IntroductiontoMVC

Definition---Proper ness and strictly proper ness
A system G(s) is proper if all its elements {g; (s)} are proper, and strictly proper

if all its elements are strictly proper.
Definition---Causal
A system G(s) iscausal if dl its elements are causal, and not causal if al its
elements are noncausal.
Definition---Poles
The eigen values 4, i=1,---,n of the system G(s) are called the pole of the system.

The pole polynomial 77(s) is defined as: 77(s) = ” (s—A),where m(s)isthe

least common denominator of all non-identical-zero minors of al order of G(s).
Example:

. (s-1(s+2) 0 (s-1)?
" (s+D(s+2)(s-D)

G(s)
—(s+(s+2) (s—D(s+l) (s—-D(s+)

The minor of order 2;
12 _ 1 . ~L2 2 12 —(s-D)

2 (s+)(s+2) P (s+)(s+2) P (s+1)(s+2)?
The least common denominator of the minors:
7(s) = (s+1)(s+2)*(s-)
Definition---Zeros

If the rank of G(2) islessthan the normal rank, z is a zero of the system. The
zero polynomial Z(s) is the greatest common divisor of the numerators of all
order-r minors of G(s), wherer isthe norminal rank of G(s) provided that these
minors have all been adjusted in such away asto have the pole polynomial
71(s) as their denominator.

Gi(9= 8D, grag) - ASTNEHD), gn - (5D
’ ny R S E®
So, Z(s)=(s-1)

According to this definition, the zero polynomial of a square G(9) is:
det{G(s)} =0
Notice that, inaMIMO system, there may be no inverse response to indicate the



presence of RHP-zero. For example, in the MIMO system of the following:

1 1
G(s)=; ; G(0.5)=0; g{G(0.5)}=0
(0.2s+D(s+]|1+2s 2
1 [045 0.897[1.92 0][0.71 -0.71]"
G(0.5) =—
1.65/0.89 -045| 0 0]//0.71 0.71
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(a) Step in uy, (b) Step in ug, (c) Combined step in u1 and

u=[1 0]T u=[0 1]T ug,u=[1 -1]T

Transfer functionsfor Closed loop MIM O systems

1

Cascaderule. For the cascade interconnection of G,(s)and G,(s)inthe
following figure(a), the overall transfer function matrix is G=G;G,

Feedback rule. With reference to the positive feedback system in Figure (b):

v=(l-L)u=(1-GG)"u
Push-through rule. G,(I -G,G)™" =(1 -GG,)™'G,

G,-GG,G =G, -G,G) =(1 -GG,)G,
= (1-GG,)'G(1-GG) =G,
=(1-GG,)G, =G,(I -G,G)"



...............................

...............................

(a) Cascade system (b) Positive feedback system

4. MIMO rule.
(1). Start from the output, write down the blocks as moving backward by the most

direct path toward the input

(2). When exit from a feedback loop, include aterm (1-L)™ for positive feedback
(or, (1+L)™ for negative feedback. Notice that L is the evaluated against signal
flow starting at the point of exit from the loop.

Example: Consider the following block diagram:

Py
14— _—‘
P21 K e P12

Z= [ Py * P KA~ PzzK)_l pﬂ]W

5. Consider the closed-loop system:

dy dy

T+ ut Y F R y

_t$—’ K G —

The following relationships are useful:

(I+L)"+L( +L)'=S+T=1

G(l +KG)™ =(1 +GK)™G

GK (I +GK) ™ =G(l +KG)™K = (I +GK)™*GK
T=LO+L) = +L)*L=( +LH™



Singular Valuesand Matrix Norms

1. Vector Norms

A real valued function ||| defined on avector space X is said to be anorm on
X, if it satisfies the following properties:

@) [{=0:

(2) |x|=00nlyif x=0;

3) |ax|=|al|¥. for any scalar a;

@ [x+ <[+l

forany xOX andyOX.

The vector p-norm of xO X isdefined as: ||x||p=(zn:|>g|1/pJ,for15 p<co. In
i=1

particular p=1,2, o we have:

=30l = (0% 5, =]

Py I<ign
H o6 lder inequality:

oI, 5o =t
Notice that:

@ [¥, =d, =Vnl,

@ [A. =¥, <VnlH.;

@ [X. <l =Vn[§.



