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Introduction to MVC design 
 

 

Performance Issues  
 

[Definition] Well-posed system 

 A feedback system is said to be well-posed if all closed loop transfer functions 

are well defined and proper. 

 

[Lemma:] The control system as shown in the figure is well-posed iff: ( ) ( )I K G+ ∞ ∞  

is invertible. (notice that K K= −
)

) 

 

 

Notice: 
( )

( ) ( ) is invertible      is invertible
( )

I K
I G K

G I

∞ 
− ∞ ∞ ⇔  − ∞ 

  

 IF 
A B

 ;      -K=      
C D

A B
G

C D

  
=   
   

) )

) ) , then ( )    and    ( )G D K D∞ = ∞ = −
)

  

The well-posed condition becomes: 

  is invertible.
I D

D I

 −
 − 

)

 

 

 

[Definition] Internal stability 
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:  
A B

Plant G
C D

 =  
 

  
ˆ ˆ

ˆ:  
ˆ ˆ

A B
Controller K

C D

 
=  
  

 

 From the block diagram, it is easy to obtain: 

 1 1

2 2

ˆ e wI K

e wG I

     − =     −     
      (A) 

1

2

0 0

ˆ ˆˆˆ 00

Ax B ex

exx BA

       
= +       

       

&

&
 

1 1

2 2

0 0

ˆ ˆˆ 00

C Dy ex

y ex DC

       
= +       

      
 

1 1 1

2 2 2

0

0

e w yI

e w yI

      
= +      

      
      (B) 

The last two equations can be re-written as: 

1 1

2 2

ˆˆ 0
ˆ0

e wxI D C

e wxD I C

       − = +       −        
 

1

2

0 0

ˆ ˆˆˆ 00

Ax B ex

exx BA

       = +       
       

&

&
 

Thus, 
1 ˆˆ0 0 0

ˆ ˆˆ 00 0

A Bx I D C
A

x B D IA C

−
        −= +        −        

%  

The closed-loop system with given stablizable and detectable realization of G and K 

is called internal stable iff A
)

 is a Hurwitz matrix. 
Compare Eq(A) with Eq(B), we conclude that the well-posedness condition implies 

that ˆ ˆ( ) ( )( )I DD I GK− = − ∞  is invertible. 

 

[Lemma] The system as shown is internally stable iff: 

 

( ) ( )

( ) ( )
( ) ( )

1 1 1

1 1

1 1

1 1

( ) ( )

                   =

I K I KG K I GK
G I G I KG I GK

I K I GK G K I GK
RH

I GK G I GK

− − −

− −

− −

∞− −

   + − +=   − + +    

 − + − +
  ∈
 + + 
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[ Note: H∞ space is a sub-spaceof L∞ with functions that are analytic and bounded in 

the open-right-half plane. The H∞ − norm is defined as: 

    [ ] [ ]
Re( ) 0
sup ( ) sup  ( )

s R
F F s F j

ω
σ σ ω

∞
> ∈

= =  

The real rational subspace of H∞ is denoted as RH∞ which consists of all 

proper and real rational stable transfer matrices.  ] 

 

 

 

2H  and H∞  Performance 

 
   1. 2H -optimal control 

       

Let the disturbance ( )d t%  can be approximated as an impulse with random 

input direction:  ( ) ( )d t tη δ=%   and  *{ }E Iηη =  

where E denotes the expectation. One may choose to minimize the expected 

energy of error e due to the disturbance d% : 

2 2 2

2 2
0

{ } e o dE e E e dt W S W
∞ 

= = 
 
∫  

  where, ( ) 1

oS I GK
−= +  

Alternatively, if ( )d t%  can be modeled as white noise, so that 
dd

S I=% % , then, 

e o de W S W d= %  and { }* * * *( ) ( )( ) ( ) ( )ee e o d e o d e o d e o ddd
S E ee W S W E dd W S W W S W S W S W= = = %

%  

    and, we may chose to minimize 
2

p
e  
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2 2
2

1
{ ( )} || ||

2 ee e o dp
e tr S j d W S Wω ω

π

∞

−∞

= =∫  

       In general, a controller minimizing only 
2

p
e can lead to a very large control 

signal u that could cause saturation of the actuators. Hence, for a realistic 

controller design, we may use the following criterion: 

  { }
2

2 22

2 2
2

e o d

u o d

W S W
E e u

W KS W
ρ

ρ
+ =  

 

In the following, assume all the weighting matrices are identity matrices.  

(1) SISO case:  The controller K is determined such that the integral 

square error is minimized for a particular input v.  That is: 

2 * 2

2

1 1
min min ( ) ( ) min | ( ) ( ) |

2 2K K K
e e j e j d s j w j dω ω ω ω ω ω

π π

∞ ∞

−∞ −∞

= =∫ ∫

where, 
2

( ) ( ) '( );   '( ) 1v j w j v j v jω ω ω ω= =  

(2) MIMO case: In analogy to the SISO case, the controller K is 

determined to minimize the 2H -norm for the error vector: 

2 *

2

1
min min { ( ) ( )}

2K K
E tr E j E j dω ω ω

π

∞

−∞

= ∫  

or, 

2 *
2 1 2 1 2 1 ( )2

1
min min {( ) ( ) }

2 j
K K

W EW tr W EW W EW E dω ω
π

∞

−∞

= ∫  

The H2-optimal control can be interpreted as the minimization of 

the 2-norm of sensitivity operator with input weight W1 and output 

weight W2. 

 

     2. H∞ -optimal control  

(1) SISO case:  

Assume that: 

22
2

2
2

1 ( )
: ' 1

2 ( )

v v j
V v v d

w w j

ω ω
π ω

∞

−∞

  = = = ≤ 
  

∫  

Each input in V gives rise to an error e. The H∞ -optimal control is 

designed to minimize the worst error which can result from any 

v V∈ , that is: 

2 2
min sup min sup '

K Kv V v V

e swv
∈ ∈

=  
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The worst error can be bounded for a set of bounded input V’ as 

follows: 

' ' ' '

2 2

2

2 2

' '

2

1
sup ' sup | ' |

2

1
                   sup | | sup | ' |

2

                  sup | |

v V v V

R v V

R

swv swv d

sw v d

sw sw

ω

ω

ω
π

ω
π

∞

∈ ∈ −∞

∞

∈ ∈ −∞

∞
∈

=

≤

≤ =

∫

∫  

where, 
2

2
' { ' : ' 1}V v v= ≤  

Thus, 

2 2
min sup ' min sup min

K K Kv V R

swv sw sw
ω

∞
∈ ∈

≤ =  

(2)  MIMO case: 

