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e Approximate value iteration and batch weighted A* search
* Approximate Q-learning and batch weighted Q* seaerch

* Generalization

* Generalizing over goals
* Generalizing over domains
* Generalizing to domains with unknown transition functions

* Applications



Pathfinding

* The objective of pathfinding is to find a sequence of actions that forms a path
between a given start state and a given goal

* A goalis a set of states
* Preference for minimum cost paths

* A pathfinding problem can be represented as a weighted directed graph where nodes
represent states, edges represent actions that transition between states, and edge
weights represent transition costs

* The cost of a path is the sum of transition costs

® start state
@ Goalstate

-—p Shortest path




Pathfinding Domains

e Pathfinding problems can be found throughout mathematics, computing, and
the natural sciences

* Puzzle solving, chemical synthesis, quantum circuit synthesis, theorem proving, program
synthesis, robotics
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Pathfinding Domain Definition

* The entire state space graph cannot be given to a pathfinding problem solver
because the number of states in a pathfinding problem can be very large.
* Rubik’s cube: ~101°
* 48-puzzle: ~10%?
* Organic chemistry: ~10°° (exact number unknown)

* Assumptions on what is given
* Action space
 State transition function
* Transition cost function
* Goal test function
* Goal specification language

* Objective: Create a domain-independent algorithm that learns domain-
specific heuristics



Scope of Problems

* What pathfinding problems can be solved with deep reinforcement learning and
heuristic search?

 Sufficient data
 Sufficient expressivity of deep neural network (DNN)

* Deep learning is data hungry

* Defining models and generating data is easy for many important and difficult problems
* Theorem proving
* Program synthesis
e Quantum algorithm compilation

* Also possible for other environments
* Chemical synthesis
* Robotics (sim2real)

 What if we don’t have enough data or time?
* Foundation models
* Generative model of domains?
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Value lteration

* Value iteration is a dynamic programming algorithm and is a foundational
algorithm in reinforcement learning

* In the context of pathfinding, value iteration is an algorithm for computing the
cost-to-go of finding a shortest path for each state in the state space

* Tabular value iteration loops over all states and applies the following update
until convergence (h stops changing)

* h(s) = min(c*(s) + h(T(s,a)))
. Guaranteceld to converge to h™ in the tabular setting
e S:state
* a: action
 T: state transition function
 ¢%: transition cost function



Value Iteration: Visualization

e Actions: up, down, left, right

* Transition costs
e 1 if square is blank
e 10 if square has a rock
e 50 if square has a plant

* Goal: shovel

e Updates propagate outwards from the
goal
* h(s) = mgn(c“(s) + h(T(s,a)))




Approximate Value lteration

* As the state space grows, tabular value iteration becomes infeasible

. Apgroximate value iteration uses an approximation architecture to approximate the value iteration
update

 When using a deep neural network as the approximation architecture, we refer to this as deep
approximate value iteration (DAVI)

* The update is approximated using the following loss function

+ 106 = (min(c?(s) + ho- (7(5,0))) — ho(s))
* Target is set to zero if s is a terminal state

* S:state

* a:action

e T: state transition function

e ¢%: transition cost function

e O: parameters

07 : parameters for target network
* |s periodically updated to 8 throughout training



Rubik’s cube

Application to Puzzle Solving

2 | 12 | 4 2 5
17 | 16 | 3 6 9
20 | 19 | 18 | 11 7
23 | 1 24 | 13
21 | 14 | 10 | 8 | 15
1 2 3 4 5
6 7 8 9 | 10
11 |12 | 13 | 14 | 15
16 | 17 | 18 | 19 | 20
21 | 22 | 23 | 24
24 puzzle

Lights Out (7x7)

Sokoban

== 1. Rubik’s Cube
': 2.15-puzzle
3 24-puzzle

4 35-puzzle
&= 5.48-puzzle
S 6. Lights Out

f.7.Sokoban

Largest state space is 3.0 x 10%2 (48-puzzle)



Generating States

* Prioritized sweeping: Generate training data by taking moves in reverse from
the goal




Training

* Deep neural network

* Input layer -> Two fully connected layers -> Four residual blocks ->
Linear output layer

e Same type of architecture used for all puzzles
e 24-puzzle has two more residual blocks

* Training
* Batch size of 5,000

* ~1,000,000 training iterations

e Parameters for target network updated when loss goes below some
target threshold

* Future work updates based on greedy policy performance
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Greedy Policy Performance

* Behave greedily with respect to the N
heuristic function —1 —10 —

* (s) = argmin(c?(s) + hy(T(s,a))) O — e —

[0}
o

* Does not solve all states

(o2}
o

e Supervised learning yields similar
performance

N
o
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o
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e We need heuristic search!

