Introduction to MVC design

Performance Issues

[Definition] Well-posed system
A feedback system is said to be well-posed itlaled loop transfer functions
are well defined and proper.

[Lemma:] The control system as shown in the figure is webqu iff:| + K (c0)G(c0)
is invertible. (notice thatk = -K)
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Figure : Internal Stability Analysis Diagram

I K()

Notice: | —G(»)K () is invertible « |:—G(°°) |

} is invertibl

IFG-AB' K—AB then G(o)=D and K -D
{C D} e p| MenG@)=D and K& F

The well-posed condition becomes:

Db is invertible
-D |

[Definition] Internal stability



Figure : Internal Stability Analysis Diagram
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The last two equations can be re-written as:
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Thus,
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The closed-loop system with given stablizable agigctable realization of G and K

is called internal stable iffA is a Hurwitz matrix.
Compare Eq(A) with Eq(B), we conclude that the vpelkedness condition implies
that (1 -DD) = (I -GK)(x) is invertible.

[Lemma] The system as shown is internally stable iff:
[ I KT _[ (1 +ke)* -k(1+cK)?
-G | G(l +KG)™  (1+GK)™
%—K(HGK)'lG —K (I +GK)™
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(1+GK)"G (1+GK)™



[ Note: H,_ space is a sub-spaceaf with functions that are analytic and bounded in
the open-right-half plane. Thel_ -norm is defined as:

|F|l, = sup @[F 6) = supg[F {w)
Re(s)>0 R

The real rational subspace of,_ is denoted askRH,, which consists of all
proper and real rational stable transfer matricés.

H, and H, Performance

1. H,-optimal control

Let the disturbanced(t) can be approximated as an impulse with random

input direction: d(t)=nd(t) and E{ng} =1

where E denotes the expectation. One may choose to minitheexpected
energy of error e due to the disturbange

e} =&/ 4"} sl

where, S, =(1 +GK)™
Alternatively, if d(t) can be modeled as white noise, so tls%t: |, then,
e=W,SW,d and S, =E{ee} = W,SW,)E(dd JW,SW,) = W,SW,)S,; (WSW,)’

and, we may chose to minimizﬂe”i
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In general, a controller minimizing on|be||pcan lead to a very large control

signal u that could cause saturation of the actaaktence, for a realistic
controller design, we may use the following criberi

W,SW,
{ef; + o2[ul3} = “pw KW,

2

In the following, assume all the weighting matriees identity matrices.
(2) SISO case: The controller K is determined such that the integra
square error is minimizefr a particular inputv. That is:

N T T S 1% .
min e, = mK'”Zr_[,e (jw)e(jw)dw= nglnz—ﬂ_jm ls (oW ()t dw
where, v(j) =w(jo)Vv'(jw); vi(jw) =1

(2) MIMO case: In analogy to the SISO case, the controller K is
determined to minimize theH ,-norm for the error vector:

T NSO
rr3<|n||E||2 = nllnz_[otr{E (jo) E(jw)}dw
or,
. 1% .
min [W,EW|[; = min_ [, tr {(W,EW,) (W,EW) E} , dow

The H-optimal control can be interpreted as the minitidzaof
the 2-norm of sensitivity operator with input weig; and output
weight Wa.

2. H_ -optimal control
(1) SISO case:
Assume that:

y :{v:nvui .

Each input in V gives rise to an error e. ThE, -optimal control is
designed to minimize the worst error which can ltefsom any
vV, that is:

min sudle], = min sugisw |,
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The worst error can be bounded for a set of bountad V' as
follows:

2 _ 15
supfswy [, = supy [ gwv “lde

IN

2 1 T 2
Sup’| sup [ vt
supeiy 7+ s
WR

IN

where, V'={V: ||v||§ <1
Thus,
min sugjswv [, < min supsaf, = mifisa],

(2) MIMO case:
Let

\Y; :{v' :”Wl'lvuz s]} and,
Vi={v: |V <y

The controller K is to be designed to minimize st
normalized error €’, that is:

min mavfe |, = min mafLEWY |,
minSW(WEW &) miaLEW],

IN

Notice that if W and W are scalars, it means thi,EW is

bounded to lie below some constant value. Thig performance
requirement is usually written as:

MEEW], <1

Synthesis methods

Consider the simple feedback system as shown ifotlesving figure:



Ym

The most common approach is to use pre-compendégsy, which counteracts the
interactions in the plant and results inesv shaped plant:

G, (s) = G(s)Wi(s)

Which is more diagonal and easier to confter finding W(s), a
diagonal controllerK(s)is design to control thisew shaped plant.

> Ky(S)[{Wa(s)irl G(s) p»

A more general framework for MVC design is to ird#uanother post compensator,
W, (s) in the overall controller K(s) as the following:

....................................