2. Matrix norms;
A matrix norm is defined as a function valued that satisfies the following:

(1) ||A|=0 foral ADR™ with equality only if A=0;
) |laA =|al|A foral aOR, ADR™;
() ||A+B|<||A|+|B| foral ABOR™

Let A=[a;]JOR™, the vector induced p-normsiis defined as:

supl™:

M,

|Al, =

In particular:

I, = max 37| (ol s

[, = (AA):

n
|Al = T?X;‘al‘ (row sum)

Another popular matrix norm is the Frobenius norm, i.e.:

A =[S la

i=1 j=1
The p-norms have the following important property for every AOR™":

@ [AX] <[ Al I, p=1.2, e

@ A, =<|A <nlA,

® a|< 1A, <vm{ _max

aj\} :

J_|<m]_]<n

@ A <IA, < |4
® 1AL <IA. < hlA,

J_|<m ]_]<n



Lemmal: Let xOF" and yOF™.

(1) Suppose n=m. |X|=|y| iff U OF™ st.x=Uy, and U'U =1 ;

(2) Suppose n=m. ‘xy‘s||x||||y|| . Moreover, equality holdsiff x=ay
forsome aOF or y=0;

3 ¥ <[y iff ;AOF™ with||A||<1st. x=Ay. Furthermore,
[ <yl o] <1

(4) |Ux| =|x| for any appropriate dimensioned unitary matrix U .

Lemma 2: Let A and B be any appropriate dimensioned matrices.
D) p(A<|A,(pP=122,F);

@ |A8|<[AllB: [a7=]A" ;
(3) |UAV|=|A].and |UAV|_ =|A|.. forany unitary matricesU and V ;

@ |A8]. <|A|B]. . and [AB]. <|B][A.-

Lemma 3: Let A be ablock partitioned matrix with:

A A, Aq

A= Ay Ay AZq :I:Aj:'

An Aw  Aw

Then, for any induced matrix p-norm,

Iad, 1Al (A, ]
4 < [l 122l (Al

1Ad, 1A, A,

Further, the equality holds if the F-norm is used.
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Proof. It is obvious that if the F-norm is used, then the right hand side of inequal-
ity (2.2) equals the left hand side. Hence only the induced p-norm cases, 1 < p < oo,
will be shown. Let a vector x be partitioned consistently with A as

I
I3
T = ;
Tq
and note that
llz1ll,
llz=ll,
lzll, =
lagll, 11,
Then
> g=1 A1;T;
> i1 A
I[43]ll, = sup [|[Ai]zll, = sup .
Ha:”":l || »=1 i
Yi=1Amis 1|,
- 0 Alvm-’ 7
’ =R =1 14w, llzs 1,
50, Aoy s 4ol lsl,
= sup P < sup s
I, =1 : [la]], =1 :
T NAmill. z;
‘Z?=1 b j=1 I m:r“p I J”p 3
L P dlilp
[ A, A, oo (Al llzll,,
||A21||p ”A22Hp ||A2q||p |fﬂ?2||p
= sup . . . .
e, =1 : : : :
L 1Amall, [ Amell, - [lAsgll, llzll,
< sup |14y, lel,

ll=l,,=1

‘P

= | [14ssl,]



Singular Value Decomposition

Consider afixed frequency w where G(jw)isa | xmcomplex matrix.

d

e Mt

Denote G(jw)as G for simplicity. Any matrix G may be decomposed into

G=UxVv".
Where,

Zisan | xmmatrix with k =min{l, m} non-negative singular values, o; .

arranged in descending order along its main diagonal ; the other entries are
zero. The singular values are the positive square roots of the eigenval ues of

G"G, and G"isthe conjugate transpose of G That is:

7,(G) =/4(G"G)

y=Gd ;
Let u be one of the eigenvector of G.

Y/

i,n

a=v =Wl =\l e f)
y=G(v)=Gv, = Av

= [ =a
Ivl, 1A vl _

OEr = =[A]
ol vl

On the other hand, it can be shown that the extreme values of |Gd|, /||d],
ae A'? [GHG} , which is known as the singular value of G, in the
directions of eigenvaectorsof G"G.

