S mﬂéfnm Specifying Goals to Deep Neural Networks with Answer Set ProgrammingA | <=
outh Carolina INSTITUTE _sAilsC

Forest Agostinelli, Rojina Panta, Vedant Khandelwal

Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA

College of Engineering
and Computing

Al Institute, University of South Carolina, Columbia, South Carolina

Introduction

UNIVERSITY OF SOUTH CAROLINA

* Methods such as DeepCubeA train domain-specific heuristic functions in a largely domain-
iIndependent fashion [1]

* DeepCubeA assumes a pre-determined goal, variations assume a fully-specified goal state

* Therefore, specifying a set of goal states can be impractical

* We introduce DeepCubeA,, which trains heuristic functions that generalize over goals
represented as assignments

* We build on this with answer set programming to allow for more robust goal specification

States and Sets of States

A state has a set of V variables {x4, ..., x/}
* Each variable, x;, has domain, D(x;)
* An assignmentisaset{...,x; =v;, ...}
* X; = V; represents Xx; belng assigned to value, v; € D(x;)
* Astateis a complete assignment
* Asetof states is either a complete or partial assignment
* Astates € S, iffAC s
* Aisanassignment
* 5, is the set of states represented by A4

Training to Generalize Over Goals Represented as

* Generate start state
* Take a random walk between 0 and T steps
* Convertterminal state to its representation as an assignment
* Subsample assignment to obtain goal

* Perform reinforcement learning update

Assignments

Reinforcement

Training steps

Specification steps

Learning Update Both
t
Specification to
he (S0, 9) ground atoms

To DNN representation

Performance when Reaching Goals Represented as
nments

— (> . —>

ASSIg

Subsample

f
1

T

State to ground atoms

A

Specification

Language

t

e Use heuristic function with batch A* search

* Compare to PDBs and fast downward planner with goal count, fast forward, and causal graph

heuristics

Human Input

* Compare for canonical goal state and randomly generated assignments as goals

* Randomly generated assignment can be as small as the empty set

e 200 second time limit

* DeepCubeA, outperforms the fast downward planner and generalizes over goals without any

Specifying Goals with Answer Set Programming

* Answer set programming (ASP) is a form of first-order logic programming [2]
* An answer set program defines a set of stable models, where a stable model is a set of

ground atoms

* We represent a goal (i.e. an assignment) as a set of ground atoms in first-order logic

* Astate, s, is a goal state with respect to an answer set program, I1, iff s is a subset of some

stable model of I1

* An answer set program consists of
* Background knowledge
» A set of rules with goa l in the head, a headless rule so goalis true in all stable models

* A choice rule with no body that contains ground atoms that represent all possible
assignments of values to variables
* Goal specification often only requires a few lines of code

cross(F, CrossCol):- face(F), color(CrossCol),

spot(F, BCol)

:— color(BCol),

face(F),

BCol, F), edge or_corner(Cbl)} =

face_same(F)
canon :- #count{F :

:— face_col(F, FCol),
face_same(F) }=6.

#count{Cb1l :

face_col(F, FCol),

dif col(FCol, BCol),

onface(Cbl, FCol, F)}=9.

#count{Cb1l:

#count{Cbl: edge_cbl(Cbl), onface(Cbl, CrossCol, F)} =

onface(Cbl,

Performance when Reaching Goals Represented as

Answer Set Programs

« Sample assignments from answer set program specification, 11

* Search for goal state, if not found, ban that assignment and sample another from I1
* Use batch weighted A* search with a budget of 50 iterations

* Repeat until a goal state is found or until no more stable models are found

* Sokoban goals not always reachable

Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 277.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88 % 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

ﬁ

(a) Example 1

W

(b) Example 2

re-training
Puzzle Solver Path Cost | % Solved | % Opt Nodes Secs Nodes/Sec
PDBs™ 20.67 100.00% | 100.0% 2.05E+06 | 2.20 1.79E+06
DeepCubeA 21.50 100.00% | 60.3% 6.62E+06 | 24.22 2.90E+05
RC (Canon) DeepCubeA 22.03 100.00% | 35.00% 2.44E+06 | 41.99 5.67E+04
FastDown (GC) | - 0.00% 0.0% - - -
FastDown (FF) | - 0.00% 0.0% - - -
FastDown (CG) | - 0.00% 0.0% - - -
DeepCubeA 15.22 99.40 % - 1.91E+06 | 32.24 5.19E+04
RC (Rand) FastDown (GC) | 7.18 32.80% - 2.67E+06 | 13.79 1.41E+05
FastDown (FF) | 6.49 31.20% - 4.87E+05 | 13.83 2.93E+04
FastDown (CG) | 7.85 33.80% - 1.12E+06 | 11.62 5.81E+04
PDBs 52.02 100.00% | 100.0% 3.22E+04 | 0.002 1.45E+07
DeepCubeA 52.03 100.00% | 99.4% 3.85E+06 | 10.28 3.93E+05
15-P (Canon) DeepCubeA 52.02 100.00% | 100.0% 1.81E+05 | 2.61 6.94E+04
FastDown (GC) | 36.75 0.80% 0.80% 9.05E+07 | 102.11 8.66E+05
FastDown (FF) | 52.75 80.80% 24.80% 2.92E+06 | 42.11 6.93E+04
FastDown (CG) | 41.95 4.40% 1.20% 2.00E+07 | 80.58 2.47E+05
DeepCubeA 33.98 100.00% | - 1.11E+05 | 1.60 6.16E+04
15-P (Rand) FastDown (GC) | 14.92 38.00% - 1.61E+07 | 18.77 5.46E+05
FastDown (FF) | 32.66 89.20% - 1.24E+06 | 17.39 5.65E+04
FastDown (CG) | 20.45 51.20% - 3.90E+06 | 21.41 1.20E+05
PDBs 89.41 100.00% | 100.00% | 8.19E+10 | 4239.54 | 1.91E+07
DeepCubeA 89.49 100.00% | 96.98% 6.44E+06 | 19.33 3.34E+05
24-P (Canon) DeepCubeA 90.47 100.00% | 55.24% 3.38E+05 | 5.22 6.48E+04
FastDown (GC) | - 0.00% 0.00% - - -
FastDown (FF) | 81.00 1.01% 0.40% 2.68E+06 | 89.84 2.91E+04
FastDown (CG) | - 0.00% 0.00% - - -
DeepCubeA 66.28 99.60 % - 3.10E+05 | 4.91 6.16E+04
24-P (Rand) FastDown (GC) | 9.86 10.00% - 9.54E+06 | 11.88 4.27TE+05
FastDown (FF) | 26.35 26.00% - 5.99E+05 | 19.57 2.41E+04
FastDown (CG) | 13.75 12.60% - 1.42E+06 | 14.42 6.85E+04
DeepCubeA 32.88 100.00% | - 5.01E+03 | 2.71 1.84E+03
DeepCubeA 32.02 100.00% | - 1.80E+04 | 0.95 1.79E+04
Sokoban FastDown (GC) | 31.94 99.80% - 3.17E+06 | 5.93 5.85E+05
FastDown (FF) | 33.15 100.00% | - 2.92E+04 | 0.32 7.49E+04
FastDown (CG) | 33.12 100.00% | - 4.43E+04 | 0.51 7.25E+04

