with
b() =1- 1}1 (81 & 13)
by 5 (8.1 — 14)
-t

In general, use of the transformation z = A~! in (8.1-10) leads to a system of
linear equations which can be solved easily by successive substitution.

The proposed “correction scheme” might seem somewhat ad hoc but at least for
step inputs it can be shown to lead to controllers which combine the advantages
of the algorithm that minimizes the sum of squared errors and of deadbeat-type
algorithms. For step inputs Table 8.1-1 shows the Hj-optimal controller to be
du(z) = (p44(2))~!. In order for the system to be Type 1, B(z) = 1. Application
of (8.1-7) leads to a controller G(z) with the following properties:

e In the case where all the unstable zeros of p*(z) have negative real part,
the controller is of the deadbeat type and drives the discrete output of the
system to the setpoint in a finite number of time steps.

e When p*(z) has unstable zeros with positive real part, the controller drives
the output to the setpoint asymptotically in order to avoid large overshoot
or undershoot.

e When all the zeros, stable or unstable, have positive real part, the controller
minimizes the sum of the squared errors of the output.

Similar desirable properties are maintained for other input types when the
minimum number of coefficients b; necessary to satisfy (8.1-10) is used. Unfor-
tunately, unlike for the continuous case, it is impossible to state general formulas
for the IMC controller §(z) for commonly occurring process models. The rea-
son is that the factor §_(z) depends on both the MP and the NMP zeros of the
plant p*(z) which in turn depend on the zeros and poles of the continuous system
and the sampling time. Thus, we will simply illustrate the benefits of the IMC
controller with an example.

Example 8.1-3. Consider the system given by (7.5-26) in Sec. 7.5.3. Its zero-
order-hold discrete equivalent for 7' = 1.8 has two zeros, both inside the UC, at
z = —0.95 and z = —0.06. Hence p}; = zp*. For a step input v, the expression
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for the Hy-optimal controller given by (8.1-5) simplifies to that in Ex. 8.1-1 —
i.e.,

@ & du="(ph)!
This controller has a pole at z = —0.95 which is close enough to (-1,0) to produce
the unacceptable input ringing and output intersample rippling shown in Fig.
7.5-1.

Application of (8.1-7) yields the controller ¢u(z) given by (7.5-29), which pro-
duces the excellent response shown also in Fig. 7.5-1. Note that the pole at
z = —0.06 is so close to the origin, that it does not really make a difference
whether it is substituted with a pole at the origin or not. a

Example 8.1-4. Consider the system

L 1
P(8) = (05 T D285 7 1)

For T' = 3 we get

. 0.0157(z + 0.869)

p'(z) = = 5

(z — 0.887)(z — 0.741)

The discrete system has a zero at z = —0.869, which is close enough to (-1,0)
to produce the intersample rippling shown in Fig. 8.1-1 when it appears as a
pole of the Hj-optimal controller gi. Again, application of (8.1-7) eliminates the
problem and results in a deadbeat type response for this particular example. [

8.2 The Discrete IMC Filter

Similar to the continuous case, §(z) is augmented by a low-pass filter f(z) (¢ =
df), whose structure and parameters should be determined such that an optimal
compromise between performance and robustness is reached. To simplify the
design task the filter structure is fixed and only a few adjustable parameters are
included. The simplest form is a first order one-parameter filter:

fl(z)____(_l_ﬂ

zZ—a
The filter should preserve the asymptotic properties of the closed-loop system —
i.e., (7.5-16) should be satisfied. The design procedure in Sec. 8.1.2 assures that
(7.5-16) is satisfied for ¢(z) = G(z). Therefore, for the system to be Type m, the
filter f(z) has to satisfy

(82-1)

k

1
Typem: ——(1-f(2))

=0 0<k<m (8.2-2)
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8.2. THE DISCRETE IMC FILTER
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For a Type 1 system only f(1) = 1 is required and the filter given by (8.2-1)
clearly meets that requirement. For m > 2 however, the filter (8.2-1) is not
sufficient. In this case we postulate

(1-a)z

zZ—

f(2)=(Bo+ Bz + ... 4 Buz™) (8.2 — 3)

where the coefficients By, ..., B, are to be chosen such that f(z) satisfies (8.2-2)
for some specified a.

Theorem 8.2-1. For a Type m system the coefficients 3; of the filter (8.2-3)
have to satisfy

Bo=1~(B1+...00) (8.2—4)
and form>2, w>m-—1
[ By [—a/(1—a)]
B2 0
Mol f= : (8.2 - 5)
8.l L 0

where the elements v;; of the (m — 1) x w matriz N, are defined by
0 fori>j

Vi = i ity 82—-6

& { (—J-‘_I_—'m for ¢ g J ( )

For the proof the following lemma will be used.

Lemma 8.2-1. Let h(\) = 1=%. Then

RB(A) = (1 — a)k! o*(1 — aX)~¢+) (8.2-17)
where the superscript (k) denotes k™ derivative.
Proof. By induction.
k=1 ;
—h(A) = (1 - a)a(l — ar)™?

d\
k = n. Assume

R™(A) = (1 - a)n! (1 — a)~(+D) (8.2 - 8)
k =n+ 1. From (8.2-8) we get

RHD(A) = (1 - a)n! a"%(l — o))~ =
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=(1-a)(n+1)! &"(1 = a))" "+
2

Proof of Theorem 8.2-1. Equation (8.2-4) follows directly from (8.2-2) for k = 0.
For proving (8.2-5) we define

T(A) 2 B+ Br+ ... 4 LA (8.2 — 10)

A 1l -«
T 1=a@)

h(})
and express the filter (8.2-3) as
FOHY =T)RO) (8.2 —11)

Thus for k > 1 we can rewrite (8.2-2) as

Ed;-}f()rl)yA=1 =0, k=1,...m-1 (8.2 —12)
For k =1, (8.2-12) yields
r®)n(1) + T(1)AY(1) =0 (8.2 — 13)
From Lemma 8.2-1 we find
A®)(1) = Ko (1 — a)~F (8.2 — 14)
Substituting (8.2-14) into (8.2-13) yields
1) = -rM1) = —a(1 — o)™ (8.2 —15)

We will show next that for k > 2, (8.2-12) requires I'*)(1) = 0. The proof will
be by induction.

k = 2. Condition (8.2-12) becomes

T@(1)n(1) + 2rY(1)AM(1) + T(1)AP(1) =0 (8.2 — 16)
Using (8.2-14) and (8.2-15), (8.2-16) yields
r'®ay=o0 (8.2 -17)
2<k<n<m-—1. Assume
r'®ay=o0 (8.2 -18)

k =n 4+ 1. Because of (8.2-18), (8.2-12) becomes
TOH()R(1) + (n 4+ DHTO(D)AM(1) + D(1)R™D(1) = 0 (8.2 -19)
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or by using (8.2-14) and (8.2-15)

(1) =0 (8.2 — 20)
Hence by induction
My =0 k=2,...,m-1 (8.2 - 21)
But one can easily see that
(1) B
=Ny| - (8.2 — 22)
P(m—l)(l) /310
and (8.2-5) follows from (8.2-21), (8.2-22). o

For w > m — 1, there are several solutions to (8.2-5) and one can obtain
Bi,..., By as the minimum norm solution. It can be shown that as w — oo the
norm of this solution goes to zero and from (8.2-3), (8.2—4) it follows that the
properties of f(z) are not significantly different from those of fi(z). Finally note
that for m = 2, one should choose w > 2 in order to avoid the trivial solution
f(z) = 1. Then the minimum norm solution for m = 2, w > 2, is found to be

—6ka
(1-oa)w(w+1)2w+1)’
Note that lim,,_.. Gy = 1.