Let  

      { }2' 1
1 2

: 1V v W v−= ≤   and,  

     
2

2
' { ' : ' 1}V v v= ≤  

The controller K is to be designed to minimize the worst 

normalized error e’, that is: 

( )

'
22 2' '

2 1 2 1

min max ' min max

                      min sup ( ) min
K Kv V v V

K K

e W EWv

W EW j W EW
ω

σ ω
∈ ∈

∞

=

≤ =
 

Notice that if W1 and W2 are scalars, it means that 2 1W EW
∞

is 

bounded to lie below some constant value. The H∞  performance 

requirement is usually written as: 

2 1 1W EW
∞

<  

 

 

Synthesis methods 
 

Consider the simple feedback system as shown in the following figure: 
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The most common approach is to use pre-compensator,1( )W s , which counteracts the 

interactions in the plant and results in a new shaped plant: 

  1( ) ( ) ( )sG s G s W s=   

        Which is more diagonal and easier to control. After finding 1( )W s , a 

diagonal controller ( )sK s is design to control this new shaped plant. 

              
A more general framework for MVC design is to include another post compensator, 

2( )W s in the overall controller K(s) as the following: 

   

In other words, 

  2 1( ) ( ) ( ) ( )sK s W s K s W s=  

1. The design approach that uses Nyquist Array technique (such as: DNA, INA) of 

Rosenbrock (1974) and Characteristic loci of MacFarlane and Kouvaritakis (1977) 

are of this category. In this approach, Both of 1( )W s and 2( )W s are design so as to 

make the process diagonal dominant. 

2. The decoupling control is another of this approach. In this approach, 2( )W s =I, 

and 1
1( ) ( ),   ( ) ( )sW s G s K s f s I−= =   

The decoupling control is appealing, but there are several difficulties: 

(1). It may be very sensitive to modeling error and model uncertainties. 

Ks(s) W1(s) G(s) 
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(2). The requirement of decoupling and the use of inverse-based controller may 

not be desirable for disturbance rejection. 

(3). The issue of RHP zero. 

3. SVD-controller  

SVD-controller is a special case of a pre- and post-compensator design. Here, 

1( ) oW s V= and 2( ) T
oW s U= , where, oU and oV are obtained from a SVD of 

( ) T
o o o oG G j U Vω= = Σ . By selecting 1( ) ( )s oK s f s −= Σ , a decoupling design is 

achieved.  

 

4. Mixed-sensitivity H∞ design ( /S KS ) 

The objective of this design is to minimize the H∞ -norm of  

P

u

W S
N

W KS

 
=  
 

 

Where, S is a sensitivity function of the system, and KS is the transfer function 

matrix from the set-point R  to u. A reasonable initial choice for uW -weight is 

uW I= , and a common choice of the pW -weight is a diagonal matrix with 

*
,

, *
,

/ i B i
p i

B i i

s M
w

s A

ω
ω

+
=

+
.  

Selecting 1iA �  ensures approximate integral action with (0) 0S ≈ . Often, 

iM is selected about 2for all outputs, and *
,B iω is approximately the bandwidth 

requirement and may be different for each output. The shape of ( )pW jω  is 

given in the following: 

 

In the SISO system, usually, we require: ( ) ( ) 1pw j S jω ω
∞

<  
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     Inverse and Direct Nyquist Arrays 

 

Rosenbrock extended the Nyquist stability and design concepts to MIMO systems 

containing significant interaction. The methods are known as the inverse and direct 

Nyquist array (INA and DNA) methods. As an extension from the SISO Nyquist 

stability and design concepts, these methods use frequency response approach.  

    Frequency response techniques are theoretically less attractive than optimal 

controllers resulting from state-space analysis, but their simplicity, high stability, and 

low noise sensitivity make them quite attractive from a pratical point of view. The 

INA and DNA generally require the use of a digital computer with graphics capability 

and interactive computer-aided design facilities. 

 

1. Notations 
 Consider the following system: 

         

                                Figure 1 

 
        ( )z LGKe LGK r Fz= = −  

    Where, if [I+LGK] is not identically zeo,  

  [ ] 1

kz I LGKF LGKr
−= +  

 Alternatively, we have: 

  [ ]-1
        e r FLGKe e I FLGK r= − ⇒ = +  

 or, 

  [ ] 1

kz LGK I LGKF r
−= +  

 Define: Q=LGK 

  [ ] [ ]1 1
  ;   ( , )k kz Hr H I QF Q Q I FQ H Q F

− −= = + = + =  

 

r
K(s) G(s) L(s) 

F(s) 

zyue  
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  Note: 
  (i) 

k
k k

k

I F
I QF I FQ

Q I
= + = +

−

 

   Thus, |I+FQ||-1 exists if |I+QF|-1 exists. 

        (ii) H(Q,0)=Q 

  (iii)  Y=H[Q,F]X 

           

                       Figure 2 

 

 Let: K(s)=K1(s) K2(s), and L(s)=L2(s) L1(s), where, K2 and L2 are diagonal 

matrices.  Thus, comparing the following two equivalent block diagrams,  

          

                Figure 3 

         

               Figure 4 

we have: 

      [ ] [ ]2 2, ,H Q F H Q K F K=  

 Similarly,   by referring to the following diagram, 

r
K(s) G(s) L(s) 

F(s) 

z

Q 

F 

X Y 

K2 K1 G L 

F K2 
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               Figure 5 

we have:  [ ] [ ]2 2, ,H Q F L H Q L F=  

 

In Figure 4, the product K2F can be renamed as F since there are diagonal. Denote the 

diagonal entries as fi. . 

 

The two manipulations in Figure 4 and Figure 5 are important when there is concern 

about actuator or transducer failure.  

 

(1) When transducer error is impoerant, use Figure 4. Where L is set equal to the 

 identity matrix.. Then K2 is assimilated with F. Setting any elements of K2F 

 equal to zero shows effects of the corresponding transducer failures. 

(2) When actuator failure is important, use figure 5. Where, K is set equal to the 

 identity matrix. The L2 is assimilated with F. Setting any elements of L2K equal 

 to zero shows the effects of the corresponding actuator failure. 

