
Chapter 2

Linear Algebra

Objective

Demonstrate solution methods for systems of linear equations. Show that a system
of equations can be represented in matrix-vector form.
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Figure 2.1: Two distillation columns in series.

2.1 Example System

Two distillation columns in series with a additional feed stream mixing in with the
bottoms stream of the first column. The flow rate of three streams are unknown. As
indicated in the Figure 2.1, the flow rate of streams x, y, and z are unknown. No reaction
is taking place. The steadystate flow rates must be calculated.

Basic Mass Balance:

accumulation = in− out + created− destroyed

Mass Balance on first column (In this case, assume steady state: accumulation = 0):

0 = 100− 40− x
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Mass balance on mixing point:

0 = x + 30− y

Mass balance on second column:

0 = y − 20− z

Three linear equations:

0 = 100− 40− x

0 = x + 30− y

0 = y − 20− z

Note that you could write too many equations. You could write an overall
balance:

0 = 100− 40− 20− z

Ending up with an overspecified system of equations, 4 equations, 3 unknowns. Stick
with the three equations from above for now.

Note that these are linear equations. The unknown variables have constant
linear coefficients, nonlinear terms do not appear (no x2, no

√
x, no ex).

You can rearrange the set of three equations (without the overall balance equation)
to get all the variable terms on the left side and the constants on the right. After some
The set of equations can be written as:

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x− 1y + 1z = −20 (2.1)

As we will see later, this can be more compactly written as:

A x = b

You may already realize that the solution to this problem is x = 60, y = 90, and
z = 70. For more complex systems, this is not quite so easy. To solve the three linear
equations simultaneously in a general manner, you can perform row reduction using
three possible row operations:

RULES

1. Add (or subtract) one row to (or from) another

2. Multiply or divide a row by a scalar value (any real scalar6= 0)

3. Swap position of rows
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Typically you would perform these operations until you have a triangular representation
(all 0’s above or below the diagonal). The triangular form allows for quick solution.

The set of linear equations in Equation 2.1 can be compactly written using only the
coefficients as:

1 0 0
−1 1 0

0 −1 1

∣

∣

∣

∣

∣

∣

∣

60
30
−20

We need to perform steps 1-3 to get the system of equations in triangular form with
ones on the diagonal and zeros below the diagonal, like

1 a b
0 1 c
0 0 1

∣

∣

∣

∣

∣

∣

∣

d
e
f

We can look at the original system of equations and realize that we must get zeros
in position 2,1 (row 2, column 1) and position 3,2 (row 3, column 2). You can multiply
row 2 by −1 using Rule 2:

1 0 0
1 −1 0
0 −1 1

∣

∣

∣

∣

∣

∣

∣

60
−30
−20

Next, swap position of rows 2 and 3 using Rule 3 to get:

1 0 0
0 −1 1
1 −1 0

∣

∣

∣

∣

∣

∣

∣

60
−20
−30

Then, subtract row 1 from row 3 using Rule 1 to get:

1 0 0
0 −1 1
0 −1 0

∣

∣

∣

∣

∣

∣

∣

60
−20
−90

Then, multiply rows 2 and 3 by −1 using Rule 2:

1 0 0
0 1 −1
0 1 0

∣

∣

∣

∣

∣

∣

∣

60
20
90

Subtract row 2 from row 3 using Rule 1 again to get:

1 0 0
0 1 −1
0 0 1

∣

∣

∣

∣

∣

∣

∣

60
20
70

Now, all coefficients below the diagonal are 0. The solution can be found quickly.
From equation 3 (row 3), z = 70. Using equation 2 (row 2) y − z = 20, but you know
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that z = 70 so y = 90. Equation 1 (row 1) gives x = 60, so the overall solution is x = 60,
y = 90, and z = 70.

CHECK SOLUTIONS: You can plug your solution back into the original three equa-
tions and verify that the equations are satisfied. THIS WILL HELP YOU ON

EXAMS.

Note that the general Gaussian elimination or row reduction method specifies that
you start with column 1 and perform operations until all coefficients below the diagonal
are 0, then move to column 2 and perform operations until all coefficients below the
diagonal are zero, etc.