In other words,
K(s) =W, (s)K(s)W4(9)
1. The design approach that uses Nyquist Array teclen{guch as: DNA, INA) of
Rosenbrock (1974) and Characteristic loci of Matzfar and Kouvaritakis (1977)
are of this category. In this approach, BothWif(s) and W, (s) are design so as to

make the process diagonal dominant.
2. The decoupling control is another of this approdohthis approachW,(s)=I,

and W,(s) =G™(s), K(s)=f(s)I

The decoupling control is appealing, but theresaneeral difficulties:
(2). It may be very sensitive to modeling error amadel uncertainties.



(2). The requirement of decoupling and the usenuérise-based controller may
not be desirable for disturbance rejection.
(3). The issue of RHP zero.

. SVD-controller

SVD-controller is a special case of a pre- and -postpensator design. Here,

W (s) =V, and W, (s) =U_ , where, U,and V, are obtained from a SVD of

0!
G, =G(jw,) =U, 2V, . By selecting K (s) = f(s)Z;', a decoupling design is
achieved.

. Mixed-sensitivity H_ design §/KS)
The objective of this design is to minimize thé,_ -norm of

WoS
N =
W,KS

Where, S is a sensitivity function of the systemg &S is the transfer function
matrix from the set-pointR to u. A reasonable initial choice foA/-weight is

W, =1, and a common choice of th&/, -weight is a diagonal matrix with
sIM; +a .
Wp,i — i _ CL)B,I .
St A

Selecting Al 1 ensures approximate integral action wig(0)=0. Often,

M;is selected about 2for all outputs, an@i is approximately the bandwidth

requirement and may be different for each outpute Thape oﬂWp(ja))‘ is

given in the following:

107 107" 10' 10°

10°
Frequency [rad/s]

In the SISO system, usually, we requi*)pr(jw)S(jw)H <1



Inverse and Direct Nyquist Arrays

Rosenbrock extended the Nyquist stability and designcepts to MIMO systems
containing significant interaction. The methods newn as the inverse and direct
Nyquist array (INA and DNA) methods. As an extensfoom the SISO Nyquist
stability and design concepts, these methods es@dincy response approach.

Frequency response techniques are theoretitedly attractive than optimal
controllers resulting from state-space analysis,their simplicity, high stability, and
low noise sensitivity make them quite attractivenfra pratical point of view. The
INA and DNA generally require the use of a digitamputer with graphics capability
and interactive computer-aided design facilities.

1. Notations
Consider the following system:

r e u
K(s)

<|
NI

G(s) L(s)

v

A 4

A 4

y
v

F(s)

A

Figure 1
Z =LGKe = LGK (I - Fz)
Where, if [I+LGK] is not identically zeo,
Z=[l, +LGKF] ™ LGKF
Alternatively, we have:
€=FT-FLGKe = ®&=[I+FLGK]'F
or,
Z=LGK[l, +LGKF]|'F
Define: Q=LGK

Z=HF ; H=[I,+QF]"'Q=Q[I,+FQ] '=HQ.F)



Note:
O Pl sor|=), +Fg
Q I, k k
Thus, |I+F{* exists if [I+QF} exists.

(i) H(Q,0)=Q
(i) Y=H[Q,F]X

X

=V
A 4
O

M
A

v

Figure 2

Let: K(s)=Ky(s) Kx(s), and L(s)=k(s) Li(s), where, K and L, are diagonal
matrices. Thus, comparing the following two eqlewd block diagrams,

r 4
»—>  K(s) > G(S) » L) >
F(S) le
Figure 3
—» K> > K, > G > L >
K2 < F <
Figure 4

we have:
H[Q.F]=H[QKF]K,

Similarly, by referring to the following diagram
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Figure 5

we have: H [Q, |:] = H [Q, |_2|:]

In Figure 4, the product & can be renamed as F since there are diagonabt®tre
diagonal entries as f

The two manipulations in Figure 4 and Figure 5iarportant when there is concern
about actuator or transducer failure.

(1) When transducer error is impoerant, use Figurhere L is set equal to the
identity matrix.. Then Kis assimilated with F. Setting any elements gF K
equal to zero shows effects of the correspondangstiucer failures.

(2) When actuator failure is important, use fig&reWhere, K is set equal to the
identity matrix. The L2 is assimilated with F. &g any elements of L2K equal
to zero shows the effects of the correspondingedot failure.