 

2. General Feedback System Stability 
 
 [ ] [ ]1 1

k kH I QF Q Q I FQ
− −= + = +  

 
( ) ( )1 1

close loop characteristic polynomial = clc

k k
k

k

Q
H I QF Q I QF Q

I QF

I QF p

− −= + = + =
+

+ =

 

 In other words, according to stability criterion, we have: 
    ( ){ } { }H Q oN N Z P= − −  

  In other words, 

 
{ } { }o Q HZ P N N− = −  

 Thus, if the system is stble, we shall have: 

K G L1 

L2 

L2 

F 
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{ } { } { } { }      or   -    Q H o H Q oN N P N N P− = − =         (Criterion A)  

Similarly, since 
 [ ] [ ]1 1

k kH I QF Q Q I FQ
− −= + = +  

It is equivalent to have: 

 [ ]1 1 1       

and  

k

k

H Q I QF Q F H Q F

H
I QF

Q

− − −= + = + ⇒ = +

= +

))

)

)

 

Thus,  
    

{ } { }
      oH Q

N N Z P− = −) )
 

So, if the system is stable, we have: 

 
{ }{ }

      oHQ
N N P− =) )

       (Criterion B)  

 

3. Nyquist array and MIMO stability theorems 
 

It is difficult to apply criterion A and criterion B to determine the stability of 

multivariable systems, since the origin encirclements by the mappings due to the 

determinants of matrices Q and H (or Q-1 and H-1) are required. Rosenbrock’s  

Nyquist array techniques utilize modifications of the criteria, which are valid if the 

matrices are diagonally dominant. 

 

3.1 Diagonal Dominance 

 

 A rational m by m matrix Z(s) is diagonally dominant on the Nyquist contour, D, 

if (for all s on D and for all I, i=1,2,…,m) it is diagonally row dominant or diagonally 

column dominant. 

 Z(s) is diagonally row dominant if:  
  

1

( ) ( ) ( )
m

i ij i
j
j i

z s z s d s
=
≠

> =∑
 

 Z(s) is diagonally column dominant if:  
  

1

( ) ( ) ( )
m

j ij j
i
i j

z s z s d s
=
≠

> =∑
 

   As shown in the following figure, the diagonal dominance means the origin of the 

Z-plane will be located outside the disk which is centered on zi,i(jw) with radius 
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equaling to di or di’. 

 

       

zi,i 

d 
Z ii(jωo) 

 
      

Let Z(s)={zi,j(s), I,j=1,2,…,m}. As s travels along the Nyquist contour, The 

corresponding circles (centered at zi,j(jω) with radius di(ω) or di’(ω)) sweep out what 

is called a “Gershgorin band”.  

 

            

    If each of the band associated with all I of the diagonal elements excludes the 

origin, then Z(s) is diagonal dominant. 

 

 [Theorem]  Let Z(s) be diagonal dominance on C, which is any closed elementary 

contour having on it no pole of zii(s), i=1,2,…,m. Let zii(s) maps C into Γi, i=1,2,…,m, 

and |Z(s)| maps C into Γz,. Let origin encirclement by Γi be Ni times, and let origin 

encirclement by Γz be Nz. 

Then,   

1

m

z i
i

N N
=

=∑
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[Theorem---INA]  Let the Gershgorin bands based on the diagonal elements of Q-1 

exclude the origin and the point (-fi,0). Let these bands encircle the origin 
iqN ) times 

clockwise and encircle the points (-fi,0) 
ih

N ) times clockwise. Then the system is 

stable iff: 

  
{ } { }

1 1

      
i i

m m

q oh
i i

N N P
= =

− =∑ ∑ ))

 

 

[Proof] 

 Since, 

  

1 1 1[ ]       [ ]

                              

H I FQ Q H Q I QF

H
I QF

Q

− − −= + ⇒ = +

⇒ + =

)

)

 

 we have: 
 [ ;0] [ ;0] [ ;0] [ ;0]       oN H N Q N Q F N Q P− = + − = −

) ) ))  

The fact that Gershgorin bands based on the diagonal elements of Q
)

 exclude 

the origin implies that Q
)

 is diagonal dominant. Similarly, The fact that 

Gershgorin bands based on the diagonal elements of Q
)

 exclude the (-fi,0) 

implies that H
)

 is diagonal dominant.  Thus, 

( )

,

, , ,
1 1 1

1

[ ;0] [ ;0] [ ;0] [ ; ,0 ]

            
i i

m m m

i i i i i i i i
i i i

m

h
i

N H N h N q f N q f

N

= = =

=

= = + = −

=

∑ ∑ ∑

∑ )

)) ) )

 

Similarly, 

,
1

[ ;0]
i i

m

q
i

N Q N
=

=∑ )

)
 

 Thus, the Nyquist stability criterion becomes: 

  
{ } { }

1 1

      
i i

m m

q oh
i i

N N P
= =

− =∑ ∑ ))

 

  

 

[Theorem---DNA]  Let F=diag{fi}, where fi are real and non-zero, and F-1+Q be 

diagonal dominant on D. Let qi,i map D into Γi which encircles (-fi
-1,0) Ni times, 
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i=1,2,…m. Then the closed-loop system is asymptotically stable iff: ΣNi=-Po. 

 

[Proof]   

 
-1

-1

[ | |;  0 ]        [ | |;  0] 

 N[Q; F ]  
o o

o

N I QF Z P N F Q Z P

Z P

+ = − ⇒ + = −

⇒ = −
 

    Thus, if system is stable, Z=0, so,  

 -1 N[Q+ F ;0]  oP= −  

    Since F-1+Q is diagonal dominant,  

    

-1 1
,

1

-1
,

1

1

  [ | |;  0] [ ;0]

                               [ ;  ]

                              

 

m

i i i i o
i

m

i i o
i

m

i o
i

N F Q N f q P

N q f P

N P

−

=

=

=

+ = + = −

⇒ − = −

⇒ = −

∑

∑

∑

 

     

[Ostrowski’s Theorem]  Let the m×m rational matrix Z(s) be row [resp. column] 

dominant for s=so on C. Then Z(so) has an inverse Z
)

(so) and for i=1,2,…,m, 

 
( ) ( )

( ) ( )

1
, ,( ) ( ) ( )  

                . '( ) ' '

i i o i i o i o i o i o

i o i o i o

z s z s s d s d s

resp s d s d s

φ

φ

− − < <

< <  

)

 

 where,  

 
'

'

; ;
, ,

( )( )
( ) max ;      ,   ( ) max

( ) ( )
j

i

oj o
i o o

j j i j j i
j j o j j o

d sd s
s resp s

z s z s
φ φ

≠ ≠

 
 = =
 
 

 

[Theorem A]  Let Q
)

 and H
)

 be dominant on C. For each s on D the diagonal 

element hi,i of H[Q,F] satisfy: 

 

1
, ,

1 ' ' '
, ,

( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )
i i i

i i i i i i i i

i i i i i

h s f q s d s d s

or h s f q s d s d s

φ

φ

−

−

− + < <

− + < <

)

)
 

according as H F Q= +
))

 is row or column dominant. 