Br =

k=1,...,w (8.2 — 23}

8.3 Robust Stability

8.3.1 Filter Design

The robust stability condition derived in Sec. 7.6 can be stated in terms of the
IMC controller ¢(z) (= ¢(2)f(2)).

Corollary 8.3-1 (Robust Stability). Assume that all plants p(s) in the family
IT* are stable, that q(z) is stable and that c(z) is related to q(z) through (7.2-3).
Then the systems in Figs. 7.1-1A and 7.2-1A are robustly stable if and only if

£ N < [Fa NG w)]"  0<w< = (83-1)

Clearly an f(2) can always be found such that (8.3-1) is satisfied. However, a
small | f| implies a small |7*| and thus poor performance. Hence, if performance
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requirements have to be met the uncertainty has to be limited. A simple per-
formance specification is to require the closed-loop system to be Type 1 - i.e,,
p*(1)g(1) = f(1) = 4(0) = 1. Then from (8.3-1) we can obtain the following
corollary.

Corollary 8.3-2. Assume that I},(w) is continuous. Then there exists a filter
f(2) such that the closed-loop system is Type 1 and robustly stable for the family
II* if and only if £,(0) < 1, where €,,(0) is the multiplicative steady-state error
bound for the continuous system.

Proof. All that is needed is to show that (8.3-1) is satisfied for w = 0, where
f(1) = p*(1)d(1) = 1. Hence we need {%,(0) < 1. The steady-state gain of the
zero-order hold equivalent of p(s) is the same as the steady-state gain of p(s) —
i.e., p*(1) = p(0). Also from (7.3-6) we get *(0) = (,(0) since ho(i27k/T) = 0
for k = #1,42,... and ho(0)/T = v(0) = 1. Thus &,(0) = 0%(0)/p*(1) =
€a(0)/(0) = & (0). o

Note that Cor. 8.3-2 requires simply that the error between the steady-state
gain of the plant and that of the model is not more than 100% of the model gain.
This condition can always be satisfied by appropriate selection of the model if all
the possible plants have steady-state gains with the same sign.

Note that the condition £,,(0) < 1 is the same as the one we found for the con-
tinuous system (Cor. 4.3-2). This makes sense because a steady-state requirement
should not be affected by the sampling operation.

A simple way to design the IMC filter is to use an f(z) of the structure
in (8.2-3) and to vary the parameter « so that (8.3-1) is satisfied. Equation
(8.3-1) places a lower bound o* on a. It can be obtained from a Bode plot of
(Ip*d(eT)|ex,(w))~t. If this quantity is never less than 1, then o* = 0. If it
obtains values less than 1, then o* can be found from a Bode plot of f(z), which
is practically the same as that of the first-order filter fi(z) in (8.2-1) provided
that the number of coefficients w in (8.2-3) is sufficiently large. For example, if
(|p*G(e“T)|z,(w))™" decreases like a first-order system and reaches a value of 0.7
at w = wp then

* o g=Twe (8.3 —2)

Note that for an open-loop stable sampled-data system a first-order filter fi(z)
can always be designed to satisfy the robust stability condition regardless of
the magnitude of the model uncertainty. For continuous systems, depending on
the uncertainty a higher order filter might be required. The reason is that for
sampled-data systems the frequency range over which the condition has to be
met is bounded.

(64
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Figure 8.8-1. Effect of sampling on robust stability (logarithmic plot). Long dash: 1/£,(w).
Solid: |p(iw)§(e™T)|,T = Ti. Short dash: |p(iw)§(e“T)|,T = Ty < Ty. Dash and dot:
|B(iw)d(e™T) fi(e™T)|,T = T,. (Reprinted with permission from Int. J. Control, 44, 721(1986),
Taylor & Francis Ltd.)

8.3.2 Effect of Sampling

As explained in Sec. 8.3-1, condition (8.3-1) can be satisfied by simply increasing
the time constant of the filter, provided that £,,(0) < 1. The increase of the filter
time constant reduces the closed-loop bandwidth of the nominal system. In Sec.

7.5.3 we saw that a larger sampling time T also reduces the bandwidth. This
becomes clearer if we write (8.3-1) as

[p(iw)d(e™T) f(e*T)| < |B(iw)|/E(w) (8.3-3)
One can see that the bandwidth of the left hand side term can be reduced by either
increasing o in f(z) or leaving f(z) = 1 and increasing T'. A graphical illustration
of this discussion is given in Fig. 8.3-1. Note that in Fig. 8.3-1 the right-hand-
side term of (8.3-3) is assumed independent of T' by using the approximation
l:(w) = €y(w). For illustrative purposes this is a reasonable approximation for

0 < w < /T but it should not be used to check (8.3-1); £*(w) should be computed
from (7.3-6).

8.4 Robust Performance

In Sec. 7.7.2 we derived that for robust performance the controller has to be
designed such that

M(w) & 1(iw)|lu(w) + |1 — piw)d(iw)|lw(w) <1, 0<w <

is satisfied.

(8.4—1)

Nl
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8.4.1 Filter Design

The simplest approach is to specify the structure of the filter as that in (8.2-3)
and to try to satisfy (8.4-1) by varying the parameter «. Increasing o will tend to
decrease the first term in M(w) and increase the second term. Hence, depending
on Z, and w there might be no value of o for which (8.4-1) is satisfied. Let us
assume that §(z) and f(z) are selected such that the system is Type 1 or higher
(p*Gf(1) = 1) and that £,,(0) < 1. Then robust performance at w = 0 can be
achieved for any w.

Corollary 8.4-1. There exists a filter f(2) such that (8.4—1) is satisfied at w = 0
for any weight w if and only if £,,(0) < 1.