Percent solved with greedy best-first search

o
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lteration (x10°)



Batch Weighted A* Search

* To take advantage of parallelism provided by GPUs, we can expand multiple
nodes at once

* Guaranteed to be bounded suboptimal if
* The heuristic function is admissible
* |f we terminate when the lower bound >= the upper bound

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop. 2021.
Li, Tianhua, et al. "Optimal search with neural networks: Challenges and approaches." Proceedings of the International Symposium on Combinatorial Search. Vol. 15. No. 1. 2022.



DeepCubeA: Results

* When applied to seven different puzzles, it was able to solve all test instances
and found a shortest path in the majority of verifiable cases

e http://deepcube.igb.uci.edu/

m Solution Length | Percent Optimal | Time (seconds)

Solve the Rubik's Cube Using Deep

Leamiod Rubik’s Cube 21.50 60.3% 24.22
15-puzzle 52.03 99.4% 10.28
24-puzzle 89.49 96.98% 19.33

35-puzzle 124.64 N/A 28.45

48-puzzle 253.35 N/A 74.46

Lights Out 24.26 100.0% 3.27

Sokoban 32.88 N/A 2.35

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.


http://deepcube.igb.uci.edu/
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* In the context of pathfinding, Q-learning is used to compute the cost of a path
when in a given state, taking a given action, and taking a shortest path from the
next state

* Q(s,a) = Q(s,a) = c(s) + h(T(s,a))
* h(s) = main Q(s,a)

* Tabular Q-learning applies the following update to each state seen in an episode
* Q(s,a) = Q(s,a) + al[c?(s) + min Q(T (s, a),a’) — Q(s, a)]
a

e a is the learning rate
* Guaranteed to converge to g™ in the tabular setting if certain conditions are met



Approximate Q-learning

* Q-learning loss

2
« L(0) = (ca(s) + rrgllln qo-(T(s,a),a") — qg(s, a))
* For each training iteration, an action to update is sampled randomly

* Since it is possible most actions are not part of a shortest path, this could bias
the estimator to overestimate the cost-to-go

* Therefore, we sample actions according to a Boltzmann distribution

hg(s,a)
e(_ T )




From A* Search to Q* Search

* A* search: the number of nodes generated and number of
heuristic function applications during each iteration of
search grows linearly with the size of the action space

* Deep Q-networks (DQNs) can compute the estimated cost

of taking all actions with a single forward pass 0(5:01) - 09(5: 210

* Q* search: the number of nodes generated and number of
heuristic function applications is independent of the size of
the action space




Batch Weighted Q* Search

e Given a node, compute the transition cost and heuristic value for all child nodes
with a single pass through a DQN

e Store tuples of nodes and actions in OPEN
* Only part that grows linearly with action space

* Apply popped actions to popped nodes
* Batch weighted version can also be used

* Guaranteed to be bounded suboptimal if

 The heuristic function never overestimates
e ¢%(s) + ming*(T(s,a),a")
a’

* |f we terminate when the lower bound >= the upper bound



 Domains: Rubik’s cube, Lights Out, 35-pancake puzzle

» Case study: Adding combinations of actions to the Rubik’s cube: 12 actions, 156
actions, 1884 actions

* Comparisons

* A* search
» Deferred heuristic evaluation: assign heuristic of parent to children

* Did batch weighted search for all search methods
* Weightin {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
e Batch size in {100, 1000, 10000}



* Each point is a different § o B s L
search parameter setting T 22 24 200 2y g a2 A
. (a) RC (b) Lights Out (c) 35-pancake
* Dashed line: Best path cost Figure 1: Relationship between the average path cost and the average time to find a solution.
 Solid line: Best of all . . L N
parameter settings at that : Bio o
path cost o 13
e Q* search often oL f H
outperforms A* and Sl | e e | |
deferred A* by orders of W g S % 42204 3is s 30 252 154 e
(a) RC(12) (b) Lights Out (c) 35-Pancake

magnitude

* Best average path cost is
either the same or slightly
longer

Figure 2: Relationship between the average path cost and the average node generations.

Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024




Results

 With 157 times more
actions, Q* is only 3.7
times slower and uses 2.3
times more memory
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Figure 3: Action space size ablation study on Rubik’s cube: average path cost vs average time to find a solution.
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Figure 4: Action space size ablation study on Rubik’s cube: average path cost vs average node generations.

Puzzle Actions Method Time Nodes Gen

A* 3.5(1.6) 8.7(2.2)
Q* 0.9(0.7) 1.4(1.3)

A* 37.0(6.5) 62.7(5.2)
Q* 3.7(4.0) 2.3(3.6)

RC(156) x13

RC(1884)  x157

Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024



Outline
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Generalizing Over Goals: Overview

* In the previous work, the goal is
predetermined

. . . . Training steps
* We build on hindsight experience | _____. Specification
I _ Reinforcement steps
replay to generalize over sets of - Reinforcement step:
goal states t
reeranerrans Specification to goal
° |n our Work he(so,G) 1 descriptors
 State descriptors: assignments of sample
values to variables t
 Specification language: Answer set S'E’L‘;f":j:;':“
programming (ASP) To DNN representation t
* ASP will be used to describe goals at State to state descriptors

t

a high-level using formal logic and
an answer set solver will be used to
find assignments that represent a
subset of the goal

—_ ()= —_— > ... —>




State Representation

* |[n a given pathfinding domain, there are V variables
* Avariable, x;, can be assigned a single value from its (variable) domain, D (x;)

* An assignment is an assignment is a set of assignments of values to variables {x; = v;}
* All V; € D(Ul')
* If x; is not in the assignment then it is unassigned

e An assignment is a complete assignment iff all variables have been assigned values
e A state is a complete assignment
* For example, for the Rubik’s cube, variables are stickers and values are their colors




Goal Representation

e An assignment is a partial assignment iff at least one variable has not been assigned a
value

* A goal is a complete or partial assignment

* An assignment, A, represents a set of states, 5,4
* A complete assignment always represents a set of states of size 1
* Astate,s,isind, iffAC s
* In other words, all assignments in A are presentin s
* An empty assignment represents the set of all possible states
* For example, a visualization of an assignment for the “white cross” pattern for the
Rubik’s cube and a state that is in the set of states represented by this assignment




Training

Generate a start state

Take a random walk whose length is somewhere

_ Reinforcement
between O and T " Learning Update
* Future work could use artificial curiosity 4
* Convert the end state to its representation as an 1o (S0, 6)
assignment - 1 |
ubsample
* Subsample to obtain a goal t
* Convert this representation into one suitable for
the DNN To DNN representation )
* One-hot representation ! tate to a;s'g"ment
’ Graph — 1, —> — (] — . —>
* Etc.
* RL Update

2
+ 10) = (min(c?(s) + ho-(T(5,0)),9) = ho(s,))



Experiments

* ASP will be used to find assignments; therefore, we compare our method
(DeepCubeA,) to other methods capable of finding paths to goals that can be
represented as complete or partial assignments

* 500-1,000 test start and goal pairs
e 200 second time limit to solve test states
* DeepCubeA

* Predefined goal

 Fast Downward Planner

e Can automatically construct heuristics given a formal definition of the domain (including the
transition function) in the planning domain definition language (PDDL)

* Goal count heuristic, fast forward heuristic, causal graph heuristic
 A* search

* PDBs

. Eivides into subproblems and enumerates all possible combinations of the subproblem to create
euristic