M. I, _ o I

< < =0
o, I, = [,

Since, g=min

Asaresult, g<[A|<T

The singular values can be considered as the extreme gains of the MIMO



system, which are local maximal values with respect to the direction of
inputs. For example, consider the gain matrix at a specific frequency:

i

The gains with respect to the direction of d are given in the following
figure:

1 2 3 4 5

0
dao/d1o

Typical singular values with respect to frequency are as shown in the
following figure:

Magnitude
=R =3
Qi
8
Magnitude
=R =)
19
2

a(G)
-1
10 10
107 10° 10° 107 107 10’
Frequency [rad/s] Frequency [rad/s]
(a) Spinning satellite in (3.77) (b) Distillation process in (3.82)

Theorem 1. Let AOF™". Thereexist unitary matrices:

U =[u,u,,--,u, ]JOF™V =[v,V,,--,v,]OF™"

, s 0
suchthat: A=UZV", z{ol }

0
where,
g 0 - 0
0 g, - 0 )
=. . . .|, o=20,2-20,20; p=min{mn}
0O O o



[Proof]

Let o=|A|, andassume m=n.

Then, from the definition of ||A|| e

1A,

I, =sw e (p=12s) =|ad], =|A, [, for somes
P

In other words, there exists avector z[F "such that

|42 =l =7

By the Lemma

(X =| || iff thereisamatrix U OF™" such that x=Uy and U'U =1)
thereisamatrix U OF™" suchthat U'U =1 and
Az=U(0z)=0Uz.

A Uz
Let: x=7—0F" and y=r=—0OF"
E U
- - - )
We have: AX:E: oz oUz_oUz _Uz _

) ~ad TJoud “Jod 7

Let U =[y,U,JOF™™V =[x,V,JOF™ beunitary.
Thus,

A =U"AV =[y,U,T[AX, AV,]
_| YA YA | _|oyy YAY
U,Ax U/AV,| |oU)y U AV,

{74

2

Since,

Al =a?+ww = Az +wWw

2

10



and o=|A|=|A]|, weconcludethat w=0.
An obvious induction argument gives: U"AV =% .The ¢, isthei-th

eigenvalueof A, and u andv, arei-thleft singular vector and j-th right
singular vectors, respectively. It is obvious to see:

Ay =ou and Au =0y,
o, AAy=0% and AAY =07y,

Hence, o/ isaneigenvalueof AA or A'A, U isaneigen vector of
AA", and isan eigen vector of A'A. Thefollowing notations for
singular values are often used:

T(A) = Ty (A) = 0 = x| A

ag(A) =0,

min

(A)=0, =min| A
Lemmal: SupposeA and D are square matrices.
D) |g(A+D)-g(A)|<T(A);
(2 a(Ad)za(A)a(d)

3 a(A™) :ﬁ if Aisinvertible



Proof.
(i) By definition

ac(A+A) = ”{crhi;ll I(A+ A)z||
> ||ghii11{”A$” = llaz|}
> min ||Az| — max ||Az||
ll=]l=1 ll=fl=1

Hence —7(A) < a(A + A) —g(A). The other inequality o(A + A) —g(4) < F(A)
follows by replacing A by A+ A and A by —A in the above proof.

(ii) This follows by noting that

o(AA) min ||AAz||

ll=ll=1

= \/1 min z*A*A*AAz

zll=1

i

a(A) ||l§hifl |Az]| = g(A)a(A).

(iii) Let the singular value decomposition of A be A = USV*, then A~! = VE~1U*.

Hence 7(A™!) = 7(27) = 1/¢(2) = 1/2(A).
0

12



Lemma 2 Let A € F™ ™ and
oL>03> 20> 041 =---=0, v < min{m,n}.
Then
1. rank{A) =r;
. KerA = span{v,41,...,vn} and (KerA)* = spanfuvy,...,v.};

. ImA = span{ui,...,u.} and (ImA)! = span{t,i1,. .., um};

B~ W

. A e ™" has o dyadic ezpansion:
A= Zamiv: =BV
i=1
where U, = [ug, ..., U], Vo = [v1,...,0,], and B, = diag(o1,...,0.);
5. A% =0} + o} +-- +a
6. ||All,= o1;

7. 0i(UhAVy) = ¢i(A), 1 = 1,...,p for any appropriately dimensioned unitary ma-
trices Uy and Vi;

8. Letk <1 = rank(4) and Ay := ELI oiuvl, then

min ||A- B| = ||A— Ak|| = ok+1-
rank(B)<k

Proof. We shall only give a proof for part 8. It is easy to see that rank(A) < k and

|A— Ag|| = or41. Hence, we only need to show that min ||A— B| > o41. Let
rank(B)<k