Crosses on six faces (Cross6)

(a) Example 1

(b) Example 2
All boxes immovable (Immov)

* Usage of negation as failure can result in
reaching sampling an assignment, A, whose
set of states, 4, contains states that are not

goal states

* This paper proposed randomly searching for
larger assignments that are stable models
* This does not account for why a state is not a

goal state

* Future work will develop conflict-driven

search to handle this [3]

* Preliminary results show that conflict-driven

(a) Example 1

(b) Example 2

(a) Example 1

(b) Example 2

Cups on four faces (Cup4)

(a) Example 1

(b) Example 2

Box of boxes (BoxBox)

search with negation as failure results in
finding shorter paths while also taking less

Checkerboard pattern (Checkers)

(a) Example 1

(b) Example 2

Agent in four boxes (AgentinBox)

time
Goal Op Cost | Solve | Itr | Node | Reach | —Goal §§Zi % Secs
RC:II; | - 11.5 | 70 33 | 334 | 7.7 0.0 12.8 | 7.5 564.9
RC-TI Rand | 1.7 99 72 | 63.0 | 87.8 69.1 0.1 1.0 95.5
| Conf | 1.3 100 54 | 363 | 993 524 0.1 0.1 6.0
24p:II7 | - 24.6 | 100 92 1924 | 100.0 | 0.0 0.2 |02 42.5
2 40T Rand | 3.2 100 43 | 33.6 | 100.0 | 38.7 0.2 | 0.0 6.6
P-Xn Conf | 2.5 100 41 | 31.6 | 100.0 | 22.1 0.2 | 0.0 6.6
24p:II7 | - 83.7 | 100 92 |919 | 504 0.0 0.9 1.8 250.2
240 TI2 Rand | 17.1 | 100 10.2 | 92.1 100.0 | 85.5 0.1 0.1 21.7
P-**n Conf [129 [100 |87 |77.1 | 1000 | 797 |01 |01 | 17.1

Table 2: Comparison of monotonic and non-monotonic specifications with random and conflict-driven specialization operators
for non-monotonic specifications. Comparisons are along the dimensions of average path cost, percentage solved, average
number of iterations, average number of nodes generated, the average percentage of specified assignments reached with A*
search, the average percentage of reached assignments that were not goal states, the average number of seconds it took to do
a single specialization, the average number of seconds it took to find a single path (whether or not it was successful), and the
average number of overall seconds it took to find a solution. RC:II} : All stickers on the white face are different than the center
sticker. RC:II} : There does not exist a sticker on the white face that matches the center sticker. 24p:IT} : The sum of row 0 is
even. 24p:II} : It is not true the sum of row 0 is odd. 24p:I12 : The sum of all rows is even. 24p:IT12: There does not exist a row

whose sum is odd.

Paper code:

[1] Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep
reinforcement learning and search." Nature Machine Intelligence 1.8

Table 1: Comparison of DeepCubeA, with optimal solvers based on pattern databases (PDBs) that exploit domain-specific
information and the domain-independent fast downward planning system with the goal count (GC), fast forward (FF), and
causal graph (CG) heuristics. Comparisons are along the dimensions of solution length, percentage of instances solved, per-
centage of optimal solutions, number of nodes generated, time taken to solve the problem (in seconds), and number of nodes
generated per second. For the Rubik’s cube and sliding tile puzzles, experiments are done on canonical goal states (Canon)
and randomly generated goals (Rand). For testing DeepCubeA on Sokoban, we report numbers obtained from the DeepCubeA
GitHub repository.

(2019): 356-363.

[2] Brewka, Gerhard, Thomas Eiter, and Mirostaw Truszczynski.

https://github.com/forestagostinelli/SpecGoal

"Answer

set programming at a glance." Communications of the ACM 54.12

(2011): 92-103.

[3] Agostinelli, Forest "A conflict-driven approach for reaching goals
specified with negation as failure." ICAPS HAXP Workshop (2019)

https://github.com/forestagostinelli/deepxube

Built on DeepXube code base

pip install deepxube

[=]
ﬁ
[=]

[=]