Corollary 8.4-1 is similar to Cor. 4.4-2 for continuous systems and it simply
states that if the system is robustly stable for a controller ¢(z) with integral
action (Type 1), then the steady-state performance is perfect even when there is
modelling error. ’

Selection of the weight w(w). The choice of w(w) depends on the performance re-
quirements set by the designer. It is consistent with the overall design philosophy
to assume that an Hj-optimal controller G(s) designed for the continuous model
P(s) would achieve the ideal performance. Hence it is reasonable to use the ideal
sensitivity function 7(s) = p(s)G(s) as a guide for the choice of the weight:

w(w)™ > 1 - Hiw)g(iw)| (8.4 -2)

This sensitivity function, however, is achieved only by a non-proper controller.
The properness requirement adds to (8.4-2) the condition that 1/w(co0) > 1. Also
note that though for a Type m system (m > 1), (8.4-2) becomes w(0)~! > 0 for
w = 0, there is no need to choose w(0) = oo, since ¢(z) and f(z) have been
designed so that conditions (7.5-16) and (8.2-2) are satisfied. These conditions
guarantee no steady-state offset under modelling error, provided that stability is
maintained.

Computation of . The filter parameter o has to be adjusted in an effort to
satisfy (8.3-1) and (8.4-1). It was shown in Sec. 8.3.1 that (8.3-1) puts a lower
bound o* on the values of o that are allowed. Hence, to find o one must solve
the following optimization problem: .
: Tlw) 2l 8.4 —
a}lsl}rliloglilgv"r(/T M(w) = (T) (8.4 -3)
where M(w) is defined in (8.4-1) and the argument T has been used in ¢ to

indicate that the optimum value of the objective function depends on the sampling
time 7.
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The above minimization can be carried out by computing M (w) for a number
of values for @. The computational effort is very small. It is advisable to write
a = e~ T/™ where 7 is in [7*,00) with o* = e~7/™" and minimize over 7.

8.4.2 Sampling Time Selection

A short sampling time improves the nominal performance as we have discussed in
Sec. 7.5.3. However, high-frequency sampling puts a large load on the computer
and for robustness nominal performance generally has to be sacrificed anyway.
Thus a longer sampling time might be acceptable for robust stability and robust
performance. On the other hand if the sampling time is too long, it might be
impossible to meet the robust performance requirements.

As a rule, /T should be selected larger than the bandwidth over which good
performance is desired. If for a certain sampling time T* it is found that the robust
performance requirements are exceeded ((T*) < 1), then the specifications could
be met even with a larger T'. If ¢)(T*) > 1 then for the assumed model uncertainty
and controller structure the specifications are too tight for the specific T* and
have to be relaxed.

8.4.3 Example

Let us consider the system

3
(+D)(s+3)

A delay-type uncertainty is assumed:

p(s) = p(s)e™ (8.4 5)

p(s) = (8.4 — 4)

where
0<60<0.05 (8.4 —6)
Then from (2.2-2), (2.2-4)
lu(s) =€ % —1 (8.4—17)

from which one can easily obtain the bound ,, (2.2-8)

. { le=0%w — 1] 0<w< 207

em(w) . 9 w > 207 (84 - 8)

Let us examine two sampling times, different by an order of magnitude, T} =
0.1 and 75 = 0.01. For the robust performance design the following weight is

selected:

- 0.5s+1
2w s - A — 4 -
w(s) —040.15 1 (8.4 -9)
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This selection was based on the observation that at w = 2, |p(iw)| is small
enough (=~ 0.35) to justify a relaxation of the performance requirement. Also
1/w(oco) = 2 > 1. It should be noted that the above choice is a rather strict
performance requirement, but it is justified because the system is not inherently
difficult to control and the uncertainty is small. Also note that in this simple
case where p(s) is minimum phase, the right-hand side of (8.4-2) is zero and this
leaves us the freedom to select w(w) as above.

The next step is to compute ¢ for the two sampling times according to the
procedure of Sec. 8.1. We obtain

_40.55(z% — 1.645662 + 0.67032)

z 8.4 — 10

ai(2) > (8.4 100)
3400(2% — 1.960495z -+ 0.960789

e . ) (8.4 — 10b)

for Ty and T, respectively.

Then the quantity (T, which measures robust performance must be com-
puted. For the two sampling times the solution of (8.4-3) yields

W(Ty) = 1.22 (8.4 — 11a)

P(Ty) = 0.90 (8.4 — 11b)

The corresponding optimal o’s are a; = 0.4625 and «y = 0.9363. The optima
(8.4-11) imply that for the sampling time Tj it is possible to satisfy the tight
robust performance specification set through (8.4-9), while this cannot be done
for the larger T7. Equation (8.4-11b) indicates that the specification can be met
even when T is somewhat larger than Ty. Further search shows that ¥(0.032) =
0.98 < 1. ‘

Let us now compare the time responses for the two controllers designed for T}
and T} to see how (8.4-11) translates into the time-domain. Figure 8.4-1A shows
the responses to a unit step setpoint change for the case when there is no model-
plant mismatch. As expected, the controller with the smaller sampling time is
soiewhat better. Note that when the procedure described in this chapter is used
for controller design, the use of a smaller sampling time cannot harm the nominal
behavior, contrary to what could happen for some other digital algorithms, like
deadbeat-type controllers. Figure 8.4-1B shows the response when the plant is
p(s) = p(s)e™095. Again the response for Ty is clearly better. Note that because
of the robust design the faster nominal response (73) does not imply increased
seusitivity to model uncertainty; the response for Th remains superior even in the
presence of plant/model mismatch.
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Figure 8.4-1. Step response for controllers with sampling time Ty (dash) and T3 (solid). A: No
model error (p = §); B: Model error p = pe005.
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Roughly speaking, both controllers produce acceptable responses. This is not
surprising since the 3’s for the two controllers are similar. This simple example
demonstrates, however, that the frequency domain based quantity ¥(T) captures
the time domain behavior in an excellent manner and even small differences in
¥(T') translate into noticeable differences in the time responses.

8.5 Summary

In the first step of the IMC design procedure the controller is designed to yield a
“good” system response for the input(s) of interest without regard for constraints
or uncertainty. The starting point is the Hj-optimal controller which is calculated
from

qu(2) = 2(Fyoh) " {710 o), (8.1-5)
Here the operator {-}. denotes that after a partial fraction expansion of the
operand only the strictly proper and stable (including poles at z = 1) terms are
retained. The allpass and MP portions of the model are denoted by p% and pj,
respectively (8.1-1 and 8.1-2); v}, is defined similarly (8.1-3 and 8.1-4). Table
8.1-1 lists formulas for §y(z) for some typical inputs v3,.