2.2 Linear Equations - Special Cases

In general, there are three possibilities for a “square” set of linear equations.

2.2.1 Case A - One solution

Consider a simpler system: x + y = 1 and x − y = 1. Graphically, you can plot the
two lines and look for the intersection of two lines which occurs at x = 1, y = 0. The
system of equations is:

1 1
1 −1

∣

∣

∣

∣

∣

1
1

Subtracting row 1 from row 2 gives:

1 1
0 −2

∣

∣

∣

∣

∣

1
0

This implies −2y = 0 or y = 0 and x + y = 1 or x = 1 as you already realized.
In 3 dimensions (3 unknowns) each row represents a plane. Two equations can

intersect to give a line, and a line can intersect with a third plane to give a point, the
single solution (in a single solution case).

2.2.2 Case B - No solution

Consider the system x + y = 1 and x + y = 2. Graphically, this represents two lines
that never intersect.

1 1
1 1

∣

∣

∣

∣

∣

1
2

Note that column 1 and column 2 are identical. Subtracting row 1 from row 2 gives:

1 1
0 0

∣

∣

∣

∣

∣

1
1

You know that 0x + 0y = 1 cannot be true. For a “square” system, if Gaussian
elimination results in a 0 on the diagonal, this may be the case.
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2.2.3 Case C - Many solutions

Consider the system x + y = 1 and 2x + 2y = 2. Graphically, this represents two
lines that are coincident.

1 1
2 2

∣

∣

∣

∣

∣

1
2

Subtracting twice the value of row 1 from row 2 gives:

1 1
0 0

∣

∣

∣

∣

∣

1
0

These equations are consistent. 0x + 0y = 0 and x + y = 1 are consistent. There is
no single solution, as many solutions make the equation x + y + 1 consistent.

2.3 Nonsquare Systems

The original example was for a “square” system with 3 unknowns and 3 equations.
You may often end up with more (or fewer) equations than unknowns.

Consider the original set of equations:

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x− 1y + 1z = −20

One additional equation can be specified using a mass balance on the entire system,
0 = 100 + 30− 40− 20− z.

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x− 1y + 1z = −20

0x + 0y + 1z = 70 (2.2)

These four linear equations are not “linearly independent.” You can test this by using
row operations to make two rows identical. Simultaneously adding row 1 and row 3 to
row 2 will make row 2 the same as row 4.

1x + 0y + 0z = 60

0x + 0y + 1z = 70

0x− 1y + 1z = −20

0x + 0y + 1z = 70 (2.3)

This set of equations can still be satisfied using the original solution x = 60, y = 90,
and z = 70. In other cases, having more equations than unknowns may complicate the
solution process a bit.
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2.3.1 Reconciliation and Nonsquare Systems

For curve fitting, parameters that appear linearly can be formulated as a nonsquare
solution to a linear algebraic system of equations. Given that you have some (scalar
valued) measured value, y, that depends on a process parameter, x. Assume the model
takes the form:

y = mx + b (2.4)

Technically, you only need two data points to find m and b, the model parameters.
Assuming that you have more than two data points, we often desire to determine the
“best-fit” for the line. These parameters minimize the sum of the square of the model
error. For an experiment with four data points:

y(1) = m x(1) + b

y(2) = m x(2) + b

y(2) = m x(3) + b

y(4) = m x(4) + b (2.5)

Here, you know values of y and x but m and b are your unknown values. This can
be written as a set of equations:











y(1)
y(2)
y(3)
y(4)











=











x(1) 1
x(2) 1
x(3) 1
x(4) 1











[

m
b

]

You can get the “best-fit” solution to this overspecified set of equations using the
psuedo-inverse of the matrix:

x = (AT A)−1AT b

2.4 Vectors

A group of unknown (or known) values can be “stacked” to form a vector. In the
example problem, the unknowns x, y, and z can be described by the vector x:

x =







x
y
z







The solution to the problem has a known value and can be written as a vector xsoln:

xsoln =







60
90
70







Note that the underbar is used to distinguish between x (the vector) and x the
unknown. A vector is NOT limited to 2 or 3 unknowns (dimension of the vector).
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2.5 The Matrix