2. General Feedback System Stability

H=[1, +QF]"Q=Q[I, +FQ]™
Q]
1+ QF|
|1, + QF| = close loop characteristic polynomial fjo

Hl =] +QF) " Q Q=

=|(1,+QF)”
In other words, according to stability criteriame have:
Niy =No =(2-R)

In other words,

Z-F=Ng Ny
Thus, if the system is stble, we shall have:

10



Ng =N, =-P,  or N, -Ng =P, (Criterion A)

Similarly, since
H=[l,+QF]"Q=Q[I, +FQ]”
It is equivalent to have:
H*=Q'[I, +QF]=Q'+F = H =|Q[+F

il
and ‘= =|, +QF|
<
Thus,
Nim N =2-F
So, if the system is stable, we have:
_ - (Criterion B)
N{@ N{H} =R

3. Nyquist array and MIMO stability theorems

It is difficult to apply criterion A and criterioB to determine the stability of
multivariable systems, since the origin encircletaelny the mappings due to the
determinants of matrices Q and H (of* @Qnd HY) are required. Rosenbrock’s
Nyquist array techniques utilize modifications bétcriteria, which are valid if the
matrices are diagonally dominant.

3.1 Diagonal Dominance

A rational m by m matrix Z(s) is diagonally domimian the Nyquist contour, D,
if (for all s on D and for all I, i=1,2,...,m) it idiagonally row dominant or diagonally
column dominant.

Z(s) is diagonally row dominant if:

O ACIELAC)
=L
i
Z(s) is diagonally column dominant if:
12,9 > |7, (9] =d,(9)
i=1
i#]

As shown in the following figure, the diagonaintinance means the origin of the
Z-plane will be located outside the disk which entered on zi,i(jw) with radius

11



equaling to dor d'.

\ 1 Zii(jjox)

Let Z(s)={z;(s), 1j=1,2,....m}. As s travels along the Nyquisbntour, The
corresponding circles (centered g{jmw) with radius ¢(w) or d’'(w)) sweep out what
is called a “Gershgorin band”.

If each of the band associated with all | of tiagonal elements excludes the
origin, then Z(s) is diagonal dominant.

[Theorem] Let Z(s) be diagonal dominance on C, which is doged elementary
contour having on it no pole of(®), i=1,2,...,m. Let@s) maps C intd;, i=1,2,...,m,
and |Z(s)| maps C intio,,. Let origin encirclement bf/; be Ni times, and let origin
encirclement by ; be N.

Th m
en, NZ :ZNi
i=1

12



[Theorem---INA] Let the Gershgorin bands based on the diagonaiesies of G

exclude the origin and the point;(f). Let these bands encircle the origi times

clockwise and encircle the points ;@) Nﬁ times clockwise. Then the system is

stable iff:
ZN{@ _ZN{F\} =R
[Proof]
Since,
H=[I+FQ"Q = H™*=Q[l +QF]
M|
=|I +QF| :@
we have:

N[H;0]-N[QO] =N[Q+F;0] -N[ QO] =-P,

The fact that Gershgorin bands based on the diagdements ofQ exclude
the origin implies thatQ is diagonal dominant. Similarly, The fact that

Gershgorin bands based on the diagonal element§ axclude the (+0)
implies that H is diagonal dominant. Thus,

N[H; 0] :iN[ﬁ,i;O] =iN[qi,i + ;0] :iN[qi,i; (—fi,O)]

m

= 2N,
i=1
Similarly,
NIQ01 =Y N,
i=1

Thus, the Nyquist stability criterion becomes:

;N{fm _;N{ﬁ} =R

[Theorem---DNA] Let F=diag{f}, where f are real and non-zero, and+® be
diagonal dominant on D. Let;gmap D intol; which encircles (;f,0) N times,

13



i=1,2,...m. Then the closed-loop system is asymmdjicstable iff:ZN;=-P,.

[Proof]
N[ [I+QF[; 0]=Z2-R = N[F*+Q|; 0]=Z-F,
= N[Q;F']=Z-P,
Thus, if system is stable, Z=0, so,
N[Q+ F*;0]=-P,
Since F+Q is diagonal dominant,

N[ [F2+Q1; 0] =Y N [f "+, ;01= P,

i=1
= ZN qi[i ol 3-R,
=1

m

=) N =-P
=1

[Ostrowski’'s Theorem] Let the mxm rational matrix Z(s) be row [resp. column]

dominant for ssson C. Then Z(9 has an inverseZ (s,) and for i=1,2,...,m,
|27(s) - 2;(8)| <@(s)d (s,) <di(s)
[rep < % 9 (s)<d ()]

where,
a@) =max 20 e g6y mac
0 jij#i ZH.(SO)" I i;it?TzHTo)

[Theorem A] LetQ and H be dominant on C. For each s on D the diagonal

element h of H[Q,F] satisfy:
() - (f,+G,)| < @(9)d (8) <di(9)
o |hi6)> i+, j<g X 6)<d 6)

according asH =F +Q is row or column dominant.

[Proof] This theorem is a direct result fro the 1Ogiski’'s theorem by substitutingﬁi'il

withh*, and z with f,+q, (i.e. ).