Because the Hj-optimal controller can lead to undesirable intersample rippling
it is modified to

q(2) = qu(2)q-(2)B(z) (81-17)

where
g_(z) = z-szl = Hj_ (8.1-8)
B(z) = mz:; bjz7? (8.1-9)

Here k4, ¢ = 1,... p are the poles of §y(z) with negative real part, m is the system
type and b; are coefficients to be chosen to satisfy the type requirements.

In the second step of the IMC design procedure the controller §(z) is augmented
by a filter f(z) for robustness

9(2) = 4(2)f(2)

Recommended one-parameter filters are

Type 1: fi(z) = -(-1;:_—9(;—?5 (8.2-1)
Type 2: fo(2) = (Bo+ Szt +... + [31,,z"“’)£1—:—?[E (8.2 -3)

& v Y
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where
—6ka
(1-a)w(w+1)2w+1)’

B = E=1,...,w; w>2 (8.2 - 23)

For robust stability the filter parameter « is increased until

()] < [Fa D@ 0sw< (83-1)
For robust performance
min = max M (w) (8.4-3)
a*<a<lO0<w<n/T
where
M(w) & 166w)|8(w) + |1 = pliw)i(iw)ww) <1, 0<w< % (8.4—1)

and o* is the minimum filter parameter needed to assure robust stability. Instead
of increasing the filter parameter «, the sampling time 7' can be increased with
a similar effect on robustness.

8.6 References

8.1.1. For a discussion of the state-space approach to discrete Linear Quadratic
Control see Kwakernaak and Sivan (1972). For a brief discussion, which also
includes deadbeat controllers, see Kucera (1972).

8.1.2. The reasons behind the “correction scheme” were presented by Zafiriou
and Morari (1985).

8.3. The original formulation of the discrete IMC controller and filter and
some early results on robust stability can be found in Garcia and Morari (1982,
1985).

8.4.2. For a more detailed discussion of the procedure for sampling time se-
lection see Zafiriou and Morari (1986a). Additional material on signal sampling
and reconstruction is available from Astrém and Wittenmark (1984, Chap. 2).

.
.




Chapter 9

SISO DESIGN FOR UNSTABLE
SAMPLED-DATA SYSTEMS

In Chap. 5 it was pointed out that the IMC structure is unsuitable for imple-
mentation when the plant is open-loop unstable. However, the IMC controller
parametrization remains a valuable tool that simplifies the controller design and
greatly clarifies the robustness problems of open-loop unstable plants.

9.1 Parametrization of All Stabilizing Controllers

9.1.1 Internal Stability

For open-loop unstable systems the classic feedback structure shown in Fig. 7.1-1
has to be used for implementation. For internal stability the system described by
(7.1-17) has to be stable. We can express (7.1-17) in terms of the IMC controller
g(z) by substituting (7.2-3) into (7.1-17). We obtain (for p = p)

(50 ) e

q —pq u
All four transfer functions in (9.1-1) have to be stable. Note that since the
prefilter y(s) is stable, the only unstable poles of p}(z) are the unstable poles of

p*(z). By using the same arguments as in Sec. 5.1.1, we can derive the following
theorem.

Theorem 9.1-1. Assume that the model is perfect (p = p) and that p*(z) has
k unstable poles at mi,...,m, and that p(s) has also k unstable poles (i.e., that
none of the unstable poles of p(s) become unobservable after sampling). Then the
feedback system in Fig. 7.1-1 with the controller ¢ = g(1 —-p,*,q)~1 is internally
stable if and only if ;

(i) q(z) is stable.
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(i) (1 — p3q) has zeros at.my, ..., m.
Theorem 9.1-1 reduces to Thm. 7.4-1 when p is stable.

9.1.2 Controller Parametrization

A parametrization of all ¢’s that satisfy the conditions of Thm. 9.1-1 will be
found in this section. Define the allpass z-transfer function

o) = 1 Ao @G - )

=1 (1= m)(z = (=f)1)

where 7;, j = 1,...,k are the poles of p*(2) strictly outside the UC.

(8.1~ 2)

Theorem 9.1-2. Assume that p*(z) = p*(z) has k poles 7y, ..., m strictly outside
the UC and £ poles at z = 1, and that p(s) has no unstable poles that become
unobservable after sampling. Also assume that there exists a causal qo(z) such
that ¢ = qo(1 — pliqo)™" stabilizes the system in Fig. 7.1-1. Then all causal
controllers that stabilize the system are parametrized by

c=q(1-pig)”" (7.2-3)

q=q+ ()1 -2z"")"q (9.1 - 3)

where q1(z) is any arbitrary causal stable z-transfer function.

Proof. The proof is similar to that of Thm. 5.1-2, and uses the fact that p*(z)
and p}(z) have the same unstable poles. O

Note that Thm. 9.1-2 assumes the existence of a stabilizing go(z). The con-
struction of the Hj-optimal controller in Sec. 9.2.1 will serve as proof that such
a controller always exists. Also note that for an open-loop stable system we have
b, = 1, { = 0 and by choosing the stabilizing gy = 0, we obtain ¢ = ¢;, which is
the IMC parametrization for stable systems.

9.2 Nominal Performance

The design procedure for unstable systems is the same as for stable ones. First
the Hj-optimal controller Gy (z) is designed and then a modification is introduced
to avoid the problem of intersample rippling. Subsequently ¢(z) is augmented by
a low-pass filter to achieve robust stability and performance. In this section we
shall derive the formulas for the design of §(z).
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9.2.1 H;-Optimal Controller

As explained in Sec. 8.1.1, the Hj-optimal controller solves the problem defined
by (7.5-38), subject to the constraint that ¢ is a stabilizing controller. The
external system input v(s) can be either a setpoint (v = r, d = 0) or a disturbance
(r =0, v=d or v = vd). Then the following theorem holds:

Theorem 9.2-1. Let p*(z) = p*(z) have k poles at 7y, ..., n strictly outside the
UC and a pole of multiplicity £ at z = 1. Define

o b (= () = )

P E A= m(e = (7))
and factor the plant into an allpass portion p%(z) and a semi-proper MP portion
Pi(2)-

(9.1-2)

p*(2) = pa(2)pp(2) (92-1)
Factor the input v similarly

v*(2) = va(2)3e(2) (0.2-2)
Assume without loss of generality that the unstable poles of v*(z) strictly outside
the UC are the first k' poles m; of the plant' and define accordingly

o 0=

CE A=)z = ()

Assume further that v*(2) has at least £ poles at z = 1.2 Then the Hj-optimal
controller Gy (z) is given by

(9.2 - 3)

dn = 2b,(Pabyvir) " H{(2b5p) T byvis b (92-4)
where the operator {-}. denotes that after a partial fraction expansion only the
strictly proper terms are retained except for those corresponding to poles of (p%) ™.

