
Specifying Goals to Deep Neural Networks with Answer Set Programming
Forest Agostinelli, Rojina Panta, Vedant Khandelwal

Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA
AI Institute, University of South Carolina, Columbia, South Carolina

Introduction
• Methods such as DeepCubeA train domain-specific heuristic functions in a largely domain-

independent fashion [1]
• DeepCubeA assumes a pre-determined goal, variations assume a fully-specified goal state
• Therefore, specifying a set of goal states can be impractical
• We introduce DeepCubeAg, which trains heuristic functions that generalize over goals

represented as assignments
• We build on this with answer set programming to allow for more robust goal specification

States and Sets of States
• A state has a set of 𝑉 variables 𝑥!, … , 𝑥"
• Each variable, 𝑥#, has domain, 𝐷(𝑥#)

• An assignment is a set {… , 𝑥# = 𝑣# , … }
• 𝑥# = 𝑣# represents 𝑥# being assigned to value, 𝑣# ∈ 𝐷(𝑥#)

• A state is a complete assignment
• A set of states is either a complete or partial assignment
• A state 𝑠 ∈ 𝒮$ iff 𝐴 ⊂ 𝑠
• 𝐴 is an assignment
• 𝒮$ is the set of states represented by 𝐴

Training to Generalize Over Goals Represented as
Assignments

DNN

!! !""! "" … !#

State to ground atoms
To DNN representation

#ℎ$(!!, #)

Specification
Language

Human Input

Specification to
ground atoms

Reinforcement
Learning Update

((!#)

Subsample

Training steps

Both

Specification steps

• Generate start state
• Take a random walk between 0 and T steps
• Convert terminal state to its representation as an assignment
• Subsample assignment to obtain goal
• Perform reinforcement learning update

Performance when Reaching Goals Represented as
Assignments

• Use heuristic function with batch A* search
• Compare to PDBs and fast downward planner with goal count, fast forward, and causal graph

heuristics
• Compare for canonical goal state and randomly generated assignments as goals
• Randomly generated assignment can be as small as the empty set

• 200 second time limit
• DeepCubeAg outperforms the fast downward planner and generalizes over goals without any

re-training

Specifying Goals with Answer Set Programming
• Answer set programming (ASP) is a form of first-order logic programming [2]
• An answer set program defines a set of stable models, where a stable model is a set of

ground atoms
• We represent a goal (i.e. an assignment) as a set of ground atoms in first-order logic
• A state, 𝑠, is a goal state with respect to an answer set program, Π, iff 𝑠 is a subset of some

stable model of Π
• An answer set program consists of
• Background knowledge
• A set of rules with goal in the head, a headless rule so goal is true in all stable models
• A choice rule with no body that contains ground atoms that represent all possible

assignments of values to variables
• Goal specification often only requires a few lines of code

References Code

Puzzle Solver Path Cost % Solved % Opt Nodes Secs Nodes/Sec

RC (Canon)

PDBs+ 20.67 100.00% 100.0% 2.05E+06 2.20 1.79E+06
DeepCubeA 21.50 100.00% 60.3% 6.62E+06 24.22 2.90E+05
DeepCubeAg 22.03 100.00% 35.00% 2.44E+06 41.99 5.67E+04
FastDown (GC) - 0.00% 0.0% - - -
FastDown (FF) - 0.00% 0.0% - - -
FastDown (CG) - 0.00% 0.0% - - -

RC (Rand)

DeepCubeAg 15.22 99.40% - 1.91E+06 32.24 5.19E+04
FastDown (GC) 7.18 32.80% - 2.67E+06 13.79 1.41E+05
FastDown (FF) 6.49 31.20% - 4.87E+05 13.83 2.93E+04
FastDown (CG) 7.85 33.80% - 1.12E+06 11.62 5.81E+04

15-P (Canon)