14



Notice that,

h,[Q diag{ f, f,....f_,,0,f ,,..f N+ f, =h [Qdiag{f, f,..f_,f f, ,...f ]

Designateh [Q, diag{ f, f,....f_,0,f,,,....f,}]=h and
H[Q, diag{ f, f,....f_,0,f,,,..f_ J=H.
Because ofH [Q, F}]=F +Q and because of the Ostrowski theorem,
(9 = (f +6,)| < @(9)d (5) < d (9)
o |hi6) (+a,)<g 6 6)<d 6)
Similarly, because ofH[Q, diag{f, f,....f_,,0,f.,,...,f. J]=Q and because of the
Ostrowski theorem, we have:
=|h"~a| <@(9)d(s) <d(9)

This means the inverse transfer function viewing fromittmenput to the ith output
lies within the ith Ostrowski band. Thus, if H and Hi dragonal dominant, we can
use the Ostrowski bands to analysize the stabilityaddsed-loop system, and design

the ith loop based orh—l(s).

The Ostrowski bands have two implications:

(1). They locate the inverse of transfer functibif(s). If we wish to design a
single-loop compensator for the ith lop, we must designritfd(s). As loop

gains (i.e. f...fiy,fis,...fm) vary, and dominance is maintaineti;'(s) lies

within the appropriate Ostrowski band, evaluated for thatsgain
(2). They are used to determine the stability margfrithe loops. We may determine
appropriate gain and phase margins, or appropriakees of M, if we know

h™(s), which is within thei th Ostrowski band.

Reasons for usingQ:

(1). The relationH =F +Q gives an easy transition from open-loop to close-loop

15



properties.

(2). There appears to be a tendency €@rto be more dominant than Q.

(3). For some given sey that the distance from (-fi,0) t@}; (iw) in all loops except

the jth one becomes infinitely large, the width of the @sski band for the jth
loop shrinks to zero at s®mj

Achieving dominance

There are various methods of achieving or increasingmince.
1. Elementary operations.
2. Pseudo-diagonalization
3. Approximate inversion.

The INA and DNA methods reduce loop interactions dgtermining a
precompensator, K(s) and possibly a postcompensatot(s), so that
Q(s)=[L(S)G(S)K(S)]* or Q(s)=[L(S)G(s)K(s)] is diagonal dominant. When
dominance has been achieved, single-loop controllers beayimplemented as
required to meet design specification. In many instanoaly precompensator is
needed. The precompensatd(s), is required to have elements whose poles are in
the open left half plane.

Elementary operations.

The earliest and most widely used method to achievendmice is to use elementary
row and column operations to buid andL matrices. The precompensator K(s) can
be written asK 4(S)Kp(S)Kc(S). Similarly, L(s) is written asL (S)Lp(S)La(S). Where,
matrices with subscript “c” designate non-singular pafrt&(s) andL(s); those with
subscripts designate the operational matrices that addltgplen of one column to
another that they postmultiply.

16



Decoupling Control

The main objective in decoupling control is to compensatéhe effect of
interactions brought about by cross-coupling of the psogasables. In the ideal
case, the decoupler causes the control loops to actoaalliy independent of one
another, thereby reducing the controller tuning taskao af tuning several
non-interacting controllers. There are different typedeafoupling control:

1. Dynamic decoupling: Design decouplexXs} to eliminate interactions from all
loops. In other words, the open-loop transfer functiatrixy, G(s)G(s), achieves
being diagonal for all frequencies.

2. Steady-state decoupling: Design a decoupler so that G006 diagonal.

3. Partial decoupling: Design(S) to eliminate interactions in a subset of the control
loops.

Simplified Decoupling:
Consider the following2x 2system.

Y1(S) = 914(S)uy(s) + g1 S)u A9)
Y2(S) = 921()uy(s) + g, AS)u {9)

U (S) = Vv4(8) + 9, 1(S)V(S);
Uy (8) = V,(8) + g, 2(S)V(S);
Vi(8) = gca(S)e(s), Va(s)=g. AS)es)

Then,
Yi(s) = [911(5) +0:,(9)9, (S)]Vl(s) + [g 1499, (s)+9 1£S)]V £s)
Y2() = [921(5) +05(99,, (S)]Vl(s) +[9 249) + 9 5{9)g,, (5)]V £9)

To have ideal decoupling, it is required that

17



011(9)9), (5) +912(S) =0, 9,,(5)9,, (5)*+ 9 4(8)=0

In other words,

012(9)
911(9)

921(9)
92(9)

g,(s) =~ 9, (s) =~

By this,

(s = [911(8) —%}w@ ,

Y,(s) = [922(8) —_921;?1?;)2(5_) }VZ(S)

When dealing with systems larger th&x 2, the simplified decoupling
approach becomes very tedious. For example, 3x8system, there areN(N -1)

decouplers to be designed and implemented as in theviiodlock diagram.