B be any matrix such that rank(B) < k. Then

lA-BI = |UsV*-B||=|£-U"BV|

”[ Liyi 0](S-U*BV) { Ikgl ]” = szﬁ—l —é“

v

where B = [ It4r 0 |U*BV [ Ikgl } € F+1)x(k+1) and rank(B) < k. Let z € F*+1

be such that Bz = 0 and ||z|| = 1. Then
|A— Bl = “2k+1 - EA"H > H(Ek+1 - E)fﬂH = | Bkt12]| = ok

Since B is arbitrary, the conclusion follows. O

Lemma 3:

1)  a(AN<|A<TA

@ Ps|A,

3 Let x(A) =M=condition number of A, and Ax=b. If

a(A)

13



A(X+0X) = (b+db), then: M:K(A)X[Mj

X [bl

(4) Let Ao A+JA and X=x+0X, whereA and x satify Ax=b.
Then:

I
RN

IA

Thus, when «(A) islarge and matrix A isamost singular, a very

small change of A will make the possible range of |dX| large.

14



Applications of SVD

Physical Example

In order to develop a clearer picture of the physical significance of the decom-
position, consider a very simple multivariable process. The process, as shown in
Figure .1, is a simple piping arrangement in which hot and cold water are con-
tinuously mixed. The controlled variables are the mix temperature (7,,) and the

Fy
Th
HOT WATER e T
CONTROL VALVE
1
TOTAL MIXED
F2 FLOW TEMPERATURE
Te

COLD WATER
CONTROL VALVE

FIGURE 1. Simple Mixing Example

total flow (F,,), and the manipulated variables are the flow rates of the two inlet
streams (F, and F,). The linearized steady-state behavior of the system about
some operating conditions can be described by the following equation:

AT _ o AF;
Y Ak LY ¢ 3)

15



where:

AT,, = steady-state change in the mixed temperature from base condition
AF,, = steady-state change in the total flow from the base condition
AF, = steady-state change in the hot water flow from the base condition

AF, = steady-state change in the cold water flow from the base condition

For a base case of F, = 10 gpm, F» = 20 gpm, T, = 100°F, T. = 65°F, let us
assume that the gain matrix is as follows:

Kk = [07778 —0.3889
= [1.0000  1.0000

which decomposes to (see e.g., Reference 8 for mathematical details of how to
carry out this decomposition):

U = [02758 0612
09612  0.2758
v = [0:8091 —0.5877
= l0.5877  0.8091
s . [14s31 0
0 0.8029

Condition Number, CN = 1.7.

At this point these singular values and vectors are merely numbers; however,
consider the relationship between these values and an experimental procedure
that could be applied to measure the steady-state process characteristics. Suppose
the mix temperature and total flow rate are measured for combinations of inlet
flows defined by AF,**2 + AF,**2 = 1. The response of the system to such an
experiment would be a direct indication of the sensitivity of the process to all
possible combinations of inputs and would be useful in designing a control system.
Under the present operating conditions, this simple process would respond as
indicated in Figure 2(a).

AFq 4Fm
y ]

4F2
a2U2

FIGURE 2(a). Mixer Output Ellipse—Case |
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FIGURE 2(b). Mixer Input Ellipse—Case 1

AF

\/01U1
AFp A ATm
ogU2

FIGURE [c). Mixer Output Ellipse—Case 2

Note that the response is presented in terms of the locus of two vectors.
One vector represents the manipulated variables and is expressed in terms of the
deviation of each from the base case position. The second vector represents the
controlled variables and is also expressed in terms of the deviation of each from
the base case. (The dotted line in Figure 2(a) is an example input and resulting
output vector). The set of manipulated variables considered for this experiment
forms a unit circle that maps over into the controlled variables as an ellipse. The
ellipse has a major axis and a minor axis that define the relative strengths and
weaknesses of the process response. Note that the mix temperature is slightly
more responsive than is the total flow, but both are quite responsive to the two
inlet flows.