PDBs 52.02 100.00% 100.0% 3.22E+04 0.002 1.45E+07
DeepCubeA 52.03 100.00% 99.4% 3.85E+06 10.28 3.93E+05
DeepCubeAg 52.02 100.00% 100.0% 1.81E+05 2.61 6.94E+04
FastDown (GC) 36.75 0.80% 0.80% 9.05E+07 102.11 8.66E+05
FastDown (FF) 52.75 80.80% 24.80% 2.92E+06 42.11 6.93E+04
FastDown (CG) 41.95 4.40% 1.20% 2.00E+07 80.58 2.47E+05

15-P (Rand)

DeepCubeAg 33.98 100.00% - 1.11E+05 1.60 6.16E+04
FastDown (GC) 14.92 38.00% - 1.61E+07 18.77 5.46E+05
FastDown (FF) 32.66 89.20% - 1.24E+06 17.39 5.65E+04
FastDown (CG) 20.45 51.20% - 3.90E+06 21.41 1.20E+05

24-P (Canon)

PDBs 89.41 100.00% 100.00% 8.19E+10 4239.54 1.91E+07
DeepCubeA 89.49 100.00% 96.98% 6.44E+06 19.33 3.34E+05
DeepCubeAg 90.47 100.00% 55.24% 3.38E+05 5.22 6.48E+04
FastDown (GC) - 0.00% 0.00% - - -
FastDown (FF) 81.00 1.01% 0.40% 2.68E+06 89.84 2.91E+04
FastDown (CG) - 0.00% 0.00% - - -

24-P (Rand)

DeepCubeAg 66.28 99.60% - 3.10E+05 4.91 6.16E+04
FastDown (GC) 9.86 10.00% - 9.54E+06 11.88 4.27E+05
FastDown (FF) 26.35 26.00% - 5.99E+05 19.57 2.41E+04
FastDown (CG) 13.75 12.60% - 1.42E+06 14.42 6.85E+04

Sokoban

DeepCubeA 32.88 100.00% - 5.01E+03 2.71 1.84E+03
DeepCubeAg 32.02 100.00% - 1.80E+04 0.95 1.79E+04
FastDown (GC) 31.94 99.80% - 3.17E+06 5.93 5.85E+05
FastDown (FF) 33.15 100.00% - 2.92E+04 0.32 7.49E+04
FastDown (CG) 33.12 100.00% - 4.43E+04 0.51 7.25E+04

Table 1: Comparison of DeepCubeAg with optimal solvers based on pattern databases (PDBs) that exploit domain-specific
information and the domain-independent fast downward planning system with the goal count (GC), fast forward (FF), and
causal graph (CG) heuristics. Comparisons are along the dimensions of solution length, percentage of instances solved, per-
centage of optimal solutions, number of nodes generated, time taken to solve the problem (in seconds), and number of nodes
generated per second. For the Rubik’s cube and sliding tile puzzles, experiments are done on canonical goal states (Canon)
and randomly generated goals (Rand). For testing DeepCubeA on Sokoban, we report numbers obtained from the DeepCubeA
GitHub repository.

to be at the edge of the grid, what it means for a box to be
immovable, as well as basic constraints that state that two
objects cannot share the same location. In this domain, the
start state determines the ground atoms that will be present
in a goal state. In particular, the walls cannot be modified;
therefore, the specification of a goal must also take this into
account. To address this, we add the location of the walls to
the specification. We investigate the following goals: (1) all
boxes are immovable; (2) all boxes form a larger box; (3) the
four boxes occupy the four corners next to the agent.

Results Our experiments use 100 start states from the test
states used in Table 1 and follow Algorithm 1 (without set-

ting a maximum iteration) to find a path from these start
states to the goal. Given a specified goal, which is an an-
swer set program, we use clingo to find stable models and
use batch weighted A* search with a batch size of 1,000, a
weight of 0.6 on the path cost, and a search budget of 50
iterations to find a path to a sampled stable model. Visu-
alizations of reached goals for the four non-canonical Ru-
bik’s cube goals are shown in Figures 3, 4, 5, and 6, and
for Sokoban goals are shown in Figures 7, 8, and 9. A table
summarizing the path cost of solutions, number of models
sampled, time it takes to find stable models, and time it takes
to do search is shown in Table 2.