[Proof] This theorem is a direct result fro the Ostrowski’s theorem by substituting 
,

1

i i
z −)  

with 1
,i ih− , and zi,j with ,i i if q+ )

 (i.e. ,i jh
)

). 
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Notice that,  

, 1 2 1 1 , 1 2 1 1[ , { , ,.... ,0, ,..., }] [ , { , ,.... , , ,..., }]i i i i m j i i i i i mh Q diag f f f f f f h Q diag f f f f f f− + − ++ =
) )

Designate , 1 2 1 1[ , { , ,.... ,0, ,..., }]i i i i m ih Q diag f f f f f h− + =  and  

  1 2 1 1[ ,  { , ,.... ,0, ,..., }]i i m iH Q diag f f f f f H− + =  

Because of   [ ,  }]H Q F F Q= +
))

 and because of the Ostrowski theorem, 

1
, ,

1 ' ' '
, ,

( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )
i i i

i i i i i i i i

i i i i i

h s f q s d s d s

or h s f q s d s d s

φ

φ

−

−

− + < <

− + < <

)

)
 

Similarly, because of 1 2 1 1[ ,  { , ,.... ,0, ,..., }]i i mH Q diag f f f f f Q− + =
))

 and because of the 

Ostrowski theorem, we have: 

1 ( ) ( ) ( )i i i i ih q s d s d sφ−⇒ − < <)
  

This means the inverse transfer function viewing from the ith input to the ith output 

lies within the ith Ostrowski band. Thus, if H and Hi are diagonal dominant, we can 

use the Ostrowski bands to analysize the stability of a closed-loop system, and design 

the ith loop based on 1
ih− (s). 

 

The Ostrowski bands have two implications: 

(1). They locate the inverse of transfer function 1( )ih s− . If we wish to design a 

single-loop compensator for the ith lop, we must design it for 1( )ih s− . As loop 

gains (i.e. f1,…fi-1,fi+1,…fm) vary, and dominance is maintained, 1( )ih s−  lies 

within the appropriate Ostrowski band, evaluated for that gains. 

(2). They are used to determine the stability margins of the loops. We may determine 

appropriate gain and phase margins, or appropriate values of M, if we know 

1( )ih s− , which is within the i th Ostrowski band.  

 

Reasons for using Q
)

: 

(1). The relation H F Q= +
))

 gives an easy transition from open-loop to close-loop 
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properties. 

(2). There appears to be a tendency for Q
)

 to be more dominant than Q. 

(3). For some given s=jω that the distance from (-fi,0) to , ( )i iq iω)
 in all loops except 

the jth one becomes infinitely large, the width of the Ostrowski band for the jth 

loop shrinks to zero at s=jω. 
 
Achieving dominance    
 
There are various methods of achieving or increasing dominance. 

1. Elementary operations. 

2. Pseudo-diagonalization 

3.  Approximate inversion. 

 

  The INA and DNA methods reduce loop interactions by determining a 

precompensator, K (s) and possibly a postcompensator, L(s), so that 

Q-1(s)=[L(s)G(s)K(s)]-1 or Q(s)=[L(s)G(s)K(s)] is diagonal dominant. When 

dominance has been achieved, single-loop controllers may be implemented as 

required to meet design specification. In many instances, only precompensator is 

needed. The precompensator, K(s), is required to have elements whose poles are in 

the open left half plane. 

 

Elementary operations. 

 The earliest and most widely used method to achieve dominance is to use elementary 

row and column operations to build K  and L  matrices. The precompensator K(s) can 

be written as K a(s)Kb(s)Kc(s). Similarly, L(s) is written as L c(s)Lb(s)La(s). Where, 

matrices with subscript “c” designate non-singular parts of K(s) and L(s); those with 

subscripts designate the operational matrices that add a multiple of one column to 

another that they postmultiply.  

 

 

 

 

 

 

 

 



 17 

Decoupling Control 

 

The main objective in decoupling control is to compensate for the effect of 

interactions brought about by cross-coupling of the process variables.  In the ideal 

case, the decoupler causes the control loops to act as if totally independent of one 

another, thereby reducing the controller tuning task to that of tuning several 

non-interacting controllers. There are different types of decoupling control: 

1. Dynamic decoupling: Design decoupler GI(s) to eliminate interactions from all 

loops. In other words, the open-loop transfer function matrix, G(s)GI(s), achieves 

being diagonal for all frequencies. 

2. Steady-state decoupling: Design a decoupler so that G(0)GI(0) is diagonal. 

3. Partial decoupling: Design GI(s) to eliminate interactions in a subset of the control 

loops. 

 

Simplified Decoupling: 

Consider the following 2 2× system.  

       

  1 11 1 12 2

2 21 1 22 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

y s g s u s g s u s

y s g s u s g s u s

= +
= +

 

  
1 1 1 2

2 2 2 1

1 ,1 1 2 ,2 2

( ) ( ) ( ) ( );

( ) ( ) ( ) ( );

( ) ( ) ( ),   ( ) ( ) ( )

I

I

c c

u s v s g s v s

u s v s g s v s

v s g s e s v s g s e s

= +
= +
= =

 

 Then, 

  
2 1

2 1

1 11 12 1 11 12 2

2 21 22 1 22 21 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

I I

I I

y s g s g s g s v s g s g s g s v s

y s g s g s g s v s g s g s g s v s

   = + + +   

   = + + +   

 

   To have ideal decoupling, it is required that 
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1 211 12 22 21( ) ( ) ( ) 0,   ( ) ( ) ( ) 0I Ig s g s g s g s g s g s+ = + =  

 In other words, 

  
1 2

12 21

11 22

( ) ( )
( ) , ( )

( ) ( )I I
g s g s

g s g s
g s g s

= − = −  

 By this,  

12 21
1 11 1

22

( ) ( )
( ) ( ) ( )

( )

g s g s
y s g s v s

g s

 
= − 
 

,  

21 12
2 22 2

11

( ) ( )
( ) ( ) ( )

( )

g s g s
y s g s v s

g s

 
= − 
 

 

 When dealing with systems larger than 2 2× , the simplified decoupling 

approach becomes very tedious. For example, in a 3 3× system, there are ( 1)N N −  

decouplers to be designed and implemented as in the following block diagram.  