It can be mathematically shown that the same information can be indirectly
obtained from the SVD analysis (15). Note in this example that the column vectors
of U describe the orientation of the major and minor axes of the ellipse and that
the singular values describe the magnitude of each axis. The first column vector
of U (U,) describes the orientation of the major axis and the first singular value
(1) describes the magnitude of that axis. The second column vector of U (U,)
and the second singular value (o) describe the direction and magnitude of the
minor axis, respectively. In other words, the column vectors of U describe the

17



rotations necessary for a sensor coordinate system that is aligned with the relative
strengths and weaknesses of the system.

Also, the right singular vectors (columns of V) can be used to show the
relative strengths and weaknesses of the manipulated variables. The first column
of V (V) indicates the combinations of manipulated variables that have the great-
est effect on the system. The second column of V (V3) indicates the combination
of manipulated variables that have the least effect on the system. This can also
be visualized as an ellipse in the manipulated variable coordinate system with a
major and a minor axis defined by V and the reciprocal of the singular values, as
shown in Figure 2(b).

The physical significance of the condition number can also be seen in this
simple example if we compare the operation of the system at the conditions above
with the following conditions:

F, = 100 gpm
F> = 150 gpm
Tx = 100°F
T. = 65°F

where the gain matrix and SVD analysis are the following:

K = 0.084 —0.056
1.000 1.000

which decomposes to the following:

U = [0014 -0.99
099  0.014
v - [0708 —0.706
0706  0.708
1414 0
* ‘[ 0 0.0990]
CN = 14.28

In the first case the condition number, which is the ratio of the largest to
the smallest singular value, is 1.70. This indicates that the system is almost twice
as responsive in the strong coordinate direction as it is in the weak coordinate
direction. In the second case, the condition number is 14.28, indicating that the
system is an order of magnitude more responsive in the strong coordinate direction
than it is in the weak coordinate direction.

The differences in the condition number of the two cases can be easily seen
by looking at the operating ellipses of the two cases (Figures 2a and 2c). In
the first case, the operating ellipse is broad, indicating that the system has two
clear degrees of freedom. In the second case, the operating ellipse is narrow,
indicating that, while two degrees of freedom do exist, the area of operation will
necessarily be along the major axis. Depending on the degree of difficulty of the
dynamic problem, it may or may not be practical to try to control the system in
the direction of the minor axis.

18



Problem of small singular values:

Very small singular values in a multivariable system are analogus to very
small gains in a conventional siso system. It requires very large
controller gains and results in excessively large controller actions. The
typical presence of constraints in the manipulated variable and noise in
the sensor makes it difficult even for siso system. In the context of mimo
system, the additional complications presented by hidden loops,
interactions make the problem even more severe.

A genera rule of thumb to measure the small singular value is the
magnitude of the noise in the signal. Singular values are equal or less
than the magnitude of sensor noise should be assumed degenerate.

Problem of large singular values:

Large singular values are not as serious a problem as small values. It
requires very small controller gains. This results in small controller
outputs, which can be easily become lost in the resolution of the
manipulator. The symptomatic behaviors are cyclic responses, which
never settling down to a reasonable steady state.

A general rule of thumb concerning large singular values is that all
singular values that are equal to or greater than the reciprocal of the
valve resolution should be avoided.

Determining Good Sensor L ocations

Consider, for example, the ethonal-water distillation column as shown in
Figure 3.Assume that the first level objective is to control two column
temperatures by manipulating D and Q. The basic concern is to
determine which combination out of 1225 possible combinations of
sensor |ocations from the point of view of column control.

19
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FIGURE 3 Ethanol-Water Distillation Example

The 50x2 gain matrix isas shown in figure 4.
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T
oD

9.90127E-04
1.22779E-03
1.50924E-03
1.84241E-03
2.23707E-03
2.70533E-03
3.26229E-03
3.92703E-03
4.72377E-03
5.68366E-03
6.84724E-03
8.26786E-03
1.00168E-02
1.21907E-02
1.49226E-02
1.83990E-02
2.28854E-02
2.87670E-02
3.66118E-02
4.72722E-02
6.20473E-02
8.29484E-02
0.11313
0.15762
0.22452
0.32704
0.48706
0.74146
1.1541
1.8420
3.0319
4,8898
5.2408
2.4720
0.40753
0.39395
0.35813
0.30683
0.24922
0.19346
0.14479
0.10533
7.49757E-02
5.24851E-02
3.62503E-02
2.47382E-02
1.66683E-02
1.10472E-02
7.13714E-03
2.87042E-03

