
Deep Learning, Reinforcement Learning, and Heuristic Search
Forest Agostinelli

University of South Carolina

Students

Rojina Panta Vedant Khandelwal Misagh Soltani

Christian Geils

Cale Workman

Ph.D. Students

B.S. Students

William Edwards

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Pathfinding
• The objective of pathfinding is to find a sequence of actions that forms a path

between a given start state and a given goal
• A goal is a set of states
• Preference for minimum cost paths

• A pathfinding problem can be represented as a weighted directed graph where nodes
represent states, edges represent actions that transition between states, and edge
weights represent transition costs
• The cost of a path is the sum of transition costs

2.0

2.0

2.0
2.0

2.0
2.0

2.0

1.0

1.0

1.0

2.0
Start state
Goal state

Shortest path

Pathfinding Domains
• Pathfinding problems can be found throughout mathematics, computing, and

the natural sciences
• Puzzle solving, chemical synthesis, quantum circuit synthesis, theorem proving, program

synthesis, robotics

Background: Retrosynthesis Problem
Task: predict synthesis routes for
target molecules.

Challenge: combinatorial search space.

Sub-problems:
� One-step retrosynthesis
� Retrosynthetic planning

Target Molecule

Intermediate
Compounds

Building Blocks

3

Pathfinding Domain Definition

• The entire state space graph cannot be given to a pathfinding problem solver
because the number of states in a pathfinding problem can be very large.
• Rubik’s cube: ~10!"
• 48-puzzle: ~10#$
• Organic chemistry: ~10#% (exact number unknown)

• Assumptions on what is given
• Action space
• State transition function
• Transition cost function
• Goal test function
• Goal specification language

• Objective: Create a domain-independent algorithm that learns domain-
specific heuristics

Scope of Problems
• What pathfinding problems can be solved with deep reinforcement learning and

heuristic search?
• Sufficient data
• Sufficient expressivity of deep neural network (DNN)

• Deep learning is data hungry
• Defining models and generating data is easy for many important and difficult problems

• Theorem proving
• Program synthesis
• Quantum algorithm compilation

• Also possible for other environments
• Chemical synthesis
• Robotics (sim2real)

• What if we don’t have enough data or time?
• Foundation models
• Generative model of domains?

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Value Iteration
• Value iteration is a dynamic programming algorithm and is a foundational

algorithm in reinforcement learning
• In the context of pathfinding, value iteration is an algorithm for computing the

cost-to-go of finding a shortest path for each state in the state space
• Tabular value iteration loops over all states and applies the following update

until convergence (ℎ stops changing)
• ℎ 𝑠 = min

&
𝑐& 𝑠 + ℎ(𝑇(𝑠, 𝑎))

• Guaranteed to converge to ℎ∗	in the tabular setting
• 𝑠: state
• 𝑎: action
• 𝑇: state transition function
• 𝑐!: transition cost function

Value Iteration: Visualization

• Actions: up, down, left, right
• Transition costs
• 1 if square is blank
• 10 if square has a rock
• 50 if square has a plant

• Goal: shovel
• Updates propagate outwards from the

goal
• ℎ 𝑠 = min

&
𝑐& 𝑠 + ℎ(𝑇(𝑠, 𝑎))

Approximate Value Iteration
• As the state space grows, tabular value iteration becomes infeasible
• Approximate value iteration uses an approximation architecture to approximate the value iteration

update
• When using a deep neural network as the approximation architecture, we refer to this as deep

approximate value iteration (DAVI)
• The	update	is	approximated	using	the	following	loss	function

• 𝐿 𝜃 = min
!

𝑐! 𝑠 + ℎ"!(𝑇(𝑠, 𝑎)) − ℎ" 𝑠
#

• Target is set to zero if 𝑠 is a terminal state
• 𝑠: state
• 𝑎: action
• 𝑇: state transition function
• 𝑐!: transition cost function
• 𝜃: parameters
• 𝜃": parameters for target network

• Is periodically updated to 𝜃 throughout training

Application to Puzzle Solving

Largest state space is 3.0 x 1062 (48-puzzle)

1. Rubik’s Cube
2. 15-puzzle
3. 24-puzzle
4. 35-puzzle
5. 48-puzzle
6. Lights Out
7. Sokoban

Generating States
• Prioritized sweeping: Generate training data by taking moves in reverse from

the goal

Goal

.