 

 

          

 

Generalized decoupling 

A more general procedure for decoupler design is as follows: 

  ( ) ( ) ( ),  ( ) ( ) ( ),  so that  ( ) ( ) ( ) ( )I Iy s G s u s u s G s v s y s G s G s v s= = =  

In order to eliminate the interactions,  

  ,( ) ( ) ( ) { ( )}I R r iG s G s G s diag g s= =  

so that 

  1( ) ( ) ( )I RG s G s G s−=  

Notice that, the ( )IG s  is a simplified decoupling system is: 
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  1

2

1 ( )
( )

( ) 1

I

I
I

g s
G s

g s

 
=  
  

 

   
Limitations to the application of decoupling 

(1) Causality: In order to ensure causality in the compensator, it is necessary that the 

time delay structure in G(s) be such that the smallest delay in each row occurs on 

the diagonal. If not, it needs to compensate the process with additional dealy time 

as shown in the following figure, that is  

( ) ( ) ( )mG s G s D s=  

 

(2) Stability: It needs to ensure G(s) has no RHP zero. If not, ( )RG s must be adjust to 

contai the RHP zero. 

(3) Robustne: In general the diagonal controllers shold be detune to ensure the 

system’s stability robustness by relaxing the controller to be more conservative. 
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H∞ -Design 

 

1. Formulation of generalized plant for control systems. 
A grneral control formulation of Doyle (1983; 1984) makes use of the general 

control configuration of the following:  

   

Where, P  is the generalized plant and K  is the controller. To find the 

generalized plant for a one-degree freedom control system, consider the control 

the following block diagram: 

   

The first step is to identify the signals for the generalized plant: 

  
1

2

3

;   ,   m

w d

W w r z e y r v r y r y n

w n

   
   = = = = − = − = − −   
     

 

  

[ ]

[ ]

1 2 3

1 2 3

0 0
W

z y r Gu d r Iw Iw w Gu I I G
u

W
v r ym r Gu d n Iw Iw Iw Gu I I I G

u

 
= − = + − = − + + = −  

 

 
= − = − − − = − + − − = − −  

 
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  Which are equivalent to   

 

         0     
  

        

z I I G W

v I I I G u

−     
=     − − −     

 

To get a meaningful controller synthesis problem, for example, in terms of 2H  

and H∞ norms, weights zW  and WW are included, and the general 

configuration becomes the one as shown below: 

   

 

[Notice that the vector v consists of all the inputs to the controllers.]  

 

Example: Write the generalized plant for the following system: 

   

 Notice that: [ ] [ ]1 1 2;   ;    
T T

w d r z y r v r y y d= = − =  
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 [ ]1 1 2;     r du Kv K K K K K K= = − −  

 

 Thus by inspection, the generalized plant is:

1 1 2

1 1 2

2

        

0                 0

      0      

0        0        

        0         0

G I G G

I

P G G G

G

I

− 
 
 
 =
 
 
  

  

 

2. Stacked S/T/KS problem for H∞ -design: 

Consider an H∞ -problem where we want to bound ( )Sσ for performance, 

( )Tσ for robustness and avoid sensitivity to noise, and ( )KSσ  to penalize large 

input. The requirements may be combined into a stacked H∞ -problem of the 

following: 

  min ( ) ,   
u

T
K

P

W KS

N K N W T

W S
∞

 
 =  
  

 

Let  z N w=  and from which, we have: 

  

1

2

  for penalizing the use of input

  for stability robustness 

3  for performance

u

T

P P

z W u

z W Gu

z W w W Gu

v w Gu

= →
= →
= + →

= − −

 

   

Thus the corresponding block diagram becomes: 

  

And, the generalized plant becomes: 
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  11 12

21 22

0      

0      

 

   

u

T

P P

W I

P PW G
P

P PW I W G

I G

 
 

  = =     
 
− −  

 

  11 12

21 22

Z P w P u

v P w P u

= +
= +

 

Closing the loop by letting u Kv= , the transfer function from w to z becomes: 

  1
11 12 22 21,     ( ) [ , }lz Nw N P P K I P K P F P K−= = + − �  

Where, [ , ]lF P K is called a lower linear fractional transformation (LFT) of P with 

K as the parameter.  

 

A generalized control configuration including model uncertainty 
 

The generalized control configuration can be extended to include model 

uncertainty as shown in the following figure: 

           

The generalized plant P can be partitioned to be compatible to the controllerK . In 

other words, 

  11 12 11 12

21 22 21 22

;     

y u
P P P PZ W

u Kvz w
P P P Pv u

v u

∆ ∆      
            = = ⇒ =            

            

 

  1
11 12 22 21;    [ , ] ( )lZ NW N F P K P P K I P K P−⇒ = = = + −  
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Similarly,  

  11 12

21 22

,   
N Ny u

u y
N Nz w

∆ ∆
∆ ∆

    
= = ∆    

    
,  

 [ ] ( ){ }1
22 21 11 12,Z F N w N N I N N w

−
∆= ∆ = + ∆ − ∆  

    

To analyze the robust stability of [ , ]F N∆ ∆ , one should focus on the inverse of 

11I N− ∆ , i.e. [ ] 1
11I N

−− ∆ . For this, the system of the following is considered: 

     
 

 

Obtaining P, N and M 
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LMI synthesis for processes with model uncertainties 

 

LMI problems 
A linear matrix inequality is a matrix inequality of the form: 

1

( ) 0
m

o i i
i

F F Fζ ζ
=

+ >∑�  

where mRζ ∈  is the variable, and , 1,2, ,T n m
i iF F R i m×= ∈ = L are given. 

The inequality symbol in the above equation means that ( )F ζ is positive definite. 

The set {    ( ) 0}Fζ ζ > is convex. For many problems, the variables are matrices, 

e.g., 

 0TA P PA+ <  

where n nA R ×∈ is given and TP P= is variable. The problem is: “ the LMI 

0TA P PA+ <  in P” 
 

LMI feasibility problem: Given an LMI ( ) 0F ζ > , the corresponding LMI Problem 

(LMIP) is to find feasζ such that ( ) 0feasF ζ > . 