Proof. Some preliminary definitions and facts are necessary. Let L be the Hilbert
space of complex-valued functions defined on the unit circle (UC = {e? : -7 <
6 < 7}) and square integrable with respect to . The inner product on L3 is

< frg>= 5= [ f(g(c")" a0 (92-5)

Uf this assumption were not made the problem would not be meaningful. Unbounded controller
gction would be necessary for the error to vanish as ¢ — co. See also the discussion at the end of
ec. 2.2:3.
2This assumption is made so that disturbances occurring at the plant input can be rejected with
vanishing error as ¢ — oo.
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The closed subspace of L} of functions having analytic continuations inside the
UC is defined as (H3)t; its orthogonal complement is denoted by Hj.* Note that
with the above definitions a constant function is in (H3)*. (Hj)* also includes
all rational z-transfer functions that are strictly unstable — i.e., which have all
their poles strictly outside the UC [including poles at z = oo (improper transfer
functions)]. All strictly proper, stable rational z-transfer functions are in Hj.
Any rational f(z) with no poles on the UC, can be uniquely decomposed into
a strictly proper, stable part {f}, in Hj and a strictly unstable part {f}- in
(H3)*: '

f={f}-+{f}+ (9.2-6)

For a rational z-transfer function, such a decomposition can be obtained by simply

taking a partial fraction expansion. Note that any constant and improper terms
belong in {f}_.

If fi(z) € H; and fo(2) € (H3)*, then

% Ju o s —217; I fi(e®) fae?)Hdo = 0 92-7)

Hence the Lj-norm (Hj-norm) of f, defined by the inner product (9.2-5) can be
computed as

IFI3 =< f,f >=<{f-}{f-} > + < {f: 1, {f+} >= {F}-3 + |l{f(}g|2|§ g
According to (7.5-38) we define the objective function ¢: .

¢ £ (1 - p*(2)a())v" (2)ll3 (92-9)

Since multiplication of a function by an allpass does not change its Lj-norm, we
get:

¢ = ||(2bpvi) 7'05(1 - p* Q)03 (9.2 - 10)
Use of (9.1-3), (9.2-1), (9.2-2) yields:

¢ = [|(2b;p) ™ (1 = P q0)bjvhs — 27 Pagbp(1 — 271 ) *Brvisanll3

3This definition of Hj and (Hj)* is exactly the opposite of the one encountered in the math-
ematics literature, where H, corresponds to the L,-functions with analytic continuations inside
the UC. Our definitions have been chosen to be consistent with the common definitions of Ho, Hy
for Laplace transfer functions (Chap. 5) in the control literature. The transformation A = 2!

could have been employed to introduce consistency with the mathematics literature but this would
unnecessarily complicate the notation.
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A A .

2 \1£13 £ 1f1 = foarll? (9.2-11)
It will be assumed that in addition to being a stabilizing controller, gy satisfies
(7.5-16). Not every stabilizing controller has this property, since v* may have

more poles at z = 1 than p*. The final construction of the Hj-optimal ¢ serves
as proof of the existence of a go with such properties.

Inspection of (9.2-11) shows that f; has no poles on or outside the UC except
possibly for poles at z = 1 in the case where v*(z) has more than ¢ poles at
2 = 1. However, f; has no poles at z = 1 because go satisfies (7.5-16). Hence the
optimal q; must have the required number of zeros at z = 1 to produce an faq
without any poles at z = 1 so that ¢ is finite. Also faq) is strictly proper since g
is proper. Therefore fsq is in Hj. Hence

{1+ ={fil+ - for (9.2 — 12)

{f}- = (h}- (0.2-13)
Then (9.2-8, 11, 12, 13) imply

¢ = I{AY-1E + I{Fi}+ = Fomrll3 (9.2-14)

Since {f1}- is independent of ¢;, the obvious solution to the minimization of
(9.2-14) is

q = fi {fHi}+ (9.2 - 15)
However this solution is optimal only if g is proper, stable and faq; has no poles
at z = 1. Careful inspection of (9.2-15), (9.2-11) shows that ¢ is proper and

stable. Also foq1 = {f1}+ is in Hj and therefore it has no poles at z = 1. Hence
(9.2-15) gives the optimal g;.

Substitution of (9.2-15) into (9.1-3) yields the H3-optimal controller gp(2):

g = qo+b2(1 = 27 £ { i}y
= zb} (P bsvie) T (20}) T Pae v 20

+{(2bsph) osie ), — {(Zb;P*A)_l]?*Qobz'UR[} ]
£ A

= 2by(Pabivan) T H{(=05p%) P b i} + {(2bpp) TR (9.2 16)
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where {-}¢_ indicates that in the partial fraction expansion only the terms cor-
responding to poles on or outside the UC are retained. These are the poles of
(b})~'byvi on or outside the UC because (p%)"'p*q0 = pmqo is stable since ¢ is
a stabilizing controller. Also since qq satisfies (7.5-16), if 7 is an unstable (on or
outside the UC) pole of (b})~'b}v}, of multiplicity m, then (1 — p*qo) has at least
m zeros at z = ™ — i.e.,

p(m)go(m) =1 (9.2 — 17a)

k
= (Dan(2)

z=m

=0, k=1,...,m—1 (9.2 — 17b)

Thus (9.2-16) simplifies to

G = 2by(Pabyvar) ™ {(2bppl) i),
O

In situations where future values of the setpoint, r are supplied to the controller
to be followed by the system output after N, time steps, §g(z) can be obtained
from

G = 2by(Phebhyvre) T {(2MH bppl) Mol (9.2-18)
The proof follows that of Thm. 9.2-1 by changing the objective function to

¢ = (=" - p*(2)3(2))r*(2)II3 (9.2-19)

9.2.2 Design of the IMC Controller §(z)

As explained in Sec. 7.5.3 the H;-optimal controller §y(z) may exhibit intersam-
ple rippling caused by poles of §x(2) close to (-1,0). As in Sec. 8.1.2, §(2) is
obtained as

4(2) = dn(2)q-(=)B(2) (9.2 - 20)
where §_(z) cancels all poles of §y(z) with negative real part and replaces them
with poles at the origin. In this case, however, B(z) is selected to preserve both
the system type and the internal stability requirements described by Thm. 9.1-1

(ii). In this section we assume y(s) = 1. Section 9.2.3 discusses the choice of 7(s)
further.