Training

• Deep neural network
• Input layer -> Two fully connected layers -> Four residual blocks ->

Linear output layer
• Same type of architecture used for all puzzles

• 24-puzzle has two more residual blocks

• Training
• Batch size of 5,000
• ~1,000,000 training iterations
• Parameters for target network updated when loss goes below some

target threshold
• Future work updates based on greedy policy performance

Greedy Policy Performance

• Behave greedily with respect to the
heuristic function
• 𝜋 𝑠 = argmin

!
𝑐! 𝑠 + ℎ"(𝑇(𝑠, 𝑎))

• Does not solve all states
• Supervised learning yields similar

performance
• We need heuristic search!

Batch Weighted A* Search

• To take advantage of parallelism provided by GPUs, we can expand multiple
nodes at once
• Guaranteed to be bounded suboptimal if
• The heuristic function is admissible
• If we terminate when the lower bound >= the upper bound

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop. 2021.
Li, Tianhua, et al. "Optimal search with neural networks: Challenges and approaches." Proceedings of the International Symposium on Combinatorial Search. Vol. 15. No. 1. 2022.

DeepCubeA: Results

• When applied to seven different puzzles, it was able to solve all test instances
and found a shortest path in the majority of verifiable cases
• http://deepcube.igb.uci.edu/

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

Puzzle Solution Length Percent Optimal Time (seconds)
Rubik’s Cube 21.50 60.3% 24.22

15-puzzle 52.03 99.4% 10.28
24-puzzle 89.49 96.98% 19.33
35-puzzle 124.64 N/A 28.45
48-puzzle 253.35 N/A 74.46
Lights Out 24.26 100.0% 3.27
Sokoban 32.88 N/A 2.35

http://deepcube.igb.uci.edu/

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Q-learning

• In the context of pathfinding, Q-learning is used to compute the cost of a path
when in a given state, taking a given action, and taking a shortest path from the
next state
• 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 = 𝑐& 𝑠 + ℎ(𝑇(𝑠, 𝑎))
• ℎ 𝑠 = min

&
𝑄(𝑠, 𝑎)	

• Tabular Q-learning applies the following update to each state seen in an episode
• 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼[𝑐& 𝑠 + min

&$
𝑄 𝑇 𝑠, 𝑎 , 𝑎(− 𝑄(𝑠, 𝑎)]

• 𝛼 is the learning rate
• Guaranteed to converge to 𝑞∗ in the tabular setting if certain conditions are met

Approximate Q-learning

• Q-learning loss

• 𝐿 𝜃 = 𝑐& 𝑠 + min
&(

𝑞)%(𝑇(𝑠, 𝑎), 𝑎() − 𝑞) 𝑠, 𝑎
$

• For each training iteration, an action to update is sampled randomly
• Since it is possible most actions are not part of a shortest path, this could bias

the estimator to overestimate the cost-to-go
• Therefore, we sample actions according to a Boltzmann distribution

• 𝜋 𝑎 𝑠 = *(%
'(),+

,)

∑
+$./
|𝒜| *(%

'(),+$
,)

From A* Search to Q* Search

• A* search: the number of nodes generated and number of
heuristic function applications during each iteration of
search grows linearly with the size of the action space
• Deep Q-networks (DQNs) can compute the estimated cost

of taking all actions with a single forward pass
• Q* search: the number of nodes generated and number of

heuristic function applications is independent of the size of
the action space

𝑞! 𝑠, 𝑎" …𝑞! 𝑠, 𝑎|𝒜|

𝜽

𝑠

Batch Weighted Q* Search

• Given a node, compute the transition cost and heuristic value for all child nodes
with a single pass through a DQN
• Store tuples of nodes and actions in OPEN
• Only part that grows linearly with action space

• Apply popped actions to popped nodes
• Batch weighted version can also be used
• Guaranteed to be bounded suboptimal if
• The heuristic function never overestimates

• 𝑐! 𝑠 + min
!"