[1] Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep
reinforcement learning and search." Nature Machine Intelligence 1.8
(2019): 356-363.
[2] Brewka, Gerhard, Thomas Eiter, and Mirosław Truszczyński. "Answer
set programming at a glance." Communications of the ACM 54.12
(2011): 92-103.
[3] Agostinelli, Forest "A conflict-driven approach for reaching goals
specified with negation as failure." ICAPS HAXP Workshop (2019)

Future Work

Performance when Reaching Goals Represented as
Answer Set Programs

Goal Path Cost % Solved # Models Model Time Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39
Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14
Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) 23.85 100% 1 0.49 4.2
Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Table 2: Performance of DeepCubeAg when reaching goals specified with ASP.

(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
In Table 2 we see that the path cost for finding the Cross6
goal is almost half that of finding the canonical goal, even
though the canonical goal is a subset of the Cross6 goal.
This indicates that the trained heuristic function is capable
of estimating the cost-to-go to a closest state in a set of
goal states without needing to be explicitly told of a clos-
est state. This ability to discover paths to goal states which,

(a) Example 1 (b) Example 2

Figure 10: Start states that failed to reach both BoxBox and
AgentInBox.

themselves, are not known until a path is found, could be
extended to domains such as chemical synthesis. For ex-
ample, this would allow practitioners to specify properties
a molecule should or should not have, discover synthesis
routes to such molecules and, as a result, discover molecules
that meet these specifications.

In Algorithm 1, we sample a new stable model if we fail
to find a goal state. From Table 2, we see that the number
of models we need to sample for the canonical Rubik’s cube
goal state and Cross6 is only one. However, for Cup4 and
CupSpot, we must sample, on average, 42.5 and 27.68 mod-
els, respectively, to find a goal state. In cases where a goal
state was not found, A* search failed to find a path to the
sampled stable model. This may be because the sampled sta-
ble models represented only unreachable states. We discuss
ways to overcome this in the Future Work Section.

For Sokoban, we see that the BoxBox and AgentInBox
goals did not achieve a 100% success rate. Since we did not
set a maximum iteration for Algorithm 1, all failure cases
involved the algorithm terminating because all models were
banned. Therefore, A* search failed to find a path to all sta-
ble models, which may indicate that the goal was not reach-
able for these start states. Figure 10 shows start states that
failed to reach both the BoxBox and AgentInBox goals. The
figure shows that there was not enough room to reach these
goals.

Related Work
Action Schema Networks (ASNets) (Toyer et al. 2020) are
neural networks that exploit the structure of the Planning
Domain Definition Language (PDDL) to learn a policy that
generalizes across problem instances. However, ASNets are

• Sample assignments from answer set program specification, Π
• Search for goal state, if not found, ban that assignment and sample another from Π
• Use batch weighted A* search with a budget of 50 iterations

• Repeat until a goal state is found or until no more stable models are found
• Sokoban goals not always reachable

cross(F, CrossCol):- face(F), color(CrossCol), #count{Cbl: edge_cbl(Cbl), onface(Cbl, CrossCol, F)} = 4.

spot(F, BCol) :- color(BCol), face(F), face_col(F, FCol), dif_col(FCol, BCol), #count{Cbl: onface(Cbl,
BCol, F), edge_or_corner(Cbl)} = 8.

face_same(F) :- face_col(F, FCol), #count{Cbl : onface(Cbl, FCol, F)}=9.
canon :- #count{F : face_same(F)}=6.

and the causal graph heuristic. We note that we could not run
DeepCubeA on the test set with randomly generated goals
since, for DeepCubeA, goals must be predetermined before
training and training would take over a day for each of the
500 test examples.