Generalized decoupling
A more general procedure for decoupler design felbswvs:
y(s) =G(s)u(s), u(s) =G, (s)v(s), sothaty ¢ FG £ P £V &

In order to eliminate the interactions,
G(9)G, (s) = Gg(s) = diag{g, (9}
so that
G, (5) =G (s)Gr(9)

Notice that, theG, (s) is a simplified decoupling system is:



1, (S) 1
(piaimitelataltatale A A e s l
1 1
+ —
- 1 Single loop Interaction !
| controllers compensator,
Decoupling controller

Limitations to the application of decoupling

(1) Causality: In order to ensure causality in the comgensais necessary that the
time delay structure in G(s) be such that the smallest dekegch row occurs on
the diagonal. If not, it needs to compensate the peoaith additional dealy time
as shown in the following figure, that is
G () = G(s)D(s)

(2) Stability: It needs to ensure G(s) has no RHP zemotlf G(s) must be adjust to
contai the RHP zero.

(3) Robustne: In general the diagonal controllers shold henddo ensure the
system’s stability robustness by relaxing the controlldretonore conservative.

modified process G,

Single Decoupler |
Loop
Controllers
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H_-Design

1. Formulation of generalized plant for control sysems.
A grneral control formulation of Doyle (1983; 1984) reakuse of the general
control configuration of the following:

(weighted) (weighted)
exogenous inputs w Zexogenous outputs
B P -

. u v
control signals sensed outputs
K |«

Where, P is the generalized plant an& is the controller. To find the
generalized plant for a one-degree freedom contraksysconsider the control
the following block diagram:

r + > K > G

Ym

The first step is to identify the signals for the generalizedtpla

w | |d
W=lw, |=|r | z=e=y-r, V=r—-y,=r-y-n
W
z=y-r=Gu+d-r=Iw-Iw,+Owy+Gu=[l ~-I 0 G][u}
w
v=r-ym=r-Gu-d-n=-Iw +Iw, - Iw;=Gu=[-1 | -l G]{ }
u

20



Which are equivalent to

z| [ I -1 0 G| |W
vl [-1 1 -1 -G| |u
To get a meaningful controller synthesis problem, for etamn terms oH,

and H_, norms, weights W, and W, are included, and the general
configuration becomes the one as shown below:

FP e ecme s e e e e mE e e e — e —— e m———————————

gy g g

[Notice that the vector v consists of all the inputs to th&rollers.]

Example: Write the generalized plant for the followingtegs

d

Ky

G .

Notice that w=[d r]"; z=y,-r; v=[r vy, y, d]
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u=Kv, K=[KK, -K; -K, K]

G -1 GG,
0 I 0
Thus by inspection, the generalized planPis)| G, 0 GG,
0 0 G,
i 0 0 |

2. Stacked S/T/KS problem for H_, -design:

Consider anH_ -problem where we want to bound(S) for performance,
o(T)for robustness and avoid sensitivity to noise, anKsS) to penalize large
input. The requirements may be combined into a stadkgdproblem of the
following:

W, KS
min|NK),, N=| WT
WS

Let z=N w and from which, we have:
z, =W,u - for penalizing the use of inp
z, =W;Gu - for stability robustness
z3=W,w+W,Gu - for performance
v=-w-Gu

*xr J N b

Thus the corresponding block diagram becomes:

And, the generalized plant becomes:
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0 W,
P= 0 V\IFG :|:P11 F)12:|
Wl WG P, Py
-1 -G
Z=Rw+Pu
v=PR,w+ Pu
Closing the loop by lettingu = Kv, the transfer function from w to z becomes:

z=Nw, N=R,;+PK(-P,K)'P,F[PK}

Where, F[P, K] is called a lower linear fractional transformatitufT) of P with
K as the parameter.

A generalized control configuration including modeluncertainty

The generalized control configuration can be exendo include model
uncertainty as shown in the following figure:

A e

uA| ya

w J p

K

The generalized plant P can be partitioned to Ibepadible to the controllds . In
other words,

I el <EMR I

=Z=NW; N=FR[P,K]=R;+PK(l ‘sz)_lpzj

A <

UA yn
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OUTPUTS

INPUTS z Al
w A >
SYSTEM WITH l—— 2A3 <
ACTUATORS, N
SENSORS,CONTROLLER ——>
W —» N A

(a) (b)
Similarly,
Ya|_|Nig Ny fjuy _
[Z}_[Nu NZJ{W} o =B
Z=Fy [N, AJwW={Npp + NoA (1 - N12) Ny w

To analyze the robust stability df,[N,A], one should focus on the inverse of

| =N, A, i.e. [I =NyA] ™. For this, the system of the following is consitér

A |
ua ya
>~ M
Obtaining P, N and M
l—— Wi s A A w
oYy K Ul :L G —l+ > Wpl—£&
A + +
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LMI synthesis for processes with model uncertaintie

LMI problems
A linear matrix inequality is a matrix inequality the form:

F({)U F0+Zm:ZiFi >0
i=1

where ¢ OR™ is the variable, andr, =F" OR™™,i =1,2;-- mare given.
The inequality symbol in the above equation mebas £ ({) is positive definite.

