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* Methods such as DeepCubeA train domain-specific heuristic functions in a largely domain-
iIndependent fashion [1]

* DeepCubeA assumes a pre-determined goal, variations assume a fully-specified goal state

* Therefore, specifying a set of goal states can be impractical

* We introduce DeepCubeA,, which trains heuristic functions that generalize over goals
represented as assignments

* We build on this with answer set programming to allow for more robust goal specification

States and Sets of States

A state has a set of V variables {x4, ..., x/}
* Each variable, x;, has domain, D(x;)
* An assignmentisaset{...,x; =v;, ...}
* X; = V; represents Xx; belng assigned to value, v; € D(x;)
* Astateis a complete assignment
* Asetof states is either a complete or partial assignment
* Astates € S, iffAC s
* Aisanassignment
* 5, is the set of states represented by A4

Training to Generalize Over Goals Represented as

* Generate start state
* Take a random walk between 0 and T steps
* Convertterminal state to its representation as an assignment
* Subsample assignment to obtain goal

* Perform reinforcement learning update
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e Use heuristic function with batch A* search

* Compare to PDBs and fast downward planner with goal count, fast forward, and causal graph

heuristics

Human Input

* Compare for canonical goal state and randomly generated assignments as goals

* Randomly generated assignment can be as small as the empty set

e 200 second time limit

* DeepCubeA, outperforms the fast downward planner and generalizes over goals without any

Specifying Goals with Answer Set Programming

* Answer set programming (ASP) is a form of first-order logic programming [2]
* An answer set program defines a set of stable models, where a stable model is a set of

ground atoms

* We represent a goal (i.e. an assignment) as a set of ground atoms in first-order logic

* Astate, s, is a goal state with respect to an answer set program, I1, iff s is a subset of some

stable model of I1

* An answer set program consists of
* Background knowledge
» A set of rules with goa l in the head, a headless rule so goalis true in all stable models

* A choice rule with no body that contains ground atoms that represent all possible
assignments of values to variables
* Goal specification often only requires a few lines of code

cross(F, CrossCol):- face(F), color(CrossCol),

spot(F, BCol)

:— color(BCol),

face(F),

BCol, F), edge or_corner(Cbl)} =

face_same(F)
canon :- #count{F :

:— face_col(F, FCol),
face_same(F) }=6.

#count{Cb1l :

face_col(F, FCol),

dif col(FCol, BCol),

onface(Cbl, FCol, F)}=9.

#count{Cb1l:

#count{Cbl: edge_cbl(Cbl), onface(Cbl, CrossCol, F)} =

onface(Cbl,

Performance when Reaching Goals Represented as

Answer Set Programs

« Sample assignments from answer set program specification, 11

* Search for goal state, if not found, ban that assignment and sample another from I1
* Use batch weighted A* search with a budget of 50 iterations

* Repeat until a goal state is found or until no more stable models are found

* Sokoban goals not always reachable

Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 277.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88 % 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09
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(a) Example 1