Results Results are shown in Table 1. The results show
that DeepCubeAg consistently outperforms the fast down-
ward planning system in terms of the percentage of states
that are solved. DeepCubeAg solves either 100% of states
or close to 100% of states. In the single domain where the
fast downward planner solved 100% of test cases, Sokoban,
DeepCubeAg also solved 100% of test cases while also find-
ing shorter paths. In cases such as the Rubik’s cube and 24-
puzzle, for the canonical goal states, DeepCubeAg solves
100% of test states, while the fast downward planner solves
between 0% and 1.1%.

Specifying Goals with Answer Set Programming

Rubik’s Cube The background knowledge for the Rubik’s
cube defines colors, cubelets, and what color stickers the
cubelets have. We also define directions (clockwise, coun-
terclockwise, and opposite), faces, face colors (the same as
the center cubelet), and their relation to one another (for ex-
ample, the blue face is a clockwise turn away from the or-
ange face with respect to the white face). We also describe
what it means for a cubelet to have a sticker on a face as
well as for a cubelet to be “in place” (all colors matching the
center cubelet). We add constraints to the program to prune
stable models that represent impossible states. These con-
straints include saying that different stickers from the same
cubelet cannot be on the same face or opposite faces as well
as saying that a cubelet cannot have a sticker on more than
one face.

To specify goals, we draw from Ferenc (2013) to come
up with goals that combine different Rubik’s cube patterns
shown in Figure 2. We also test our method with the canon-
ical solved state for the Rubik’s cube where all faces have
a uniform color. Note that the training procedure is not told
of these patterns and is not aware that these patterns will
be used for testing. Given the background knowledge, many
patterns only require a few lines of code. A few are shown
here:

cross(F, CrossCol) :- face(F),
color(CrossCol), #count{Cbl:
edge_cbl(Cbl), onface(Cbl, CrossCol,
F)} = 4.

spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon :- #count{F : face_same(F)}=6.

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns used to create goals.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange
faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces.

Sokoban The background knowledge for Sokoban defines
the dimensions of the grid, the relations of coordinates in
terms of up, down, left, and right, what it means for a box

and the causal graph heuristic. We note that we could not run
DeepCubeA on the test set with randomly generated goals
since, for DeepCubeA, goals must be predetermined before
training and training would take over a day for each of the
500 test examples.

Results Results are shown in Table 1. The results show
that DeepCubeAg consistently outperforms the fast down-
ward planning system in terms of the percentage of states
that are solved. DeepCubeAg solves either 100% of states
or close to 100% of states. In the single domain where the
fast downward planner solved 100% of test cases, Sokoban,
DeepCubeAg also solved 100% of test cases while also find-
ing shorter paths. In cases such as the Rubik’s cube and 24-
puzzle, for the canonical goal states, DeepCubeAg solves
100% of test states, while the fast downward planner solves
between 0% and 1.1%.

Specifying Goals with Answer Set Programming

Rubik’s Cube The background knowledge for the Rubik’s
cube defines colors, cubelets, and what color stickers the
cubelets have. We also define directions (clockwise, coun-
terclockwise, and opposite), faces, face colors (the same as
the center cubelet), and their relation to one another (for ex-
ample, the blue face is a clockwise turn away from the or-
ange face with respect to the white face). We also describe
what it means for a cubelet to have a sticker on a face as
well as for a cubelet to be “in place” (all colors matching the
center cubelet). We add constraints to the program to prune
stable models that represent impossible states. These con-
straints include saying that different stickers from the same
cubelet cannot be on the same face or opposite faces as well
as saying that a cubelet cannot have a sticker on more than
one face.

To specify goals, we draw from Ferenc (2013) to come
up with goals that combine different Rubik’s cube patterns
shown in Figure 2. We also test our method with the canon-
ical solved state for the Rubik’s cube where all faces have
a uniform color. Note that the training procedure is not told
of these patterns and is not aware that these patterns will
be used for testing. Given the background knowledge, many
patterns only require a few lines of code. A few are shown
here:

cross(F, CrossCol) :- face(F),
color(CrossCol), #count{Cbl:
edge_cbl(Cbl), onface(Cbl, CrossCol,
F)} = 4.

spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon :- #count{F : face_same(F)}=6.