𝑞∗(𝑇(𝑠, 𝑎), 𝑎")	

• If we terminate when the lower bound >= the upper bound

Experiments

• Domains: Rubik’s cube, Lights Out, 35-pancake puzzle
• Case study: Adding combinations of actions to the Rubik’s cube: 12 actions, 156

actions, 1884 actions
• Comparisons
• A* search
• Deferred heuristic evaluation: assign heuristic of parent to children

• Did batch weighted search for all search methods
• Weight in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
• Batch size in {100, 1000, 10000}

Results
• Each point is a different

search parameter setting
• Dashed line: Best path cost
• Solid line: Best of all

parameter settings at that
path cost
• Q* search often

outperforms A* and
deferred A* by orders of
magnitude
• Best average path cost is

either the same or slightly
longer

Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024

Results

Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024

• With 157 times more
actions, Q* is only 3.7
times slower and uses 2.3
times more memory

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Rojina Panta Vedant Khandelwal

Generalizing Over Goals: Overview

DNN

𝒔𝟎 𝒔𝟏𝒂𝟎 𝒂𝟏 … 𝒔𝒕

State to state descriptors

To DNN representation

𝓖𝒉𝜽(𝒔𝟎, 𝓖)

Specification
Language

Human Input

Specification to goal
descriptors

Reinforcement
Learning Update

𝑮(𝒔𝒕)

Sample

Training steps

Both

Specification
steps

• In the previous work, the goal is
predetermined
• We build on hindsight experience

replay to generalize over sets of
goal states
• In our work
• State descriptors: assignments of

values to variables
• Specification language: Answer set

programming (ASP)
• ASP will be used to describe goals at

a high-level using formal logic and
an answer set solver will be used to
find assignments that represent a
subset of the goal

State Representation

• In a given pathfinding domain, there are 𝑉 variables
• A variable, 𝑥#, can be assigned a single value from its (variable) domain, 𝐷(𝑥#)

• An assignment is an assignment is a set of assignments of values to variables {𝑥1 = 𝑣1}
• All 𝑣# ∈ 𝐷 𝑣#
• If 𝑥# is not in the assignment then it is unassigned

• An assignment is a complete assignment iff all variables have been assigned values
• A state is a complete assignment
• For example, for the Rubik’s cube, variables are stickers and values are their colors

Goal Representation

• An assignment is a partial assignment iff at least one variable has not been assigned a
value
• A goal is a complete or partial assignment
• An assignment, 𝐴, represents a set of states, 𝒮2

• A complete assignment always represents a set of states of size 1

• A state, 𝑠, is in 𝒮2 iff 𝐴 ⊆ 𝑠
• In other words, all assignments in 𝐴 are present in 𝑠
• An empty assignment represents the set of all possible states

• For example, a visualization of an assignment for the “white cross” pattern for the
Rubik’s cube and a state that is in the set of states represented by this assignment

Training
• Generate a start state
• Take a random walk whose length is somewhere

between 0 and T
• Future work could use artificial curiosity

• Convert the end state to its representation as an
assignment
• Subsample to obtain a goal
• Convert this representation into one suitable for

the DNN
• One-hot representation
• Graph
• Etc.

• RL Update

• 𝐿 𝜃 = min
!

𝑐! 𝑠 + ℎ$!(𝑇(𝑠, 𝑎) , 𝒢) − ℎ$ 𝑠, 𝒢
%

DNN

𝑠% 𝑠&𝑎% 𝑎& … 𝑠'

State to assignment
To DNN representation

𝒢ℎ((𝑠%, 𝒢)

Reinforcement
Learning Update

𝐴

Subsample

Experiments
• ASP will be used to find assignments; therefore, we compare our method

(DeepCubeAg) to other methods capable of finding paths to goals that can be
represented as complete or partial assignments
• 500-1,000 test start and goal pairs
• 200 second time limit to solve test states
• DeepCubeA

• Predefined goal
• Fast Downward Planner

• Can automatically construct heuristics given a formal definition of the domain (including the
transition function) in the planning domain definition language (PDDL)

• Goal count heuristic, fast forward heuristic, causal graph heuristic
• A* search