A matrix is similar to a vector, having 2 dimensions. One may think of it as a group
of vectors augmented together. A Matrix has a size, m× n representing m rows and n
columns. The values for m and n are sometimes written as subscripts for the matrix.
For example, the 2x3 matrix A

2×3
with two rows and three columns may have values:

A
2×3

=

[

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]

Note that each of the six elements has two indices. The first index is the row, the
second is the column. For the applications in this class, a matrix will have constant
coefficient values. Some example matrices:

A
2×3

=

[

0 −2 1
5 1 0.2

]

B
3×3

=







6 0 0
−2 0 −1
3 −1 5







Square Matrix - A matrix with indices equal (m = n).
Note: A vector can be seen as a special matrix having only 1 column.
Transpose - The transpose operator swaps the indices of a matrix (or vector). For

example, for A
2×3

as before:

(

A
2×3

)T
=







a1,1 a2,1

a1,2 a2,2

a1,3 a2,3







Example. For the matrix A

A =

[

1 2
3 4

]

AT =

[

1 3
2 4

]

Finally, one can take the transpose of a vector. For x =







x
y
z







xT = [x y z] =







x
y
z







T

Row Vector - The transpose of a vector is also known as a row vector.
Dot Product - The dot product of two vectors is the sum of the product of the

elements taken individually. Examples:

x · x =







x
y
z





 ·







x
y
z





 = x2 + y2 + z2
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1
2
3






·







x
y
z






= 1x + 2y + 3z







1
2
3





 ·







4
5
6





 = 1× 4 + 2× 5 + 3× 6 = 32

Matrix Multiplication - Two matrices can be multiplied together. For example
A

m×n
can be multiplied by B

n×j
. Matrix A has m rows and n columns, while B has n

rows and j columns.

A
m×n

=













. . . r1 . . .

. . . r2 . . .
...

. . . rm . . .













Here, each row up to rm is a row vector with n elements.

B
n×j

=











...
...

...
c1 c2 . . . cj

...
...

...











Here, each column up to column cj is a vector (column vector) with n elements. To
compute A

m×n
B

n×j
or simply A × B or just A B

A
m×n

B
n×j

=













rT
1
· c1 rT

1
· c2 . . . rT

1
· cj

rT
2
· c1 rT

2
· c2 . . . rT

2
· cj

...
...

...
rT

m · c1 rT
m · c2 . . . rT

m · cj













Method - To compute A
m×n

B
n×j

, the result will have j columns. The first column

of the result is computed by taking the dot product of B
1×j

(first column of B) with the
transpose of all the rows of A. The second column of the result is computed by taking
the dot product of B

2×j
(second column of B) with the transpose of all the rows of A.

Repeat up to the jth column of B which produces the jth column of the result.
Note: In general, A B 6= B A.
Conformable - In order to multiply A

m×n
B

n×j
the “inner” dimensions must be

equal. In A
m×n

B
n×j

, if the first matrix has n columns and the second matrix must n
rows.

Matrix Multiplication Examples:

[

1 2
3 4

] [

5 6
7 8

]

=

[

5 + 14 6 + 16
15 + 28 18 + 32

]

=

[

19 22
43 50

]

[

−1 2
1 1

] [

4
5

]

=

[

−4 + 10
4 + 5

]

=

[

6
9

]
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[

−1 2
1 1

] [

x
y

]

=

[

−x + 2y
x + y

]







2 3
1 −1
5 0







[

2 0
−2 1

]

=







4− 6 3
2 + 2 −1
10 + 0 0





 =







−2 3
4 −1
10 0







2.6 Column Example

Consider again the equations from the original distillation column example:

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x− 1y + 1z = −20

Notice that the variables (with constant coefficients) are on the left side and constant
values are on the right hand side. This set of linear equations can be represented in the
compact notation A x = b where

A =







1 0 0
−1 1 0

0 −1 1







x =







x
y
z







b =







60
30
−20







Identity Matrix - The identity matrix has values of one on the diagonal and zeros
elsewhere. It is defined as I and for a square matrix A I = A and I A = A.