* Predefined goal
e |IDA* search



Puzzle Solver Path Cost | % Solved | % Opt Nodes Secs Nodes/Sec
PDBs* 20.67 100.00% | 100.0% | 2.05E+06 | 2.20 | L.79E-+06
P e rfO r m a n C e DeepCubeA 21.50 100.00% | 603% | 6.62E+06 | 2422 | 2.90E+05
RC (Canon) | DeepCubeA, | 22.03 100.00% | 35.00% | 2.44E+06 | 41.99 | 5.67E+04
FastDown (GC) | - 0.00% | 0.0% i - -
FastDown (FF) | - 0.00% | 0.0% - - -
: FastDown (CG) | - 0.00% | 0.0% - - -
e Canon: Canonical goal states DeepCubeA, | 1522 | 99.40% | - [O1E+06 | 3224 | 5.19E+04
SR ani e E—
P . 1 FastDown (FF . .20% - STE+ . 93E+
Rand: Random assignment FastDown (CG) | 7.85 33.80% | - [.I2E+06 | 11.62 | 5.81E+04
PDBs 52.02 100.00% | 100.0% | 3.22E+04 | 0.002 | L45E+07
selected as goal DeepCubeA | 52.03 100.00% | 99.4% | 3.85E+06 | 10.28 | 3.93E+05
° Ca N be as Ssma | | as th eem pty 15-P (Canon) DeepCubeA 52.02 100.00% | 100.0% 1.81E+05 | 2.61 6.94E+04
. FastDown (GC) | 36.75 0.80% | 0.80% | 9.05E+07 | T02.1T | S.66E+05
assignment FastDown (FF) | 52.75 80.80% | 24.80% | 2.92E+06 | 42.11 | 6.93E+04
: FastDown (CG) | 41.95 1.40% 120% | 2.00E+07 | 80.58 | 2.47E+05
* Methods that require a pre- DeepCubeh, | 33.98 100.00% | - LIIE+05 | .60 | 6.16E+04
definied goal cannot be 15.P (Rand) | F2stDown (GC) | 14.92 38.00% | - 1.61E+07 | 1877 | 5.46E+05
lied to thi : FastDown (FF) | 32.66 89.20% | - [24E+06 | 17.39 | 5.65E+04
appiiea to tnis scenario FastDown (CG) | 20.45 5T20% | - 3.90E406 | 21.41 | 1.20E+05
without considerable PDBs 89.41 100.00% | 100.00% | 8.19E+10 | 4239.54 | 1.91E+07
verhead DeepCubeA | 89.49 100.00% | 96.98% | 6.44E+06 | 19.33 | 3.34E+05
O 24P (Canon) | DeepCubeA, | 90.47 100.00% | 55.24% | 3.38E+05 | 5.22 | 6.4SE+04
, FastDown (GC) | - 0.00% | 0.00% |- - -
 PDBs+: Also includes group FastDown (FF) | 81.00 T01% [ 0.40% | 2.68E+06 | 89.84 | 2.01E+04
FastDown (CG) | - 0.00% | 0.00% | - - -
theo ry knowled ge DeepCubeA, | 66.28 99.60% | - 3.10E+05 | 491 6.16E+04
| SR a) el Em— e
° FastDown (FF . .00% - O9E+ S7 A1E+
DeepCu beAg consistent Iy . FastDown (CG) | 13.75 2.60% | - [42E+06 | 1442 | 6.85E+04
outpe rforms fastdownard in DeepCubeA | 32.88 100.00% | - 5.01E+03 | 2.71 1.84E+03
DeepCubeA, | 32.02 100.00% | - I.80E+04 | 0.95 1.79E+04
terms of percentage of states Sokoban [ FastDown (GC) | 31.94 99.80% | - 3.17E+06 | 593 | 5.85E+05
FastDown (FF) | 33.15 100.00% | - 2.00E+04 | 0.32 | 7.49E-+04
solved FastDown (CG) | 33.12 100.00% | - 443E+04 | 0.51 7256404

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024



ASP Specifications

e We build on this using answer set programming to describe goals with first-order logic
and use answer set solvers to solve for assignments that make these goals true

 For the Rubik’s cube

» Define basic background knowledge

* Colors, faces, cubelets

* Constraints: Cannot have two stickers of the same color on the same cubelet, cannot have two stickers from
the same cubelet on opposite faces

* Given basic background knowledge, specifications often only require a few lines of code
« face_same(F) :— face col(F, FCol), #count{Cbl : onface(Cbl, FCol, F)}=9.
« canon_solved :- #count{F : face_same(F) }=6.