aT,
9Q
~9.61801E-05
—1.19262E-04
—~1.45496E-04
~ 1.75168E-04
~2.08612E-04
—2.46212E-04
—2.88420E-04
~3.35763E-04
—3.88869E-04
~4.48478E-04
~5.15480E-04
—5.90948E-04
~6.76182E-04
~7.72778E-04
—8.82708E-04
~ 1.00843E-03
~ 1.15304E-03
~ 1.32047E-03
- 1.51577E-03
— 1.74546E-03
~2.01806E-03
~2.34481E-03
~2.74058E-03
~3.22536E-03
~3.82624E-03
—4.58073E-03
- 5.54272E-03
—6.79568E-03
—8.49150E-03
—1.10013E-02
~ 1.55514E-02
~2.43362E-02
~2.09634E-02
1.07653E-02
2.65409E-02
4.17207E-02
5.06657E-02
5.30754E-02
5.01423E-02
4.38410E-02
3.61175SE-02
2.84070E-02
2.15354E-02
1.58419E-02
1.13596E-02
7.96420E-03
5.47209E-03
3.69304E-03
2.45428E-03
1.11071E-03

i

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28

—_E W A LN -] 00O

TOP TRAY

REBOILER

FIGURE 4 GAIN MATRIX-ETHANOL-WATER COLUMN
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— 1.15845E-04 —1.43652E-04

—7.27120E-04 —-9.01615E-04
—1.77177E-04 —1.09961E-03
—2.16279E-04 —1.32333E-03
~2.62589E-04 — 1.57508E-03
—3.17525E-04 ~1.85761E-03
—3.82859E-04 —2.17410E-03
—4.60820E-04 —2.52826E-03
—5.54245E-04 —2.92444E-03
—6.66783E-04 —3.36777E-03
—8.03176E-04 —3.86431E-03
—9.69670E-04 —4.47126E-03
—1.17461E-03 —5.04726E-03
—1.42930E-03 ~5.75268E-03
—1.74932E-03 —6.55005E-03
—2.15648E-03 —7.45457E-03
—2.68186E-03 —8.48474E-03
—4,28891E-03 ~1.10167E-02 ¥V = Toataras 10000
—5.53677TE-03 —1.25787E-02 . :
—7.26608E-03 —1.43879E-02
—9.71211E-03 — 1.64894E-02
—1.32442E-02 - 1.89325E-02
—1.84501E-02 -2.17670E-02 S ——
U = —262769E-02 —2.50335E-02 e = B
= —3.82708E-02 —2.87459E-02 = 0.12861
—5.69912E-02 —3.28632E-02 gg = G
—8.67503E-02 —3.72601E-02
-0.13502 —4.17745E-02
—-0.21549 —4.68344E-02
—0.35468 —5.72102E-02
—0.57201 —8.64782E-02
—0.61305 —5.28765E.02 CONDITION NUMBER = 66.47593
—0.28907 0.13565
—4.75439E-02 0.21494
—4.58861E-02 0.33268
—4.16561E-02 0.40148
—3.56458E-02 0.41914
—2.89204E-02 0.39513
—2.24278E-02 0.34496
—1.67708E-02 0.28388
—1.21903E-02 0.22310
—8.67139E-03 0.16903
—6.06674E-03 0.12428
—4,18827E-03 8.90898E-02
—2.85722E-03 6.24467E-02
—1.92469E-03 4.28993E-02
—1.27531E-03 2.89479E-02
—8.23620E-04 1.92336E-02
—3.30684E-04 8.69678E-03

FIGURE 5  SVD ANALYSIS—ETHANOL-WATER COLUMN

From the SVD result in Figure 5 and is plotted on Figure 6. The largest
elements in U; and U, occurs on stage 18 and 13. On the other hand, if
we use abs(U;)-abs(U,) as criterion, as shown on Figure 7, the largest
differences suggests that stage 18 and stage 13 are good choices.
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FIGURE 7 Moadified Principles Component Analysis
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Selection of Proper Manipulated variables

For example, in the design of control of a control for a distillation
column, four manipulated variables are typically be considered:

D distillate flow rate

L reflux flow rate

B bottoms flow rate

Q steam rate to the reboiler

Two out of the four have to control levels (i.e. accumulator and column
base). Thus, only the remaining two can be manipulated for the
compositions.  To choose two out of the four, SVD provides a
straightforward method to compare the steady state behavior of various
first level control strategies.