I =







1 0 0
0 1 0
0 0 1







2.6.1 How to solve sets of linear equations

We need a solution to the matrix equation A x = b. You cannot “divide” by a matrix:

x 6= b /A

There is no “division” operator for a matrix. Instead, an inverse is defined for some
square matrices such that
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A
(

A
)

−1

= I

Also,
(

A
)

−1

A = I

Now, to solve A x = b for x

First, multiply on the left by
(

A
)

−1

(

A
)

−1

A x =
(

A
)

−1

b

Realizing that
(

A
)

−1

A = I replace
(

A
)

−1

A with I.

I x =
(

A
)

−1

b

Now, realizing I x is x, the solution is

x =
(

A
)

−1

b

Note that multiplying on the right will not lead to a solution.

A x
(

A
)

−1

= b
(

A
)

−1

2.6.2 How determine a matrix inverse

To solve A x = b, you need to know
(

A
)

−1

. We are going to use row reduction to

calculate
(

A
)

−1

. Start with A | I. use row reduction techniques until A is I.
(

A
)

−1

if
it exists will be on the right where I was originally.

Inverse Example

Solve the following for x using
(

A
)

−1

:

[

1 2
3 4

]

x =

[

5
6

]

For this procedure, one must first calculate
(

A
)

−1

. Set up A | I as:

1 2
3 4

∣

∣

∣

∣

∣

1 0
0 1

Use row reduction to get

1 0
0 1

∣

∣

∣

∣

∣

? ?
? ?

Then verify that A
(

A
)

−1

= I. Use
(

A
)

−1

to calculate x using x =
(

A
)

−1

b. Verify
solution again to be safe.
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START

Start by using row reduction on

1 2
3 4

∣

∣

∣

∣

∣

1 0
0 1

Multiply row 2 by 1/3 to get :

1 2
1 4

3

∣

∣

∣

∣

∣

1 0
0 1

3

Then subtract row 1 from row 2 to get:

1 2
0 −2

3

∣

∣

∣

∣

∣

1 0
−1 1

3

Now, multiply row 2 by -3/2 to get:

1 2
0 1

∣

∣

∣

∣

∣

1 0
3

2
−1

2

To get the left side looking like the identity matrix, subtract 2 times row 2 from row
1. Note that this is a compound use of row reduction rules.

1 0
0 1

∣

∣

∣

∣

∣

−2 1
3

2
−1

2

You now have
(

A
)

−1

=

[

−2 1
3

2
−1

2

]

Now verify that A
(

A
)

−1

= I
[

1 2
3 4

] [

−2 1
3

2
−1

2

]

=

[

1(−2) + 2(3

2
) 1(1) + 2(−1

2
)

3(−2) + 4(3

2
) 3(1) + 4(−1

2
)

]

=

[

1 0
0 1

]

You may also verify that
(

A
)

−1

A = I
[

−2 1
3

2
−1

2

] [

1 2
3 4

]

=

[

−2 + 3 −4 + 4
3

2
− 3

2
3− 2

]

=

[

1 0
0 1

]

Now, compute the solution, x =
(

A
)

−1

b.

x =

[

−2 1
3

2
−1

2

] [

5
6

]

=

[

−10 + 6
15

2
− 3

]

=

[

−4
41

2

]

Again, verify the solution is the solution to the original equations:

[

1 2
3 4

]

x =

[

5
6

]

[

1 2
3 4

] [

−4
41

2

]

=

[

−4 + 9
−12 + 18

]

=

[

5
6

]

Just as expected...
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2.6.3 Steady State Control Example

Two pumps are used to fill two tanks. The pumps usually operate at 50%, keeping
the tanks at levels of 75 inches and 80 inches respectively.It is known that a 1% increase
in pump 1 increases the height of tank 1 by 5 inches and the height of tank 2 by 3 inches.
For a 1% change in pump 2, the height of tank 2 increases by 4 inches. It is desired to
change the operating levels of the tanks to 110 inches and 89 inches.