* Our specifications contain combinations of common patterns
* Note: the training procedure is unaware of what the specification will be at test time

(a) Cross (b) X (c) Cup (d) Spot




Goal Reaching: Monotonic Specification

II: Answer set program
Spp: set of states represented by program

Sp: set of states represented by assignment

* If our specification behaves monotonically, then all
candidate states are goal states
* Therefore, we can randomly sample assignments from
IT until we find one that we can reach

* Some of these assighments may represent the
empty set

* The answer set solver (we use clingo) used is
agnostic to the cost of a shortest path



Handling Non-Monotonicity

* If negation as failure is used in a program, II, then II can exhibit non-monotonic
behavior

* Alogic program is non-monotonic if some atoms that were previously derived can be
retracted by adding new knowledge

* Therefore, we can have a state that is a candidate state but not a goal state

* For example, a white cross with no yellow stickers on the white face
* The assignment for this specification is just a white cross

* However, there can be a state that is a specialization of this assignment, but has yellow on
the white face




Goal Reaching: Non-monotonic

II: Answer set program

Spp: set of states represented by program

Sp: set of states represented by assignment

To reduce the size of candidate states while ensuring there is still at least one goal state, find
another minimal assignment, 4,, such that
AcCA,
A, € a(ID)



Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24 .41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 T7% 1.26 0.38 4.09

(a) Example 1

®

W

(b) Example 2

(a) Example 1

CupSpot

(b) Example 2

(a) Example 1

Cup4d

i

(b) Example 2

Checkers

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024




All boxes are immoveable

A box of boxes

Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24 .41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Boxes at the four corners of the agent

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024



Goal Reaching: Non-monotonic

II: Answer set program

Spp: set of states represented by program

Sp: set of states represented by assignment

Combine this with a conflict-
driven branch-and-bound search



Goal SpecOp | Cost | %Solve | #Itr | #Assign | %reach | %not goal % S’Zii Secs
RC:VdiffCtrW - 11.54 | 70 3.34 33.43 7.68 0 12.77 | 7.5 564.94
RC:—dsameCtrW | Rand 1.67 99 7.2 63.02 87.84 69.06 0.06 1.04 | 95.46
Conflict | 1.26 100 5.43 36.31 99.34 52.36 0.06 0.07 | 5.98
24p:rOSumEven - 24.55 | 100 9.24 924 100 0 0.2 0.23 | 42.52
24p:—r0SumOdd | Rand 3.16 100 4.27 33.6 100 38.71 0.2 0.03 | 6.64
Conflict | 2.51 100 4.06 31.6 100 22.13 0.21 0.04 | 6.58
24p:VrSumEven - 83.71 | 100 9.19 91.9 50.41 0 0.88 1.77 | 250.18
24p:—~3drSumOdd | Rand 17.07 | 100 10.23 | 92.05 99.98 85.51 0.1 0.08 | 21.72
Conflict | 12.87 | 100 8.66 77.1 100 79.772 0.11 0.08 | 17.08
All stickers on the white face are All rows sum to an even number
different than the center sticker
12]22]6 9|5 17[10]20] 5 |22 12[22]6 915
', 71111912117 1[6 [14]15]16 71119]2117
ﬂ 16[13] 4 [20[21 12|13]23] |8 16[13] 4 [20[21
Start Mono: path cost 12 Non-mono: path cost 1 1111038 13191417 11115110 8
14]18]24]23 18[19] 2 [21[24 14|18]24] 3|23

Start

Mono: path cost 93

Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.” ICAPS 2024 HAXP Workshop

Non-mono: path cost 4
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Vedant Khandelwal



2131|123
4 6| 4 6
718|5||7|8

* If using only canonical actions, the cost-to-go is 16
* If including diagonal actions, the cost-to-go is 2

* To differentiate between these two scenarios, information about the domain
must also be given to the heuristic function



* For each example, randomly sample a domain
* For that domain, randomly sample a state
* RL Update

e L(O) = (main(ca(s) + hg-(T(s,a),D)) — hg(S,D))Z

e D: Domain



Preliminary Experiments

* For the 15-puzzle, generate different domains by sampling a subset of {U, D, L,
R, UL, UR, DL, DR} actions for each tile position

* 8 actions for each of the 16 positions, max 28*1¢ ~ 3.4x103® domains
* Ensure all sampled domains are reversible, for simplicity