Eigen Value Problem(EVP): The EVP is to minimimize the maximum eigen value of 

a matrix, subject to an LMI, or: 

 w.r.t.  and 
  { }

subject to:  ( ) 0,   ( ) 0

Minimize

I A B

ζ λ
λ

λ ζ ζ− > >
 

Here, A and B are symmetric matrices that depend affinely on the variable ζ . This is 

a convex optimization problem. 

As an example of EVP: 

 
Minimize 

Subject to    0T T TA P PA C C PBB P

γ

γ+ + + <
 

The above EVP problem is equivalent to the following problem: 

 

Minimize 

Subject to    0
T T

T

A P PA C C PB

B P I

γ

γ

 − − −
  >
  
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LMI and Passivity 

  The system (A, B, C, D) of the following  
 ,   x Ax Bu y Cx Du= + = +&  

is passive, i.e.,  

 [ ]
0

( ) ( ) 0Tu t y t dt ≥∫  

if and only if there exists a matrix P>0 such that 

 0,   , 0,   0
T T

T
T T

A P PA PB C
P D D

B P C D D

 + −
  ≤ > + >
 − − − 

 

The passivity is equivalent to the transfer function matrix H being positive real, which 

means that 

 { }* 1( ) ( ) 0   for all Re  0,   ( ) ( )H s H s s H s C sI A B D−+ ≥ > = − +  

Minimizing Condition number by scaling: 

Let p qA R ×∈ with p q≥ . Then 

 max

min

( )( )
( )

( ) ( )

T

T

A AA
A

A A A

λσκ
σ λ

= =  

Consider the following problem: 

 

 ( )

,diagonal and nonsingular

,diagonal and nonsingular

p q

q q

Min LAR

L R

R R

κ
×

×

∈

∈

 

There exist non-singular, diagonal L and R and 0µ > such that 
2( ) ( )TI LAR LAR Iµ µγ≤ ≤  

By absorbing 1/ µ  into L, it becomes 
2( ) ( )TI LAR LAR Iγ≤ ≤  

which is the same as: 

 2 1( ) 1 ( ) ( )T T T TRR A L L A RRγ −− ≤ ≤  

And this is equivalent to the existence of diagonal P,Q, with P>0, Q>0, and 

 2TQ A PA Qγ≤ ≤  

Thus the problem becomes 

 

2

2

 

,diagonal and nonsingular, P>0

,diagonal and nonsingular

p p

q q

T

Min

P R

Q R

Q A PA Q

γ

γ

×

×

∈

∈

≤ ≤
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Analysis and design of uncertain control systems using LMIs 

The set Π  is described by the following state equations: 

 0( ) ( ) ( ) ,    (0)

( ) ( ) ( ) ,
u w

z zu zw

x A t x B t u B t w x x

z C t x D t u D t w

= + + =
= + +

&
 

where the matrices are unknown except for the fact that they satisfy 

 ( ) ( )( )    ( )   ( )

( )  ( )  ( )
z u wu w n n n n n

z zu zw

A t B t B t
R

C t C t C t
+ × + + 

∈Ω ⊆ 
 

 

is a convex set of a certain type. When one or more integer nu,nw,nz equal zero means 

the corresponding variable is not used. For example, when 0u z wn n n= = = , the set 

Π  is described by { }( )    ( )x A t x A t= ∈Ω& . The Ω  has many choices for a number 

of common control system models: LTI systems, polytopic systems (PS), norm-bound 

systems, structured norm bound systems, systems with parametric perturbations, 

systems with structured and bounded LTI perturbations, etc.  

 

For illustration purpose, polytopic system models arise when the uncertain plant is 

modeled as a LTI system with state space matrices is given as follows. 

A polytopic Ω  is described as a convex hull of its vertices: 

 
,1 ,1 , ,

,1 ,1 ,1 , , ,

1( )    ( )   ( ) ( )    ( )   ( )
 , ,  

( )  ( )  ( ) ( )  ( )  ( )
u w l u l w l

z zu zw z l zu l zw l

A t B t B t A t B t B t
Co

C t C t C t C t C t C t

     
    
        

L  

with the definition of a convex full of the following: 

{ }1
1 1

, , : ; 0, 1
l l

l i i i i
i i

Co G G G G Gλ λ λ
= =

 
= ≥ = 

 
∑ ∑L �  

Example: 

 

 [ ]
1 2

 0              1 0
( ) ( );     ( ) 1   0 ( )

( )   ( ) 1

  

dx
x t u t y t x t

a t a tdt

   
= + =   − −     

 with [ ] [ ]1 2( ) 1   1 ;    ( ) 2   2a t a t∈ − ∈ −  for all t≥ 0. 

 The corresponding polytopic convex full is: 

 
0 1 0 1 0 1 0 1

, , ,
1 2 1 2 1 2 1 2

A
        

∈        − − − − − −        
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Stability of Polytopic Systems 

    Consider a PS system: { }1 2( ) ,    ( ) , , , lx A t x A t Co A A A= ∈& L  

     A sufficient condition for this system to converge to zero is the existence of 

a quadratic positive function 
( ( ))

( )   such that  0T dV x t
V x x Px

dt
= < . Since 

 
( ( ))

( ) ( ) ( ) ( )T TdV x t
x t A t P PA t x t

dt
 = +   

A sufficient condition is the existence of a P satisfying the following conditions: 

  { }1 20,   ( ) ( ) 0,   ( ) , , ,T
lP A t P PA t A t Co A A A> + < ∈ L  

If such a p exists, the PS is quadratically stable. 

The above condition is equivalent to 

  0,   ( ) ( ) 0,   1,2, ,T
i iP A t P PA t i l> + < = L  

which is an LMI in P. Thus determining quadratic stability is an LMIP. 

   

 

Quadratic stability 

A sufficient condition for the quadratic stability is the existence of a quadratic 

function ( ) ,   0TV x x Px P= >  that decreases along every nonzero stable trajectory of 

the LDI (linear differential inclusion) system: 

( ) ;   ( )x A t x A t= ∈ Ω& . 