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns used to create goals.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange
faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces.

Sokoban The background knowledge for Sokoban defines
the dimensions of the grid, the relations of coordinates in
terms of up, down, left, and right, what it means for a box

and the causal graph heuristic. We note that we could not run
DeepCubeA on the test set with randomly generated goals
since, for DeepCubeA, goals must be predetermined before
training and training would take over a day for each of the
500 test examples.

Results Results are shown in Table 1. The results show
that DeepCubeAg consistently outperforms the fast down-
ward planning system in terms of the percentage of states
that are solved. DeepCubeAg solves either 100% of states
or close to 100% of states. In the single domain where the
fast downward planner solved 100% of test cases, Sokoban,
DeepCubeAg also solved 100% of test cases while also find-
ing shorter paths. In cases such as the Rubik’s cube and 24-
puzzle, for the canonical goal states, DeepCubeAg solves
100% of test states, while the fast downward planner solves
between 0% and 1.1%.

Specifying Goals with Answer Set Programming

Rubik’s Cube The background knowledge for the Rubik’s
cube defines colors, cubelets, and what color stickers the
cubelets have. We also define directions (clockwise, coun-
terclockwise, and opposite), faces, face colors (the same as
the center cubelet), and their relation to one another (for ex-
ample, the blue face is a clockwise turn away from the or-
ange face with respect to the white face). We also describe
what it means for a cubelet to have a sticker on a face as
well as for a cubelet to be “in place” (all colors matching the
center cubelet). We add constraints to the program to prune
stable models that represent impossible states. These con-
straints include saying that different stickers from the same
cubelet cannot be on the same face or opposite faces as well
as saying that a cubelet cannot have a sticker on more than
one face.

To specify goals, we draw from Ferenc (2013) to come
up with goals that combine different Rubik’s cube patterns
shown in Figure 2. We also test our method with the canon-
ical solved state for the Rubik’s cube where all faces have
a uniform color. Note that the training procedure is not told
of these patterns and is not aware that these patterns will
be used for testing. Given the background knowledge, many
patterns only require a few lines of code. A few are shown
here:

cross(F, CrossCol) :- face(F),
color(CrossCol), #count{Cbl:
edge_cbl(Cbl), onface(Cbl, CrossCol,
F)} = 4.

spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon :- #count{F : face_same(F)}=6.

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns used to create goals.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange
faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces.

Sokoban The background knowledge for Sokoban defines
the dimensions of the grid, the relations of coordinates in
terms of up, down, left, and right, what it means for a box

and the causal graph heuristic. We note that we could not run
DeepCubeA on the test set with randomly generated goals
since, for DeepCubeA, goals must be predetermined before
training and training would take over a day for each of the
500 test examples.

Results Results are shown in Table 1. The results show
that DeepCubeAg consistently outperforms the fast down-
ward planning system in terms of the percentage of states
that are solved. DeepCubeAg solves either 100% of states
or close to 100% of states. In the single domain where the
fast downward planner solved 100% of test cases, Sokoban,
DeepCubeAg also solved 100% of test cases while also find-
ing shorter paths. In cases such as the Rubik’s cube and 24-
puzzle, for the canonical goal states, DeepCubeAg solves
100% of test states, while the fast downward planner solves
between 0% and 1.1%.

Specifying Goals with Answer Set Programming

Rubik’s Cube The background knowledge for the Rubik’s
cube defines colors, cubelets, and what color stickers the
cubelets have. We also define directions (clockwise, coun-
terclockwise, and opposite), faces, face colors (the same as
the center cubelet), and their relation to one another (for ex-
ample, the blue face is a clockwise turn away from the or-
ange face with respect to the white face). We also describe
what it means for a cubelet to have a sticker on a face as
well as for a cubelet to be “in place” (all colors matching the
center cubelet). We add constraints to the program to prune
stable models that represent impossible states. These con-
straints include saying that different stickers from the same
cubelet cannot be on the same face or opposite faces as well
as saying that a cubelet cannot have a sticker on more than
one face.