* Represent the domain as a one-hot vector of which actions are allowed in each
position

 Compare heuristic performance with true cost-to-go for random states from
domains

* True cost-to-go computed with merge-and-shrink heuristic

 Compare when training a heuristic function across domains without domain
information

 Compare heuristic function with DeepCubeA trained for a fixed domain



Results
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Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024



Repeat training for 8-puzzle and
24-puzzle

Proposed approach compares
favorably to the fast downward
planner with the fast forward

heuristic

s slightly worse than
DeepCubeA, which must be re-
trained for each domain

Future work could build on work
by Felipe Trevizan and Sylvie
Thiebaux on using graph neural
networks to encode PDDL

domains

Domain Solver Len | Opt Nodes Secs Nodes/Sec| Solved
8 Puzzle (C) DeepCubeA| 18.38| 100% | 3.59E+04 | 0.69 5.2E+04 | 100%
8 Puzzle (C) Proposed 18.38| 100% | 7.17TE+04 | 1.76 4.07TE+04 | 100%
8 Puzzle (C) FD(FF) | 188 |81% | 5.56E4+02| 0.11 | 47E+03 | 100%
8 Puzzle (D) DeepCubeA| 1.44 | 100% | 1.95E+01 | 0.01 | 2.92B4+03 | 100%
8 Puzzle (D) Proposed 1.44 | 100% | 4.05E4+01 | 0.01 4.92E+03 | 100%
8 Puzzle (D) FD(FF) | 1.44 | 100% | 2.45E+00| 0.2 1.23E401 | 100%
8 Puzzle (C+D) DeepCubeA| 11.84| 100% | 6.2E+404 1.18 5.26E4+04 | 100%
8 Puzzle (C+D) Proposed 11.84| 100% | 6.23E+04 | 1.56 3.97TE+04 100%
8 Puzzle (C+D) FD(FF) 12.9 54.2% | 8.68E+01| 0.13 6.59E4-02 100%
15 Puzzle (C) DeepCubeA| 52.03| 99.4% | 1.82E405| 4.31 | 4.21E+04 | 100%
15 Puzzle (C) Proposed 52.18 | 93.76% | 3.62E+05 | 10.39 3.49E+04 100%
15 Puzzle (C) FD(FF) | 52.75 | 24.80 | 2.92E406 | 42.11 | 6.93E+04 | 80.80%
15 Puzzle (D) DeepCubeA| 10.8 | 100% | 8.2E+02 0.03 | 2.43E4+04 | 100%
15 Puzzle (D) Proposed 10.81 | 99.8% | 1.64E+03 | 0.05 3.01E404 | 100%
15 Puzzle (D) FD(FF) 10.86 | 96.8% | 4.18E401| 0.21 1.96E+4-02 100%
15 Puzzle (C+D) | DeepCubeA| 25.66| 100% | 1.78E+05 | 3.74 4.78E4+04 | 100%
15 Puzzle (C+D) | Proposed 25.67 | 99.8% | 1.78E405 | 4.72 3.78E+04 | 100%
15 Puzzle (C+D) | FD(FF) 29.32 | 13.4% | 8.4E+03 | 1.17 3.56E4-03 100%
24 Puzzle (C) DeepCubeA| 89.48| 96.98% 3.34E+05| 8.05 4.15E404 | 100%
24 Puzzle (C) Proposed 92.80 | 22.03% | 7.6E+05 24.06 | 3.16E+04 | 100%
24 Puzzle (C) FD(FF) | 81.00 | 0.40 | 2.68E+06 | 89.84 | 2.91E+04 | 1.01%
24 Puzzle (D) DeepCubeA| 14.9 | 100% | 2.55E+04 | 0.47 5.46E4+04 | 100%
24 Puzzle (D) Proposed 14.92 | 99.8% | 5.1E4+04 1.35 3.78E+4-04 100%
24 Puzzle (D) FD(FF) 15.16 | 89.2% | 2.64E+02| 0.12 | 2.05E+03 | 100%
24 Puzzle (C+D) | DeepCubeA| 31.33| 100% | 2.27TE4+05 | 4.83 4.69E+04 | 100%
24 Puzzle (C+D) | Proposed 31.34 | 99.6% | 2.27TE+05 | 6.78 3.34E+04 100%
24 Puzzle (C+D) | FD(FF) | 36.81 | 13.8% | 1.7TE4+04 | 535 | L77TE+03 | 99.4%

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024
Chen, Dillon Z., Sylvie Thiébaux, and Felipe Trevizan. "Learning Domain-Independent Heuristics for Grounded and Lifted Planning." AAAI. Vol. 38. No. 18. 2024.