Since. [ ( ) ( )]T TV x A t P PA t x= +&  

The necessary and sufficient condition for QS is: 

 0,   ( ) ( ) 0  for all ( )TP A t P PA t A t> + < ∈ Ω  

 

(1). For LTI system:  

 0,    0TP A P PA> + <  

 

(2). For Polytopic LDI system 

 0,    0,   1,2, ,T
i iP A P PA i L> + < = L  

 

 

Stabilizing state-feedback synthesis for polytopic systems 

Consider the system with state feedback: 

 { }1 2( ) ,    ( ) , , , ,    ( )lx A t x A t Co A A A u Kx t= ∈ =& L  
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    The system is quadratically stable, if P and K exist so that: 

 ( ) ( )0,   0,   1,2, ,
T

i i i iP A B K P P A B K i l> + + + < = L  

    This matrix inequality is not jointly convex in P and K. However, with bijective 

transformation 1 1,  Y P W kP− −
� � , the equation can be rewritten as: 

   ( ) ( )1 1 1 10,   0,   1, ,
T

i i i iY A BWY Y Y A BW Y i l− − − −> + + + < = L  

      Multiplying the inequality on the left and right by Y yields an LMI in Y and W 

  0,   0,   1, ,T T T
i i i i iY Y A W B AY BW i l> + + + < = L  

If this LMI in Y and W has a solution, then the Lyapunov function V proves the 

quadratic stability of the closed-loop system with state-feedback. In other words, one 

can synthesize a linear state-feedback for the PS by solving an LMIP. 
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Robust Stability and Performance 

 

The various sources of model uncertainty may be grouped into the following: 

1. Parametric uncertainty: Praameter uncertainty is quantitied by assuming that each 

uncertain parameterα  is bounded within som region [ ]min max,α α , that is 

( )min max min(1 ), /( ),   is are a scalar satisfyin  1r r gα αα α α α α α= + ∆ = − − ∆ ∆ ≤  

2. Neglected and unmodelled dynamics uncertainty: This type of uncertainty is more 

difficult to quantify, but it is suited to use frequency domain representation.  

3. Lumped uncertainty: Here the uncertainty description represents one or seversl 

sources combined into a single lumped perturbation of a chosen structure (e.g. 

input uncertainty, output uncertainty, or input-output uncertainty, etc.) The 

frequency domain representation is well suited for this type of uncertainty, 

Notice that lumped perturbation form is used to represent the all types of modelling 

errors, and, unstructured perturbations are often used to get a simple uncertainty 

model. It is used to define unstructured uncertainty as the use of a full complex 

perturbation matrix ∆  in the following forms: 

 

:  

:  

:  

A A A

I I I

O O O

G G E

G G E

G G E

Π = +
Π = +
Π = +

 

Each representation can be represented by multiplicative form. In other words, 

 ( )  ,   1A A AG G I w
∞

= + ∆ ∆ ≤ ; ( )  ,  1O O OG I w G
∞

= + ∆ ∆ ≤  

 ( )  ,   1I I IG G I w
∞

= + ∆ ∆ ≤  

 

Each individual perturbation is assumed to be stable and is normalized, 

( ( )) 1  i jσ ω ω∆ ≤ ∀  

The maximum singular value of a block diagonal matrix is equal to the largest 

maximum singular values of the individual blocks. As a result, for { }idiag∆ = ∆ , it 

follows that ( ( )) 1   and  1i i j iσ ω ω
∞

∆ ≤ ∀ ∀ ⇔ ∆ ≤  
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Definitions of robust stability and robust performance 
 
1. Robust stability (RS): With a given controllerK , the system remains stable for all 

plants in the set of of uncertainty. 

2. Robust performance (PS): If RS is satisfied, the transfer function from exogenous 

inputs w to outputs z remains reasonable performance for all plants in the 

uncertainty set. 

In terms of the N∆ -structure, the requirements for stability and performance can be 

summarized as follows: 

      NS N⇔ is internal stable. 

22    1;NP N
∞

⇔ <  and NS 

RS    ( , )  is stable , 1;  and NSuF F N
∞

⇔ = ∆ ∀∆ ∆ ≤   

    F 1,  , 1;  and NSRP
∞ ∞

⇔ < ∀∆ ∆ ≤  

 

 

Robust stability of the M ∆ -structure 
 

    

 

Theorem 1  Determinant stability condition Assume that the nominal system M(s) 

and the perturbations ∆ , such that if '∆ is an allowed perturbation then so is 

'c∆ where c is any real scalar that 1c ≤ . Then the M ∆ -system is stable for all 

allowed perturbations if and only if the Nyquist plot of { }det I M− ∆ does not 

encircle the origin for each ∆ , and 
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( ){ }
( )

i

0,det ( ) 0,  ,

    det ( ) 0,  ,                                             (A) 

     (M ) 1,  i, ,                                                   (B)

N I j

I j

ω ω

ω ω
λ ω

− ∆ = ∀ ∀∆

⇔ − ∆ ≠ ∀ ∀∆

⇔ ∆ ≠ ∀ ∀ ∀∆
   

First, assume that for some '∆ , { }'det 0 I M ω− ∆ ≠ ∀  and the image of 

{ }det I M− ∆ ecircles the origin as s traverses the Nyquist contour. Because the 

Nyquist contour and its image are closed, there exists another ''∆  such that " 'ε∆ = ∆ , 

[0,1]ε ∈ , and with an 'ω such that { }'' 'det ( ) 0I M jω− ∆ = . This contradict with the 

assumption that ( )det ( ) 0,  ,  I jω ω− ∆ ≠ ∀ ∀∆ . This proved part (A). 

 

{ }det ( ) (1 ( )) 0i ii i
I M I M Mλ λ− ∆ = − ∆ = − ∆ ≠∏ ∏  

⇒ { }det 0I M− ∆ ≠  

which implies i (M ) 1,  i, ,  λ ω∆ ≠ ∀ ∀ ∀∆ . This proves (B). 

 

Theorem 2  Spectral radius condition for complex perturbation. Assume: 

(1) The nominal system and M(s) of the perturbations ∆ (s) are stable, 

(2) The class of perturbations, ∆ , shat that if '∆ is an allowed perturbation the 

so is 'c∆ , where c is any complex scalar such that 1c ≤  

Then, the M ∆ -system is stable for all allowed perturbations if and only if 

( ( )) 1,  ,M jρ ω ω∆ < ∀ ∀∆ , 

oe equivalently max ( ( )) 1,M jρ ω ω
∆

∆ < ∀  

Proof: 

 Assume that ( )det ( ) 0,  ,  I M jω ω− ∆ ≠ ∀ ∀∆ and there exists a perturbation such 

that ( ) 1Mρ ∆ ≥ at some frequency. Then ( )' 1i Mλ ∆ ≥  for some i, and there always 

exists another perturbation in that set, " 'ε∆ = ∆  where ε  is a complex scalar with 

1ε ≤  such that ( )' 1i Mλ ∆ =  so that ( )det ( ) 0 I M jω− ∆ = at some frequency, and, 

this contradict with the assumption that ( )det ( ) 0,  ,  I M jω ω− ∆ ≠ ∀ ∀∆ . Thus, the 
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theorem is proved. 