The set{(| F({) >0} is convex. For many problems, the variables areioest

e.g.,
ATP+PA<0

where AOR™"is given and P = P' is variable. The problem is: “ the LMI

ATP+PA<0 inP”

LMI feasibility problem: Given an LMIF(¢{) >0, the corresponding LMI Problem

(LMIP) is to find ¢ ™ such that F (¢ ") > 0.

Eigen Value Problem(EVP): The EVP is to minimimihe maximum eigen value of
a matrix, subject to an LMI, or:

Minimize {A}

w.r.t. ¢ andA

subjectto:Al -A{ P> 0,B{ »

Here, A and B are symmetric matrices that depefidedf on the variable¢ . This is
a convex optimization problem.
As an example of EVP:

Minimize y

Subject to ATp+pPA+CTC +yPBBT P< |
The above EVP problem is equivalent to the follayyomoblem:

Minimize y

-ATP-PA-C'C PB

Subject to >
B'P ¥l

25



LMI and Passivity

The system (A, B, C, D) of the following
X=Ax+Bu, y=Cx+Du

is passive, i.e.,
j [u®)]" y)dt =0
0
if and only if there exists a matrix P>0 such that

{ATP+ PA PB-C'

<0, ,P>0, D' +D> C
B'P-c -D'-D

The passivity is equivalent to the transfer funttimatrix H being positive real, which
means that

H(s)+H(s) 20 forallR§ s> O,H ¢ ¥C ¢ -A)B+D

Minimizing Condition number by scaling:
Let AORPwith p=q. Then

() = 2B _ Ve AT

Q(A) i \//]min (AT A)

Consider the following problem:
Min «(LAR)
L ORP*, diagonal and nonsingul
RORYY diagonal and nonsingul
There exist non-singular, diagonal L and R amd 0 such that
4l < (LAR)T (LAR) < 1yl
By absorbing1/,/u into L, it becomes
| <(LAR)' (LAR) < /I
which is the same as:
(RRT)-1< AT (L"TL)A< P (RRT)L
And this is equivalent to the existence of diagd®&l, with P>0, Q>0, and
Q< ATPA<)?Q
Thus the problem becomes
Min y2
P ORP*P diagonal and nonsingular, P

QO R¥Y diagonal and nonsingular

Q< ATPA<)?Q
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Analysis and design of uncertain control systems gy LMIs
The set is described by the following state equations:

%= A(t)x+B, (t)u+B,(Ow, x(0)=X,

z=C,(t)x+ D, (t)u+D,,(t)w,
where the matrices are unknown except for thetfattthey satisfy

Alt) B,t) B,t) 00 O R, 41,)
C,(t) C,(t) C,, ()

is a convex set of a certain type. When one or rimteger p,n,,n, equal zero means
the corresponding variable is not used. For examygiem, =n, =n,, =0, the set

M is described by{ x= At)x| At)JQ}. The Q has many choices for a number

of common control system models: LTI systems, mid systems (PS), norm-bound
systems, structured norm bound systems, systerhgpaiametric perturbations,
systems with structured and bounded LTI perturibatietc.

For illustration purpose, polytopic system modeiseawhen the uncertain plant is
modeled as a LTI system with state space matricgs&vén as follows.
A polytopic Q is described as a convex hull of its vertices:

) {Al(t) Bua 0) Emc)]“ [A() Bu,t)am.t()}
Coa® Cas® Cars®]” [Cot©) Cart ©) Ca )

with the definition of a convex full of the followy:

Co{G,,---,G} [ {G G= le/hGi A2 o,zll/]i = 1}

=1 i=1
Example:
dx | O 1 0 | )
E{-al(t) —az(t)}x(t”uu(t), yt)=[1 dx¢)

with a,t)0[-1 1; a, ¢)[-2 2 forallt=0.

The corresponding polytopic convex full is:

o Bt R R
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Stability of Polytopic Systems
Consider a PS systemk= A(t)x, At)OCo{A A, A}

A sufficient condition for this system to camge to zero is the existence of

dV(x(t)

a quadratic positive functioW (x) = x' Px such that . Since

DO - ) AT )P + PAWD) | x(0)
dt
A sufficient condition is the existence of a P sfging the following conditions:

P>0, AT {)P+PA()<0, A{)JICo{A A, ;- Al

If such a p exists, the PS is quadratically stable.
The above condition is equivalent to

P>0, AT t)P+PA ¢)<0,i=12:|

which is an LMI in P. Thus determining quadratialslity is an LMIP.