Similarly to Sec. 8.1.2 let x;, ¢ = 1,..., p be the poles of §g(z) with negative
real part. Then
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Z—Iij

p
§-(2)=2""11

j=1 1 = K;

(8.1-8)

Let 7;, i = 1,...,& be the unstable roots (including z = 1) of the least common
denominator of p*(z),v*(z) with multiplicity m;. Recall that according to the
assumption of Thm. 9.2-1, v*(z) has at least as many poles at z = 1 as p*(z) and
each strictly unstable pole of v*(z) is also a pole of p*(z). The system type and
the internal stability requirements can be unified as

k
L 1-a@BE)| =0, k=0, ,m-li=1..6 (92-21)

Z=7;

We can write

M-1 X 3
Blz)= ) b (9.2 -22)
J=|
where
£
M= > mj (9.2 —23)
=1

and compute the coefficients b;, j =0,...,M — 1 from (9.2-21). Note that since
none of the 7;’s is 0 or oo, (9.2-21) is equivalent to

k .
%(1 - g-(A"HB(O™) =0, k=0,...,mi—1,i=1,...,& (9.2-24)

/\=7r,-'1

Since both g_(A~!) and B(A™!) are polynomials their derivatives with respect to A
can be computed easily. Equation (9.2-24) yields a system of M linear equations
with M unknowns (bg,by,...,by—1). The resulting controller §(z) combines the
desirable properties of the Hj-optimal controller and deadbeat type controllers,
as explained in Sec. 8.1.2.

9.2.3 Anti-aliasing Prefilter

If the designer decides to add a prefilter (s) in the block structure (Fig. 7.1-1A),
it should be such that the system type (asymptotic properties) and the internal
stability requirements are satisfied.

Section 7.5.2 discussed in detail the design of v(s) so that the system type is
preserved. When the only unstable poles of p*(z) are at z = 1 (i.e., of p(s) at
s = 0), the assumption of Thm. 9.2-1 that v*(z) has at least as many poles at
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z =1 as p*(z), ensures that the internal stability conditions are satisfied for any
prefilter which preserves system type.

When p*(z) has unstable poles in addition to those at z = 1, it is not a simple
manner to design v such that condition (ii) of Thm. 9.1-1 is satisfied after §(z)
has been determined as outlined in the preceding two sections. The preferred
approach is to design y(s) first according to Sec. 7.5.2. Then one computes
P%(2) and uses it instead of p*(z) in Thm. 9.2-1 in order to obtain gu(z) and
subsequently ¢(z). However, this means that the objective function which is
minimized is not the one given by (9.2-9) but

¢y = [|(1 = B3(2)d(=)v*(2)|I3 (9-2-25)
which does not correspond to the true physical problem. Usually (9.2-25) is a
good approximation of (9.2-9).

9.2.4 Design for Common Input Forms

In this section we shall examine the H;-optimal controller §x(z), given by (9.2-4),
for specific systems and inputs.
(i) MP System.

When p(s) is MP and also strictly proper (all physical systems are strictly

proper), p*(z) will have a delay of one unit because of sampling. Hence p% =
z7Y, phy = zp*, and (9.2-4) yields

qu = ()71 (b)) bywi) TH((B)) T bywiy — k)

= ()71 - kb (Dyvi) ™) (9.2 — 26)
where & is the constant term in the partial fraction expansion of (b})~'b}v3;.

Equivalently, since by, b}, v}, are semi-proper, « is the product of the constant
terms of the PFE’s of b%~!, b}, v},. After some algebra we obtain

k 1—7I'j

jebrpt b= ()
where k', k,7; are defined in Thm. 9.2-1 and vy is the first non-zero coefficient
obtained by long division of v*(z) (equal to the constant term in the PFE of
v (2))-

(ii) Stable System. by = by =1

K =17

(98— 37

Gu(2) = 2(hva) " {z7 1P i), (8.1-5)

SRS

o
1
.
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This formula was stated in Thm. 8.1-1.
(iii) Integrator. p(s) =1 = p*(z) = 5. For by =b} =1,

—1, %=1 *

gu(2) = 2(pyvp) " {27 i i), (9.2-28)
The comments made in Sec. 5.2.2.iii for the continuous case, apply here as well.

(iv) Type 1 design for system with one unstable pole.
Consider the MP system

b
~g4b’

p(s) = p(s) = b>0 (9.2 — 29)

and assume that a step disturbance acts at the process input

b

v(s) = d(s) = pre (9.2 — 30)
Then for a sampling time T we have

N 1.2 ebT

P(#) = ——0r (9.2 - 31)
oy (1=€T)z

v (z) = GG &) (9.2 - 32)
v (2) = z20v*(2) (9.2 -33)

Note that €7 > 1 since b > 0. The Hj-optimal controller can be obtained from
(9.2-26). We have by = b} and so from (9.2-27)

k=vy=1-¢" (9.2 - 34)
Substitution of (9.2-31 through 34) into (9.2-26) yields

B s ebT ebT % e ebT
dnta) = LT e ) (92 - 33)

Since ¢g(z) has no poles with negative real parts,

4(z) = qu(=) (9.2 - 36)
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9.2.5 Integral Squared Error (ISE) for Step Inputs to Stable Systems

The Hj3-optimal controller G (z) minimizes the sum of squared errors (SSE) for
a particular input. To correct intersample rippling, the IMC controller §(z) is
obtained through the modification discussed in Sec. 8.1.2.

The ISE can be computed for the closed-loop system with ¢(z) from (7.5
1) which describes the continuous plant output. For the specific case of a step
setpoint or disturbance input (v = —r or d), we have ho(s)v*(e*T) = v(s) = s~
and then (7.5-1), (7.5-2) yield

e(s) = (1 —p(s)g(e’T))s™ (9.2 — 37)
We have
. ) 1 (oo
A 2 G ST ) -
1B 4 [T ()t = o= [ |e(iw)Pdw = ||el} (9.2 - 38)
where || - ||2 denotes the Hy-norm defined in Sec. 2.4.4.

For step inputs, we find from Table 8.1-1

u(z) = (P3e(2))7 (9.2 - 39)
From (8.1-11) we have B(z) = 1 and therefore

a(2) = qu(2)d-(2) (9.2 - 40)
where G_(z) is defined in (8.1-8).

Hence we can write

ISE = ||(1 = p(s)(phu(e™)) " d-(e))s 7 II3 (9.2-41)

By following the steps used in the proof of Thm. 4.1-3 we can break (9.2-41) into
two parts:

ISE = ||(1 = pa(s))s I3 + (1 = par(8)(Phs (") 7' G(eT))s7H I3 (92 - 42)
where p4(s),pa(s) are defined in (4.1-3 through 4.1-5).

Note that the first term in (9.2-45) is the minimum ISE for the continuous
case. Hence the second term represents the additional ISE that is introduced
because of the use of a discrete rather than a continuous controller (designed
according to Secs. 8.1.1 and 8.1.2.)
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9.3 The Discrete IMC Filter

The philosophy behind the IMC filter is the same as for stable systems (Sec. 8.2).
The filter structure is fixed and only a few parameters are adjusted to meet the
robustness objectives. The simplest filter form is

_(1-9)z

fi(2) (8.2-1)

9.3.1 Filter Form
The discrete IMC filter f(z) has to satisfy the following requirements
(i) Asymptotic tracking of external system inputs (setpoints and/or distur-
bances) — i.e., (1 — p*Gf)v* has to be stable.
(ii) Internal stability — i.e., §f and (1 — p*Gf)p* have to be stable.