 

 

RS Lemma for complex unstructured uncertainty.  Let ∆  be the set of all 

complex matrices such that ( ) 1σ ∆ ≤ , the following is true: 

 max ( ) ( )M Mρ σ
∆

∆ ≤  

Proof: 

 max ( ) max ( ) ( ) ( ) ( )M M M Mρ σ σ σ σ
∆ ∆

∆ ≤ ∆ ≤ ∆ ≤  

 [The first part of inequality is due to:σ λ σ≤ ≤  is true for eachλ ] 

 

 

Theorem 3  Assume that the nominal system M(s) is stable and that the 

perturbations ∆  are stable. The M ∆ -system is stable for all perturbations 

∆ satisfying 1
∞

∆ ≤  if and only if 

 ( ( )) 1             1M j Mσ ω ω
∞

< ∀ ⇔ <  

Application of the unstructured RS-condition 

 

For each of the six single unstructured perturbations in the following figure, 
 1 2E W W= ∆  
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And, in terms of M ∆ -structure of the following: 

 

 

  

 1 0 2M W M W=  

Where, 0M is given by: 

1
0

1
0

1
0

1 1
0

1 1
0

1 1
0

:            ( )

( ) :        ( )

( ) :        ( )

( ) :   ( )

( ) :   ( )

( ) :  ( )

A

I I

o

iA

iI I

iO

G G E M K I GK KS

G G I E M K I GK G T

G I E G M GK I GK T

G G I E M I GK G SG

G G I E M I KG S

G I E G M I GK S

−

−

−

− −

− −

− −

= + = + =

= + = + =

= + = + =

= − = + =

= − = + =

= − = + =

 

The RS theorem yields 
 1 0 2    ( ) 1,  RS W M W jω ω∞⇔ < ∀  

For example, ( )IG G I E= + , 1 1I I IW T∞ ∞∆ ≤ ⇔ <  

 

 

 

The Structured Singular value 
 

 

⇔  

 Unstructured uncertainty          Structured uncertainty 

 

Consider the presence of structured uncertainty, where { }idiag∆ = ∆  is a block 
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diagonal. To test for the RS of the system, the M − ∆ -structure is used. That is: 

 ( ) if  ( ) 1   RS M jσ ω ω< ∀  

The figures shown above are two M − ∆ -structures for the same system, where 

{ }i iD diag d I= . The question is whether we can take advantage of the fact that 

{ }idiag∆ = ∆ is structured to obtain a more tight RS-condition. In the right figure, the 

inputs and the outputs to M and ∆  are re-scaled. With the chosen form, 

1new
i i i id d −∆ = ∆  and 1newM DMD−= , the RS condition becomes: 

 ( ) ( )1 if  ( ) ( ) 1   newRS M j DM j Dσ ω σ ω ω−= < ∀  

The most improved RS-condition is obtained by minimizing at each frequency the 

scaled singular value: 

 ( ) ( )1

D( )
 if  Min ( ) ( ) ( ) ( ) 1   newRS M j D M j D

ω
σ ω σ ω ω ω ω−= < ∀  

The structured singular value is a function which provides a generalization of the 

singular value and the spectral radius. A simple statement is: “The smallest structured 

∆ (measured in terms of ( )σ ∆  which makes { }det 0I M− ∆ = . Then the inverse of 

this ( )σ ∆  is called as the structured singular value”. 

Mathematically, 

 

[ ] ( )

( )

1
( ) min{ ( ) det 0  for structured },  or

1
min{ ( ) det 0  for structured }

( )

M I M

I M
M

µ σ

σ
µ

−

∆

∆

= ∆ − ∆ = ∆

= ∆ − ∆ = ∆
 

Example: (This example is to show that µ  depends on the structure of ∆ .) 

 
*

2 2 0.894 0.447 3.162 0 0.707 0.707

1 1 0.447 0.894 0 0 0.707 0.707
M

−       = =       − − −       
 

 The perturbation ∆  

  [ ]1 1

0.707 0.2 0.21
0.894 0.447

0.707 0.1 0.13.162
Tv u

   
∆ = = − =   − −   

 

 In fact, for the matrix M, the smallest diagonal ∆  which makes 

{ }det 0I M− ∆ =  is: 
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 ( )1 01
; 0.333,  and, thus, ( ) 3

0 13
Mσ µ 

∆ = ∆ = = − 
, when ∆  is diagonal. 

 

 

 

When all the blocks in ∆  are complex, 

{ , ( ) 1}( ) ( )M Max Mσµ ρ∆ ∆ ≤= ∆  

 

The following are the properties ofµ for complex perturbations: 

 

Properties of µ  

1. ( ) ( )M Mµ α α µ=  for any real α . 

2. Let 1 2{ , }diag∆ = ∆ ∆  and M is partitioned accordingly. 

  Then, { }
1 211 11( ) ( ),  ( )M Max M Mµ µ µ∆ ∆ ∆≥  

3. ∆  full matrix: ( ) ( )M Mµ σ≤  

4. ( ) ( ) ( )M M Mρ µ σ≤ ≤  

5. For any unitary matrix U with the same structure as ∆ ,  
  ( ) ( ) ( )MU M UMµ µ µ= =  

6. Any matrix D which commutes with ∆ , ( D D∆ = ∆ ), 

  1( ) ( );     ( ) ( )DM MD DMD Mµ µ µ µ−= =  

 

 

 

Robust stability with structured uncertainty 
 

According to theorem 1, we already have: 

 ( )  det ( ) 0,    , ,  ( ( )) 1,RS I j jω ω σ ω ω⇔ − ∆ ≠ ∀ ∀∆ ∆ ≤ ∀  

To find the factor mk  by which the system is robust stable, the ∆ is scaled by mk , 

and look for the smallest mk  which yields borderline instability, that is: 

 det{ } 0mI k M− ∆ =  

From the definition of µ , this value is 1/ ( )mk Mµ= . 
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Theorem 4  RS for block-diagonal perturbations   Assume that nominal M 
and∆ are stable. Then, the M ∆ -system is stable for all allowed ∆  with ( ) 1,  σ ω∆ ≤ ∀ , 

if and only if: ( ( )) 1,  M jµ ω ω< ∀  

 