Quadratic stability
A sufficient condition for the quadratic stabiliig the existence of a quadratic
function v(x)=x"Px, P>0 that decreases along every nonzero stable trajecfo
the LDI (linear differential inclusion) system:
x=A(t)x; AQ)DQ.
Since. V = x"[AT (t) P+ PAt)] x
The necessary and sufficient condition for QS is:
P>0, AT ¢)P+PA()<0 foralA()XJQ

(). For LTI system:
P>0, ATP+PA<O0

(2). For Polytopic LDI system

P>0, ATP+PA<0,i=12" L

Stabilizing state-feedback synthesis for polytopisystems
Consider the system with state feedback:

x=A@t)x, At)OCo{A A A}, u=Kx¢,
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The system is quadratically stable, if P aneixiét so that:
P>0, (A+BK) P+P(A+BK)<0,i=12.-|
This matrix inequality is not jointly convex land K. However, with bijective

transformationY 0 P™*, W kP, the equation can be rewritten as:

Y>0, (A+ BIWY‘l)T Yr+Y (A +BW)Y <0, i=1;-
Multiplying the inequality on the left andjht by Y yields an LMl in Y and W
Y>0, A +W'BT +AY+BW <0, i=1; |

If this LMI in Y and W has a solution, then the Ipgmov functionV proves the
quadratic stability of the closed-loop system veithte-feedback. In other words, one
can synthesize a linear state-feedback for theyP®lwing an LMIP.
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Robust Stability and Performance

The various sources of model uncertainty may bamgd into the following:
1. Parametric uncertainty: Praameter uncertainty antjtied by assuming that each

uncertain parameter is bounded within som regio{\amm,amax] , that is

a=a@+r,A)r, = (0~ ) (@ e~ O i), A is are a scalar satisfginA| <

max

2. Neglected and unmodelled dynamics uncertainty: fype of uncertainty is more
difficult to quantify, but it is suited to use fregncy domain representation.

3. Lumped uncertainty: Here the uncertainty descnptiepresents one or seversl
sources combined into a single lumped perturbatiba chosen structure (e.g.
input uncertainty, output uncertainty, or inputjmutt uncertainty, etc.) The
frequency domain representation is well suitedfi type of uncertainty,

Notice that lumped perturbation form is used torespnt the all types of modelling

errors, and, unstructured perturbations are ofteeduo get a simple uncertainty

model. It is used to define unstructured unceryasd the use of a full complex
perturbation matrixA in the following forms:

Mn,:G,=G+E,

M, :G =G+E

M, :G, =G+E,
Each representation can be represented by muétipleeform. In other words,

G :é(l +WAAA) , ”AA”«, <L G=(I+wA,)G, "Ao"w =1

6 =G(1+wa,). [a]. <1

Each individual perturbation is assumed to be stabd is normalized,
oA (jw) <1 Dw
The maximum singular value of a block diagonal mais equal to the largest

maximum singular values of the individual blocks A result, forA :diag{Ai}, it

follows that 7, (A (ja)) <1 Dw anddi - |4 < :
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Definitions of robust stability and robust performance

1. Robust stability (RS): With a given controller, the system remains stable for all
plants in the set of of uncertainty.

2. Robust performance (PS): If RS is satisfied, thadfer function from exogenous
inputs w to outputs z remains reasonable performaioc all plants in the
uncertainty set.

In terms of the NA -structure, the requirements for stability and perfance can be

summarized as follows:

NS - N isinternal stable.

NP < [N, <1 and NS
RS « F=F,(NA) isstablelA ||A| < 1 and!

RP « [A. <104,a) <1 andN

Robust stability of the MA-structure

UA ya

Theorem 1 Determinant stability condition Assume that tlmminal system M(s)
and the perturbationg\, such that if A'is an allowed perturbation then so is

cA'where c is any real scalar thkqsl. Then the MA-system is stable for all

allowed perturbations if and only if the Nyquistoplof det{l —MA} does not

encircle the origin for eacl\, and
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N{0,det(l -A (w)} = 0,0w (1A
= defl -A (jw)# 0,0wlA (A
- AMA)£1, DiJwOA (B

First, assume that for some\ |, det{l—MA'}iODa) and the image of

det{l —MA} ecircles the origin as s traverses the Nyquist aumtBecause the

Nyquist contour and its image are closed, therstexinotherA’ such thatA” = A,

£0[0,1], and with anwsuch thatdet{l -MA (ja)'j = Q. This contradict with the

assumption thatdet(| =A (jw)) # 0, Dw A . This proved part (A).

def{l -MA} = [14C-M2)=[], @A MA))=C
= def{| ~-MA} # 0
which implies A (MA) #1, Oi,0w,0A . This proves (B).