* Background
e Approximate value iteration and batch weighted A* search
* Approximate Q-learning and batch weighted Q* seaerch

* Generalization

* Generalizing over goals
* Generalizing over domains
e Generalizing to domains with unknown transition functions

* Applications

\
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Learning Discrete World Models

* Addressing previous shortcomings

* Small errors in prediction can be corrected
by simply rounding

* Can reidentify states by comparing two
vectors Decoder

 Encoder

* Maps the state to a discrete
representation

* To allow training with gradient descent,
use a straight through estimator

e Decoder

* Maps the discrete representation to the
state

* Ensures the discrete representation is
meaningful
 Environment model S >m(s, a) > o/

* Maps discrete states and actions to next
discrete state




Experiments

* Rubik’s cube
* Two 32x32 RGB images showing both sides of the cube

* Sokoban
* One 40x40 RGB image

* Generate offline dataset of 10,000 episodes of 30 random steps, each
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Discrete vs Continuous Model Performance

* The continuous model eventually accumulates error for the Rubik’s cube
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Heuristic Learning and Search with Discrete Model

DeepCubeAl — DeepCubeA + “Imagination”
Learn discrete world model with offline data
Use offline data and the learned world model to generate training data
Heuristic learning: Q-learning with hindsight experience replay
* Generalize over goal states

Heuristic search: Q* search
* Helps when model uses computationally expensive DNN

Domain | Solver Len | Opt Nodes Secs | Nodes/Sec | Solved
PDBs™ 20.67 | 100.0% | 2.05E+06 | 2.20 | 1.79E+406 100%
RC DeepCubeA 21.50 | 60.3% | 6.62E+06 | 24.22 | 2.90E+05 100%

Greedy (ours) - 0% - - - 0%
DeepCubeAl (ours) | 22.85 | 19.5% | 2.00E405 | 6.21 | 3.22E+404 100%

RCrew Greedy (ours) - 0% - - - 0%
DeepCubeAl (ours) | 22.81 | 21.92% | 2.00E405 | 6.30 | 3.184-04 99.9%
LevinTS 39.80 | - 6.60E+03 | - - 100%

Sokoban LevinTS (*) 39.90 | - 5.03E403 | - - 100%
LAMA 51.60 | - 3.15E403 | - - 100%
DeepCubeA 32.88 | - 1.056E4+03 | 2.35 | 5.60E+01 100%
Greedy (ours) 29.55 | - - 1.68 | - 41.9%
DeepCubeAl (ours) | 33.12 | - 3.30E+03 | 2.62 | 1.38E+03 100%

Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement Learning Conference 2024



Outline

* Background
e Approximate value iteration and batch weighted A* search
* Approximate Q-learning and batch weighted Q* seaerch

* Generalization

* Generalizing over goals
* Generalizing over domains
* Generalizing to domains with unknown transition functions

* Applications
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Reaction Mechanisms =N T @EO:\,

Major Product

* Chemical reactions are composed of
smaller steps called reaction

~
. ~N 10
mechanisms @( k0T m ——p @:/\, :

* Knowledge of the reaction mechanisms v0us020 2121
that compose a chemical reaction allows
practitioners to

* Validate reaction feasibility o ~
* Improve reaction efficiency @[,\, S — @E,\, o+
* Predict reaction outcome under different o B
conditions a
* Most chemical reaction prediction ’
methods skip reaction mechanisms and @ ~ o
predict products directly from reactants AN T @E/\, S

10=20;20,21=21  Major Product



Reaction Mechanism Domain

* We create the state transition function using OrbChain, a model for reaction
mechanism steps

* Can take over a second to expand a state, limiting training data

e For simplicity, we assume all transition costs are 1
* Future work will use negative log probabilities of reaction mechanism steps as transition costs