To specify goals, we draw from Ferenc (2013) to come
up with goals that combine different Rubik’s cube patterns
shown in Figure 2. We also test our method with the canon-
ical solved state for the Rubik’s cube where all faces have
a uniform color. Note that the training procedure is not told
of these patterns and is not aware that these patterns will
be used for testing. Given the background knowledge, many
patterns only require a few lines of code. A few are shown
here:

cross(F, CrossCol) :- face(F),
color(CrossCol), #count{Cbl:
edge_cbl(Cbl), onface(Cbl, CrossCol,
F)} = 4.

spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon :- #count{F : face_same(F)}=6.

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns used to create goals.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange
faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces.

Sokoban The background knowledge for Sokoban defines
the dimensions of the grid, the relations of coordinates in
terms of up, down, left, and right, what it means for a box

Goal Path Cost % Solved # Models Model Time Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39
Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14
Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) 23.85 100% 1 0.49 4.2
Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Table 2: Performance of DeepCubeAg when reaching goals specified with ASP.

(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
In Table 2 we see that the path cost for finding the Cross6
goal is almost half that of finding the canonical goal, even
though the canonical goal is a subset of the Cross6 goal.
This indicates that the trained heuristic function is capable
of estimating the cost-to-go to a closest state in a set of
goal states without needing to be explicitly told of a clos-
est state. This ability to discover paths to goal states which,

(a) Example 1 (b) Example 2

Figure 10: Start states that failed to reach both BoxBox and
AgentInBox.

themselves, are not known until a path is found, could be
extended to domains such as chemical synthesis. For ex-
ample, this would allow practitioners to specify properties
a molecule should or should not have, discover synthesis
routes to such molecules and, as a result, discover molecules
that meet these specifications.

In Algorithm 1, we sample a new stable model if we fail
to find a goal state. From Table 2, we see that the number
of models we need to sample for the canonical Rubik’s cube
goal state and Cross6 is only one. However, for Cup4 and
CupSpot, we must sample, on average, 42.5 and 27.68 mod-
els, respectively, to find a goal state. In cases where a goal
state was not found, A* search failed to find a path to the
sampled stable model. This may be because the sampled sta-
ble models represented only unreachable states. We discuss
ways to overcome this in the Future Work Section.

For Sokoban, we see that the BoxBox and AgentInBox
goals did not achieve a 100% success rate. Since we did not
set a maximum iteration for Algorithm 1, all failure cases
involved the algorithm terminating because all models were
banned. Therefore, A* search failed to find a path to all sta-
ble models, which may indicate that the goal was not reach-
able for these start states. Figure 10 shows start states that
failed to reach both the BoxBox and AgentInBox goals. The
figure shows that there was not enough room to reach these
goals.

Related Work
Action Schema Networks (ASNets) (Toyer et al. 2020) are
neural networks that exploit the structure of the Planning
Domain Definition Language (PDDL) to learn a policy that
generalizes across problem instances. However, ASNets are

Crosses on six faces (Cross6) Cups on four faces (Cup4) Checkerboard pattern (Checkers)

All boxes immovable (Immov) Box of boxes (BoxBox) Agent in four boxes (AgentInBox)

• Usage of negation as failure can result in
reaching sampling an assignment, 𝐴, whose
set of states, 𝒮$, contains states that are not
goal states

• This paper proposed randomly searching for
larger assignments that are stable models

• This does not account for why a state is not a
goal state

• Future work will develop conflict-driven
search to handle this [3]

• Preliminary results show that conflict-driven
search with negation as failure results in
finding shorter paths while also taking less
time

Paper code:
https://github.com/forestagostinelli/SpecGoal

Built on DeepXube code base
pip install deepxube

https://github.com/forestagostinelli/deepxube