P1

P2

H1

H2

Figure 2.2: Pump / Tank example

What do you know:

5 ∆P1(%) = ∆H1(inches)

3 ∆P1(%) + 4 ∆P1(%) = ∆H2(inches)

You know the target (reference, setpoint) for H1 and H2 as 110 and 89. This trans-
lates into ∆H1 = 110−75 = 35 and ∆H2 = 89−80 = 9. You need to increase tank 1 by
35 inches and increase tank 2 by 9 inches. You do not know the final values of the pump
speeds. You do know the original steadystate values, 50% and 50%, realizing that:

Pfinal = Pss + ∆P

You can now set up linear equations to solve for ∆P1 and ∆P2, then calculate the
final values for the pump speeds.

[

5 0
3 4

] [

∆P1

∆P2

]

=

[

∆H1

∆H2

]

2.7 Visualization

Each row in A x = b is a single linear equation. For a 2D problem (x with 2 elements
/ unknowns) the equation defines a line in the (x, y) plane. Two equations define two
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lines, and the unique solution to A x = b is the point x where the lines intersect. In
some cases, there may be many solutions to A x = b and in some cases there may be no
solutions to A x = b.

y

x

y

x

y

x

Figure 2.3: Three 2D examples with two equations. Each equation (row) represents a
line. The first case has one solution, the second case has no solution, and the third case
has many solutions.

For a 3D problem, each row defines the equation for a plane in 3 space. The inter-
section of 2 non-parallel planes is a line in 3 space, and the intersection of a line and a
plane in 3 space is a point. Again, in some cases there may be a single solution, many
solutions, or no solutions.

For higher dimensions, each equation defines a hyperplane in a n dimensional space,
R

n.

2.7.1 Linear Transform

A vector in R
n means x has n elements. Matrix multiplication of a matrix of size

m× n times a vector of size n× 1 “maps” the vector from R
n to R

m.

RR
nm

A x___

x_

Figure 2.4: Matrix multiplication as a mapping from R
n to R

m.

2.7.2 Range

The range of a matrix is the space of all possible points that may be mapped to in
a matrix multiplication of that matrix times an unknown vector.
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Range Example 1

For example, the matrix

A =







1 1 0
1 1 0
0 0 0







can only map to points on the line x + y in 3D as follows.

A x = 2x + 2y + 0z

The columns of the matrix define possible directions for the matrix to transform a vector.
In this example, columns 1 and 2 are the same, and column 3 is the zero vector. A x

where x takes any real value will always be on the line defined by the direction







1
1
0






.

Range Example 2

In another example, the matrix

A =







1 0 0
1 1 0
0 0 0







can only map to a variety of points in 3D as follows.

A x =







1
1
0






x +







0
1
0






y +







0
0
0






z

Again, the columns of the matrix define possible directions for the matrix to transform a

vector. In this example, only points in the directions of







1
1
0






and







0
1
0






can be reached

when multiplying A x. These two directions form a plane in 3 dimensional space.

RR
nm

A x___

Range of A__

Figure 2.5: Range of A as space in R
m of all possible mappings from R

n using matrix
multiplication.

32



Range Example 3

In another example, the matrix

A =







1 0 1
1 1 2
0 0 0







can only map to a variety of points in 3D as follows.

A x =







1
1
0






x +







0
1
0






y +







0
0
0






z

Here, column 3 is linearly dependent upon columns 1 and 2. This means that you
can find some combination of columns 1 and 2 that give column 3. Column 3 lies in the
plane defined by columns 1 and column 2.

Underlying point: For A x = b to have a solution, the b must be in the

range of A.

For the last examples, if b =







?
?
1






(if b has element in the z position) there will not

be a solution to A x = b. In such a case, the possible range of A does not include b.

Range Example 4

In another example, the matrix

A =







1 0 1
1 1 2
0 0 1







can map to all of the points in 3D as follows.

A x =







1
1
0





 x +







0
1
0





 y +







1
2
1





 z

Here, column 3 is NOT linearly dependent upon columns 1 and 2. This means that
you can find some combination of columns 1, 2, and 3 that give any point in 3 dimensions.

Rank - The rank of a matrix is the number of linearly independent columns. For a
square matrix of size n×n, there is a unique solution if there are n independent columns.
The matrix would have rank n.
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