* We use extended-connectivity fingerprints to represent a molecule to the heuristic
function

e Future work will use a learned representation using graph neural networks

* We generate data using small molecules from the United States Patent and Trademark
Office (USPTO) dataset of chemical reactions

* Using random walks, we generate new molecules

* The heuristic function also takes a goal state as input

- L(O) = (main (c“(s) + he-(T(s, a):Sg)) — ho(s, Sg))z



* Generate test data by
performing a random walk
between 0 and 6 steps

* The learned heuristic
function outperforms
uniform cost search and
A* search with the
Tanimoto similarity metric

Step/s Solver Path Cost | % Solved | Nodes Secs Nodes/Sec
DeepCubeA 0.00 100.00% | 3.09E+2 | 3.87 79.97
Steps=0 | Uniform Cost Search | 0.00 100.00% | 3.09E+2 | 4.61 67.13
Tanimoto Similarity | 0.00 100.00% | 3.09E+2 | 3.71 83.42
DeepCubeA 1.00 100.00% | 7.49E+2 | 9.70 77.26
Steps=1 | Uniform Cost Search | 1.00 100.00% | 4.26E+4 | 553.33 | 76.95
Tanimoto Similarity | 1.00 100.00% | 3.13E+4 | 429.29 | 72.97
DeepCubeA 2.07 100.00% | 1.63E+4 | 267.16 | 60.87
Steps=2 | Uniform Cost Search | 1.67 20.00% 1.32E+5 | 1497.77 | 87.96
Tanimoto Similarity | 1.75 26.67% 1.10E+5 | 1229.10 | 89.13
DeepCubeA 2.77 86.67% 4.14E+4 | 578.88 | 71.54
Steps=3 | Uniform Cost Search | - 0.00% - - -
Tanimoto Similarity | - 0.00% - - -
DeepCubeA 3.33 60.00% 6.36E+4 | 821.64 | 77.36
Steps=4 | Uniform Cost Search | 3.00 6.67% 1.43E+5 | 1962.28 | 73.01
Tanimoto Similarity | 3.00 6.67% 247E+4 | 272.15 | 90.64
DeepCubeA 3.40 33.33% 8.40E+4 | 968.49 | 86.69
Steps=5 | Uniform Cost Search | - 0.00% - - -
Tanimoto Similarity | - 0.00% - - -
DeepCubeA 3.20 33.33% 6.14E+4 | 933.86 | 65.73
Steps=6 | Uniform Cost Search | - 0.00% - - -
Tanimoto Similarity | - 0.00% - - -

Panta, Rojina, et al. “Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search.” ICAPS PRL Workshop 2024




Quantum Algorithm Compilation

* Given a quantum algorithm, a compiler

must synthesize a quantum circuit for
this algorithm from a given set of
guantum gates

* If a given circuit is below an error
threshold, then the problem is
considered solved

Quantum compiling in the framework of RL
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Quantum Algorithm Compilation

* Training data can be generated from a given gate set |
and a DQN trained to predict the distance of the )
current quantum circuit to the identity function )

e Given a trained DQN, Q* search can be used to 345678 9C'101'1<1121}?c1l4151617181920
. . . . Ircuit dept
search for a circuit for a given algorithm i
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Qiuhao, Chen, et al. "Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning." Quantum Science and Technology (2024).



Other Applications to Quantum Algorithm Compilation

* Topological quantum compiling
* Clifford synthesis
e Can produce near-optimal solutions

System

Initial state
Target state
Basic move

The unitary to be approximated
The identity matrix
A gate from the universal set
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Zhang, Yuan-Hang, et al. "Topological Quantum Compiling with Reinforcement Learning." Physical Review Letters 125.17 (2020): 170501.
Bao, Ning, and Gavin S. Hartnett. "Twisty-puzzle-inspired approach to Clifford synthesis." Physical Review A 109.3 (2024): 0324009.
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* Papers

* Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine
Intelligence 1.8 (2019): 356-363.

» Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024

* Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer
Set Programming.” ICAPS 2024
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* Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions
to Solve Pathfinding Problems.” arxiv, 2024

* Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement
Learning Conference 2024
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* Many of these algorithms are publicly available on GitHub
* https://github.com/forestagostinelli/deepxube

Email: foresta@cse.sc.edu
Website: https://cse.sc.edu/~foresta/
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