TABLE 1
Condition Numbers of Distlllation Control Schemes

Overall SVD Analysis

First-Level S
Scheme CN ! 2
LQ 1321.7 0.910 0.00068
LB 97.2 0.081 0.00084
DQ 66.4 0.081 0.00122
QR 179.5 0.124 0.00069

BR 96.8 0.081 0.00084

In this example, DQ is the best first-level control scheme. It has a much
better condition number than the others. The second singular value of
this DQ scheme is much stronger than for the other schemes.
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Application to Feedback Properties

Jdi d
L e K u O Up P Yy

Figure Standard Feedback Configuration

Consider again the feedback system shown in Figure 5.1. For convenience, the systen
diagram is shown again in Figure 5.3. For further discussion, it is convenient to define
the input loep transfer matriz, L;, and output loop transfer matriz, Lo, as

Li=KP, IL,=PK,

respectively, where L; is obtained from breaking the loop at the input (u) of the plant
while L, is obtained from breaking the loop at the output (y) of the plant. The inpui
sensitivity matrix is defined as the transfer matrix from d; to up:

Si= (I—}-Li)_l, Up = S:d;.
And the output sensitivity matrix is defined as the transfer matrix from d to y:

So=(I+Ls)t, y=8,d.

The input and output complementaery sensitivity matrices are defined as
Ti=1-8i= Lyl + Li)™

T,=1-8,=L,(I+L,)™",

respectively. (The word complementary is used to signify the fact that T is the comple-
ment of S, T'=1I — S.) The matrix I + L; is called input return difference matriz and
I+ L, is called output return difference matriz.

It is easy to see that the closed-loop system, if it is internally stable, satisfies the
following equations:

y = To(r—mn)+ S;Pd; + S.d

r—y = So(r—d)+Ton—S,Pd;
w = KS,(r—n)— KS,d— T:d;
up = KSo(r—n)—KS,d+ 8.
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S —

Hence, good disturbance rejection at the plant output (y) would require that

7(S.) = T(I[+PK)™") = ;(I-I—lTK)’ (for disturbance at plant output, d)
7(S,P) = @((I+PK)'P)=g(PS;), (for disturbance at plant input, d;)

be made small and good disturbance rejection at the plant input (u,) would require
that

1

=cY — = N ; . :
7(S;) c((I+KP)™) ST KP) (for disturbance at plant input, d;)
7(SiK) = 7 (K{(I+PK)™"')=0(KS,), (for disturbance at plant output, d)
be made small, particularly in the low frequency range where d and d; are usually
significant.
Note that
g(PK)—-1 < g{I+PK)<g(PK)+1
g(KP)—1 < g(I+KP)<g(KP)+1
then
Ll H St i g(PE)>1
o(PE)+ 1= " = g(PK)-1" =~ ~
1 1 .
L eHS) < ————, if a(KP)> 1.
o(KP)+1 " 7(5) < EPY =1 (KF)

These equations imply that

7(5,) <1 < olPK)>1
F(S) <1l <= gEKP)> L

Now suppose P and K are invertible, then
o(PK)> lorg(KP)»1 < #(S,P)=7((I+PK)'P)w F(K1) = i)

o(PK)>1org(KP)>»1 < w(KS,) =7 (K({I+PK)")~a(P)= Py

Figure 5.4: Desired Loop Gain
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Use of the minimum singular value of the plant: The minimum singular
value of the plant evaluated as a function of frequency is a useful measure for
evaluating the feasibility of achieving acceptable control. In general, we want
o aslargeaspossible.

Singular valuesfor performance: In general, it is reasonable to require that

thegain |e(a)|, /|| («)|, remains small for any direction of r(c), including
the worst-case direction which givesagin of g(S(jw)). Let 1/‘Wp (] a))‘

represent the maximum allowable magnitude of |e(c), /|r ()], at each

frequency, Thisresultsin the following performance requirement:

F(S(jw) < Do - o{wS(jw) <1, Do = |w,S(jof <1

1
W, (jo)
Typical weight function is given asL

s/IM +w,

Wp(s) = S+ A

which meansl/‘wp‘ equals A<1 atlow frequencies, and equalsto M =1

at high frequencies, and the asymptote crosses 1 at «, (the bandwidth
frequency).
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