Since §(z) has been designed so that (i) and (ii) are satisfied for f(z) =1, f(2)
should satisfy

k
%(uf(z))z_ el B oty - Bl (9.3 1)

™

where 7;, m; were defined in Sec. 9.2.2. Note that (9.3-1) implies for £ = 0:

Hay=1 a8 2wy, ..; W (9.3-2)

One can now select a filter of the form

f(2) = ¢(2) f(2) (9.3 -3)
where
$(z) = ;)ﬁjz_j (9.3—4)
J:
and choose the coefficients fy, . . ., By so that (9.3-1) is satisfied for some specified

«. The parameter o can be used as a tuning parameter.

Note that for £ = 1, m; = 1, m; = 1, we only need ¢(z) = 1. For the
general case (9.3-1) can be transformed into a system of M linear equations
with fBy,...,Bw as unknowns, where M is given by (9.2-23). Lemma 8.2-1 can
help simplify the necessary algebra. One should select w > M — 1 so that the
system of linear equations has one or more solutions. When w > M the system is
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underdetermined and f3, ..., B can be obtained as the minimum norm solution.
Note that for M = 2 one should select w > 2 in order to avoid the trivial solution

f(z)=1.

The case £ = 1, m = 1 was examined in detail in Sec. 8.2. Let us now
examine the common case where £ > 1, but m; = 1 for i = 2,...,£. Then (9.3-1)
is equivalent to:

k
%(1—}”(2)) =0, k=0,...,m~1 (9.3 — 5a)
Lz Zeemy==l :
flmg=1, £ 5 T (9.3 — 5b)
The following theorem holds:

Theorem 9.3-1. Form =1, £ > 2, m; =1 fori = 2,...,&, the coefficients
Bo, - .. , Bw must satisfy

Bo=1=PB1—...—Bu (9.3 — 6)
filme)™t =1
: el
B fi(me)™t =1
II ; A
: = —OZ/(]. s a) =y (93 = 7)
(N’”>(ﬂw) 0
: mp—1
0
where
wgl—l 7r5-“’—1
mpl=1 ... wg¥~1

and the elements vi; of the (my — 1) x w matriz Ny, are defined by (8.2-6)

_ 0 dora > g
vij = { (j—i!i)! Y (8.2 —6)

Proof. Follows directly from Thm. 8.2-1, (9.3-5) and the fact that fi(1) =1. O

For £ =1, Thm. 9.3-1 reduces to Thm. 8.2-1. For m; = 1, the choice w = £-1,
reduces (9.3-7) to the Vandermonde form (5.3-4). In general one should select
w>M~—1=E&+my—2 and obtain 3q,..., 3, as the minimum norm solution to

(9.3-7):
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B
( : ) = AT(AAT) 1y (9.3 -9)
Bu
where
A4 (lfflw) (9.3 - 10)

Note that from a numerical point of view it is preferable to compute the pseudo-

inverse in (9.3-9) from a singular value decomposition of (

v.)

9.3.2 Qualitative Interpretation of the Filter Function

The discussion in this section is in the spirit of that in Sec. 5.3.2 for continuous
systems. With the filter f(z) and the IMC controller §(z) obtained in the first
design step, the discrete complementary sensitivity function becomes for p* = p*:

7'(z) =p"(2)d(2)f(z) . (9.3-11)
For open-loop stable systems, any stable filter that satisfies the system type
requirements described by Thm. 7.5-1 is acceptable. For open-loop unstable sys-
tems however, the filter has to be unity at the unstable system poles, which limits
the range of filter parameters « that can be chosen for reasonable performance, as
we shall show next. For the effect of the unstable poles on 7* to become negligible
f(z) has to approach fi(z) (8.2-1). Specifically, it follows from (9.3-3) that ¢(z)
has to approach unity. We will study the behavior of ¢(z) for w — oo.

Consider the system studied in Sec. 9.2.4.iv. For internal stability and asymp-
totically error-free disturbance compensation we require

f(1) = f(eT) =1 (9.3-12)
In the notation of Sec. 9.3.1, we have in this case £ =2, m =1, my =T, m; =
ma = 1. Hence f(z) is given by (9.3-3, 4, 6, 9) where

A=(eT-1 ... elT_1) (9.3 —-13)
o —bT
x=fileTy o1 =20ze) = ) (9.3 — 14)
From (9.3-9) it follows that
w ,’2 i e—bT)?
2 =T ‘AT g l_____.___. B e
;ﬂ] X (AA%)7x A-a)5 (9.3 - 15)
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where ”
§14 ST~ 12
j=1
é i BT _ o i": eI 4oy
j=1 j=1
1 o e—2bTw 1 e e--I;Tw
T ~266T—1 +w (9.3 — 16)
Since |e~*T| < 1, it follows from (9.3-16) that limy—eS1 = oo and

limy, oo T%; 7 = 0. This fact, however, is not sufficient to produce an f (z) that
approximates the behavior of fi(z). For this to happen we need limy_..o G0 = 1.
Let us compute this limit. From (9.3-9) we get

o a(l =t e—bT)(e-—ka e 1)

B = A= o5, , k=1,...,w (9.3 = 17)
(9.3-6), (9.3-17) yield
1- )8
Bo=1 a((l _ea) 5)1 2 (9.3 - 18)
where
w . — o= bTw
Sy £ (e 1) 16,,Te_ — = (9.3 — 19)

From (9.3-16), (9.3-19) it follows that lim, .. S2/S1 = —1. Then (9.3-18) yields

e ae—bT

. 1
Jim Gy = g (9.3 — 20)
By writing o = e~T/* we get
: 1 — e=T(1/3+b)
o8 = 3T 5~ 21

Hence in order for lim,—o 8o & 1 we need 1/A > b or Ab < 1. In this case the
behavior of f(z) approaches that of fi(z) (compare to (5.3-25)) and if a A in
that range is sufficient for robustness, the unstable pole b produces no significant
effect on the system behavior. If, however, one chooses a A for which Ab > 1,
then the lim, . [y is very far from 1 and as a result problems similar to those
discussed in Sec. 5.3.2 for the continuous case appear.