Theorem 2 Spectral radius condition for complex perturbatidssume:
(1) The nominal system and M(s) of the perturbatiané) are stable,

(2) The class of perturbationg), shat that if A'is an allowed perturbation the

sois cA', where c is any complex scalar such t@g 1

Then, the MA-system is stable for all allowed perturbationaritl only if
P(MA(jw) <1, Dw A,

oe equivalently maxp MA (jw))< 10w
Proof:

Assume thatdet(l -MA(] a))) # 0, JwlJA and there exists a perturbation such

that p(MA) =21at some frequency. Thew, (M A')zl for some i, and there always

exists another perturbation in that séf, =&\ where £ is a complex scalar with

le[<1 such that A (MA') =1 so that det(l ~MA (jw)) = 0 at some frequency, and,

this contradict with the assumption thelet(l =M A (jw)) # 0, Dw[A . Thus, the

32



theorem is proved.

RS Lemma for complex unstructured uncertainty. Let A be the set of all
complex matrices such thaf(A) <1, the following is true:

maxp MA)saM)
Proof:

maxpMA)s maod MA oM FR)xT M ]

[The first part of inequality is due ta:<|A|< & is true for each ]

Theorem 3 Assume that the nominal system M(s) is stable #mat the
perturbations A are stable. TheMA -system is stable for all perturbations

A satisfying |4]| <1 if and only if

dM(jw) <1l Dw - M| <

Application of the unstructured RS-condition

For each of the six single unstructured perturlpatiao the following figure,
E =WAW,
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And, in terms of MA -structure of the following:

uA Ya

M :\MMOWZ
Where, M,is given by:

G=G+Ep: Mo =K (+GK J1=KsS
G=G(I+E): My=K(+GK)G=T,
G=(1+E)G: My=GK(+GK)l=T
G=G(I-Ep)t: Mg=(1+GK)1G=5G
G=G(I-E)™": Mg=(1+KG)'=§
G=(1-Eo)'G: Mg=(1+CK) =8

The RS theorem yields
RS = [WMW,(jw)|, <1, 0w

For example,G=G(I +E;), A, <1< WT [, <1

The Structured Singular value

SAME UNCERTAINTY

A |
UA ya
M
Unstructured uncertainty Structured utaety

Consider the presence of structured uncertaintwrwm:diag{Ai} is a block
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diagonal. To test for the RS of the system, tfle- A -structure is used. That is:
RSif d(M(jw))<1l Ow
The figures shown above are twd —A-structures for the same system, where

D=diag{dili}. The question is whether we can take advantagtheoffact that

A= diag{Ai} is structured to obtain a more tight RS-conditionthe right figure, the
inputs and the outputs to M and are re-scaled. With the chosen form,

AP =d.Ad™ and M™ =DMD™, the RS condition becomes:

RS if 5(|v| ”e"”(ja))) :a(DM(jw)D‘1)<1 Dw

The most improved RS-condition is obtained by mirning at each frequency the
scaled singular value:

RSif Min &(M™(j&))=5(D(@M(j0)D(x)!)<1 Do
D(w)
The structured singular value is a function whicbviles a generalization of the
singular value and the spectral radius. A simpg¢estent is: “The smallest structured

A (measured in terms o0& (A) which makesdet{l —MA} = 0. Then the inverse of

thisg(A) is called as the structured singular value”.
Mathematically,

[()]™ = min{5{(4) [det(1 =MA) =0 for structureds }, c

1 .
—— =min{o(A) det(| —-MA) =0 for structuredr }
/J(M) A | ( )

Example: (This example is to show that depends on the structure d&f.)

vo| 2 2]_[0894 0447 3162 9 0707 0.7
“|-1 -1] |-0.447 0.89 0 0.707 0.707
The perturbationA

;1 [0.707 02 0.2
A=vu =—— [0.894 -0.44}=
3.162 0.707 -0.1 - 0.

In fact, for the matrix M, the smallest diagonah which makes

def{l -MA} = 0 is:
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1 0
A:%[O _J;E(A)=0.333, and, thugy M 3 , when A is diagonal.

When all the blocks ina are complex,
H(M) = Maxp 5 <y P(MAD)

The following are the properties @for complex perturbations:

Properties of u

1. p(@M)=|aju(M) forany reala.
2. Let A=diag{A, A} and M is partitioned accordingly.

Then, 1, (M) 2 Max{//Al(Mll), Hy,(M 11)}

3. A full matrix: u(M)<a(M)

4. p(M)<p(M)<aM)

5. For any unitary matrix U with the same structasen ,
H(MU) = p(M) = p(UM)

6. Any matrix D which commutes witha, (AD =DA),
#(DM) = u(MD);  £(DMD )= (M)

Robust stability with structured uncertainty

According to theorem 1, we already have:
RS = def(l -A(w)# 0, DwlA 04 {w)E Dw

To find the factork, by which the system is robust stable, thés scaled byk,,,
and look for the smallesk,, which yields borderline instability, that is:

det{l -k,MA} =0
From the definition of , this value isk,, =1/uM).
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Theorem 4 RS for block-diagonal perturbations Assume thaminal M
andaare stable. Then, the1a-system is stable for all allowed with z(A)<1, Dw,

if and only if: (M (jw) <1, Dw
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