W

(b) Example 2

re-training
Puzzle Solver Path Cost | % Solved | % Opt Nodes Secs Nodes/Sec
PDBs™ 20.67 100.00% | 100.0% 2.05E+06 | 2.20 1.79E+06
DeepCubeA 21.50 100.00% | 60.3% 6.62E+06 | 24.22 2.90E+05
RC (Canon) DeepCubeA 22.03 100.00% | 35.00% 2.44E+06 | 41.99 5.67E+04
FastDown (GC) | - 0.00% 0.0% - - -
FastDown (FF) | - 0.00% 0.0% - - -
FastDown (CG) | - 0.00% 0.0% - - -
DeepCubeA 15.22 99.40 % - 1.91E+06 | 32.24 5.19E+04
RC (Rand) FastDown (GC) | 7.18 32.80% - 2.67E+06 | 13.79 1.41E+05
FastDown (FF) | 6.49 31.20% - 4.87E+05 | 13.83 2.93E+04
FastDown (CG) | 7.85 33.80% - 1.12E+06 | 11.62 5.81E+04
PDBs 52.02 100.00% | 100.0% 3.22E+04 | 0.002 1.45E+07
DeepCubeA 52.03 100.00% | 99.4% 3.85E+06 | 10.28 3.93E+05
15-P (Canon) DeepCubeA 52.02 100.00% | 100.0% 1.81E+05 | 2.61 6.94E+04
FastDown (GC) | 36.75 0.80% 0.80% 9.05E+07 | 102.11 8.66E+05
FastDown (FF) | 52.75 80.80% 24.80% 2.92E+06 | 42.11 6.93E+04
FastDown (CG) | 41.95 4.40% 1.20% 2.00E+07 | 80.58 2.47E+05
DeepCubeA 33.98 100.00% | - 1.11E+05 | 1.60 6.16E+04
15-P (Rand) FastDown (GC) | 14.92 38.00% - 1.61E+07 | 18.77 5.46E+05
FastDown (FF) | 32.66 89.20% - 1.24E+06 | 17.39 5.65E+04
FastDown (CG) | 20.45 51.20% - 3.90E+06 | 21.41 1.20E+05
PDBs 89.41 100.00% | 100.00% | 8.19E+10 | 4239.54 | 1.91E+07
DeepCubeA 89.49 100.00% | 96.98% 6.44E+06 | 19.33 3.34E+05
24-P (Canon) DeepCubeA 90.47 100.00% | 55.24% 3.38E+05 | 5.22 6.48E+04
FastDown (GC) | - 0.00% 0.00% - - -
FastDown (FF) | 81.00 1.01% 0.40% 2.68E+06 | 89.84 2.91E+04
FastDown (CG) | - 0.00% 0.00% - - -
DeepCubeA 66.28 99.60 % - 3.10E+05 | 4.91 6.16E+04
24-P (Rand) FastDown (GC) | 9.86 10.00% - 9.54E+06 | 11.88 4.27TE+05
FastDown (FF) | 26.35 26.00% - 5.99E+05 | 19.57 2.41E+04
FastDown (CG) | 13.75 12.60% - 1.42E+06 | 14.42 6.85E+04
DeepCubeA 32.88 100.00% | - 5.01E+03 | 2.71 1.84E+03
DeepCubeA 32.02 100.00% | - 1.80E+04 | 0.95 1.79E+04
Sokoban FastDown (GC) | 31.94 99.80% - 3.17E+06 | 5.93 5.85E+05
FastDown (FF) | 33.15 100.00% | - 2.92E+04 | 0.32 7.49E+04
FastDown (CG) | 33.12 100.00% | - 4.43E+04 | 0.51 7.25E+04

Crosses on six faces (Cross6)

(a) Example 1

(b) Example 2
All boxes immovable (Immov)

* Usage of negation as failure can result in
reaching sampling an assignment, A, whose
set of states, 4, contains states that are not

goal states

* This paper proposed randomly searching for
larger assignments that are stable models
* This does not account for why a state is not a

goal state

* Future work will develop conflict-driven

search to handle this [3]

* Preliminary results show that conflict-driven

(a) Example 1

(b) Example 2

(a) Example 1

(b) Example 2

Cups on four faces (Cup4)

(a) Example 1

(b) Example 2

Box of boxes (BoxBox)

search with negation as failure results in
finding shorter paths while also taking less

Checkerboard pattern (Checkers)

(a) Example 1

(b) Example 2

Agent in four boxes (AgentinBox)

time
Goal Op Cost | Solve | Itr | Node | Reach | —Goal §§Zi % Secs
RC:II; | - 11.5 | 70 33 | 334 | 7.7 0.0 12.8 | 7.5 564.9
RC-TI Rand | 1.7 99 72 | 63.0 | 87.8 69.1 0.1 1.0 95.5
| Conf | 1.3 100 54 | 363 | 993 524 0.1 0.1 6.0
24p:II7 | - 24.6 | 100 92 1924 | 100.0 | 0.0 0.2 |02 42.5
2 40T Rand | 3.2 100 43 | 33.6 | 100.0 | 38.7 0.2 | 0.0 6.6
P-Xn Conf | 2.5 100 41 | 31.6 | 100.0 | 22.1 0.2 | 0.0 6.6
24p:II7 | - 83.7 | 100 92 |919 | 504 0.0 0.9 1.8 250.2
240 TI2 Rand | 17.1 | 100 10.2 | 92.1 100.0 | 85.5 0.1 0.1 21.7
P-**n Conf [ 129 [ 100 |87 |77.1 | 1000 | 797 |01 |01 | 17.1

Table 2: Comparison of monotonic and non-monotonic specifications with random and conflict-driven specialization operators
for non-monotonic specifications. Comparisons are along the dimensions of average path cost, percentage solved, average
number of iterations, average number of nodes generated, the average percentage of specified assignments reached with A*
search, the average percentage of reached assignments that were not goal states, the average number of seconds it took to do
a single specialization, the average number of seconds it took to find a single path (whether or not it was successful), and the
average number of overall seconds it took to find a solution. RC:II} : All stickers on the white face are different than the center
sticker. RC:II} : There does not exist a sticker on the white face that matches the center sticker. 24p:IT} : The sum of row 0 is
even. 24p:II} : It is not true the sum of row 0 is odd. 24p:I12 : The sum of all rows is even. 24p:IT12: There does not exist a row

whose sum is odd.
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Built on DeepXube code base

pip install deepxube
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