This is illustrated in Fig. 9.3-1, where amplitude plots of f; and f are shown
for different values of A and w. We see that as w increases, f tends towards fi.
For Ab < 1, the approximation is very good, while for Ab > 1, the closer we get
to fi, the higher the peak in |f| becomes.
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Figure 9.3-1. Effect of a RHP pole on the discrete IMC filter. T = 0.1,b = 1. Solid: f;, Dash:
fig,w =9, Dot-Dash: fié,w = 2.
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9.4 Robust Stability

For controllers designed via the IMC design procedure (7* = p*¢f) Thm. 7.6-1
becomes Cor. 9.4-1.

Corollary 9.4-1 (Robust Stability). Assume that all plants p in the family
_(z_w)__f_’l_z_“’_)‘ < g;n(w)} (9.4 —1)

H*
s {p p*(iw)

have the same number of RHP poles and that these poles do not become unob-
servable after sampling. Then the system is robustly stable if and only if the IMC
filter satisfies

1 .
|fl<W70SwS7F/T (94-2)

where § 15 a stabilizing controller for the nominal plant p.

For stable systems f is arbitrary. Therefore, there always exists a filter f
which satisfies (9.4-2) regardless of the magnitude of the uncertainty £%,. For
unstable systems f is constrained to be unity at the poles of p* outside the UC.
Thus, depending on #*,, there might not exist any filter parameter « for which
the constraint (9.4-2) is met. Indeed, there might not exist any filter — however
complicated — which satisfies (9.4-2). A minimum amount of information is
necessary or equivalently a maximum amount of uncertainty is allowed to stabilize
an unstable system. The necessary information at w = 0 can be characterized
easily.

Corollary 9.4-2. Assume that a filter f is to be designed for a system or dis-
turbance pole(s) at s = 0 — i.e., f(1) = 1. There exists an f such that the
closed loop system is robustly stable for the family II* described by (9.4-1) only if
£:{0) < 1.

Note that contrary to Cor. 8.3-2, Cor. 9.4-2 is only necessary. For unstable
systems, in general, the filter has to satisfy other constraints in addition to the
one at z = 1.

9.5 Robust Performance

The results in Sec. 7.7.2 hold for unstable systems if it is assumed that all plants
in the family IT* have the same number of RHP poles and if the controller § and
filter f are stabilizing for the nominal plant p*.

i
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9.6 Summary of the IMC Design Procedure

The required information for the IMC design is the same as that for stable sys-
tems: process model, input type, performance specifications and uncertainty in-
formation. The input specification requires some care. If the physical disturbance
enters at the plant input, the disturbance used in the design procedure has to
include the unstable system poles for the resulting controller to yield offset free
performance.

Design Procedure

Step 1: Nominal Performance
The stabilizing Hj-optimal controller ¢ is determined which minimizes

(1 = 5*q)v"]l
for the specified input v*. The optimal controller § can be found explicitly from
(9.2-4). ’

G = 2by(phebivi) " {(205p%) "B g, (92-4)
If all the unstable plant/disturbance poles are at the origin, the entries in Table

8.1-1 can be used to find ¢y for typical inputs.

The controller §y is then modified as described in Sec. 9.2-2 to eliminate the
problems of intersample rippling;:

§d=qyG_B (9.2 - 20)
Step 2: Robust Stability and Robust Performance
The controller § is augmented by the IMC filter f

9=4f
In order for g to be stabilizing f has to be unity at all unstable system p* and
input v* poles my,..., 7. When the poles outside the UC are distinct, the one-
parameter filter is determined through Thm. 9.3-1. The filter poles are a subset
of the closed-loop poles. If they are made much slower than the mirror images of

the poles of p* outside the UC undesirable performance and robustness properties
result.

Robust Stability. Increase o (or A in o = e~7/) until

It <1, O0Lw<n/T (9.4 - 2)

is satisfied for a > o*.
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Robust Performance. Increase «, starting from o*, until the following condition
is met

gl + |1 = pGlw <1, 0<Lw< /T (8.4-1)

where
d(s) = 4(eT) f(eMho(s)v(s)/T (7.5 -10)

9.7 Application: Distillation Column Base Level Control

This example was discussed in detail in Sec. 5.7.1. It is briefly considered here
again, because some interesting issues arise when a digital controller is designed
for the process.

The process model is

p(s) = ;1,;(1 - (5.7-1)

Let us select a sampling time T' = /N, where N is an integer. Then the zero-
order hold discrete equivalent is

5(2) = 2L {ho(9)i()} = (1= 2 2L ()2} = (1 - 27M) 2

(9.7-1)

In this very special case we find that if ¢ is a finite zero of j(s), then €7 is a

zero of p*(z) and therefore ( is a zero of p*(e*T). This mapping does not hold for
zeros in general, although it is always true for the poles of p(s) and p*(2).

Because of this mapping the zeros of p*(z) that appear as poles of §x(z) are
cancelled by zeros of p(s) in (7.5-6). Therefore, any such zeros close to (-1,0)
do not produce intersample rippling even if the modification described in Sec.
9.2.2 is not made. However, this does not mean that the behavior of the control
system will deteriorate if the suggested modification is introduced. Indeed, the
steps proposed in Sec. 9.2 will result in a well-performing controller, regardless
of whether gg(z) suffers from rippling problems or not.

Let us proceed to illustrate this point by simulating the response for the two
controllers for a ramp disturbance d(s) = s~2. For the simulations we choose
6 = 5 and T = 1, which implies that N = 5. It follows from (9.7-1) that the
zeros of p*(z) are located at 2/%ei%7/5 | = 0,1,2,3,4, where 21/5 indicates the
real fifth root of 2. Two of these zeros (the ones that correspond to k = 2, 3) have
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Figure 9.7-1. Distillation column base level control; response to d(s) = s™2. Solid line: §y. Dashed
line: Gyg_B.

negative real parts and will give rise to poles of §y(z) with negative real parts.
The procedure of Sec. 9.2 yields

23172 — 16)(z — 1)

QH(Z) 5 (_225 & 1) (97 e 2)
2? 4 1.8586z + 1.3195

Eie)= 4.178122 Al

B(z) = 2.0765 — 1.07652™" (9.7 — 4)

Figure 9.7-1 shows the responses to d(s) = s~2 for both ¢ = gy and ¢ = §ug_B.
Clearly, gy produces no intersample rippling. One can also see that when the
modification of Sec. 9.2.2 is made anyway, the response is essentially unaffected.

Finally, note that because the open-loop system is unstable, the controller
has to be implemented in the classic feedback structure. Its expression can be
obtained from (7.2-3) and its implementation presents no problem.

9.8 References

9.1. The parametrization of all stabilizing controllers presented in this section is
the discrete equivalent of that presented in Sec. 5.1. It was obtained by extending
that proposed by Zames and Francis (1983) to include systems with integrators.

9.2.1. The H*-optimal controller can also be obtained with state-space meth-
ods (e.g., Kwakernaak and Sivan, 1972).