• PDBs
• Divides into subproblems and enumerates all possible combinations of the subproblem to create

heuristic
• Predefined goal
• IDA* search

Performance
• Canon: Canonical goal states
• Rand: Random assignment

selected as goal
• Can be as small as the empty

assignment
• Methods that require a pre-

definied goal cannot be
applied to this scenario
without considerable
overhead

• PDBs+: Also includes group
theory knowledge
• DeepCubeAg consistently

outperforms fastdownard in
terms of percentage of states
solved

Puzzle Solver Path Cost % Solved % Opt Nodes Secs Nodes/Sec

RC (Canon)

PDBs+ 20.67 100.00% 100.0% 2.05E+06 2.20 1.79E+06
DeepCubeA 21.50 100.00% 60.3% 6.62E+06 24.22 2.90E+05
DeepCubeAg 22.03 100.00% 35.00% 2.44E+06 41.99 5.67E+04
FastDown (GC) - 0.00% 0.0% - - -
FastDown (FF) - 0.00% 0.0% - - -
FastDown (CG) - 0.00% 0.0% - - -

RC (Rand)

DeepCubeAg 15.22 99.40% - 1.91E+06 32.24 5.19E+04
FastDown (GC) 7.18 32.80% - 2.67E+06 13.79 1.41E+05
FastDown (FF) 6.49 31.20% - 4.87E+05 13.83 2.93E+04
FastDown (CG) 7.85 33.80% - 1.12E+06 11.62 5.81E+04

15-P (Canon)

PDBs 52.02 100.00% 100.0% 3.22E+04 0.002 1.45E+07
DeepCubeA 52.03 100.00% 99.4% 3.85E+06 10.28 3.93E+05
DeepCubeAg 52.02 100.00% 100.0% 1.81E+05 2.61 6.94E+04
FastDown (GC) 36.75 0.80% 0.80% 9.05E+07 102.11 8.66E+05
FastDown (FF) 52.75 80.80% 24.80% 2.92E+06 42.11 6.93E+04
FastDown (CG) 41.95 4.40% 1.20% 2.00E+07 80.58 2.47E+05

15-P (Rand)

DeepCubeAg 33.98 100.00% - 1.11E+05 1.60 6.16E+04
FastDown (GC) 14.92 38.00% - 1.61E+07 18.77 5.46E+05
FastDown (FF) 32.66 89.20% - 1.24E+06 17.39 5.65E+04
FastDown (CG) 20.45 51.20% - 3.90E+06 21.41 1.20E+05

24-P (Canon)

PDBs 89.41 100.00% 100.00% 8.19E+10 4239.54 1.91E+07
DeepCubeA 89.49 100.00% 96.98% 6.44E+06 19.33 3.34E+05
DeepCubeAg 90.47 100.00% 55.24% 3.38E+05 5.22 6.48E+04
FastDown (GC) - 0.00% 0.00% - - -
FastDown (FF) 81.00 1.01% 0.40% 2.68E+06 89.84 2.91E+04
FastDown (CG) - 0.00% 0.00% - - -

24-P (Rand)

DeepCubeAg 66.28 99.60% - 3.10E+05 4.91 6.16E+04
FastDown (GC) 9.86 10.00% - 9.54E+06 11.88 4.27E+05
FastDown (FF) 26.35 26.00% - 5.99E+05 19.57 2.41E+04
FastDown (CG) 13.75 12.60% - 1.42E+06 14.42 6.85E+04

Sokoban

DeepCubeA 32.88 100.00% - 5.01E+03 2.71 1.84E+03
DeepCubeAg 32.02 100.00% - 1.80E+04 0.95 1.79E+04
FastDown (GC) 31.94 99.80% - 3.17E+06 5.93 5.85E+05
FastDown (FF) 33.15 100.00% - 2.92E+04 0.32 7.49E+04
FastDown (CG) 33.12 100.00% - 4.43E+04 0.51 7.25E+04

Table 1: Comparison of DeepCubeAg with optimal solvers based on pattern databases (PDBs) that exploit domain-specific
information and the domain-independent fast downward planning system with the goal count (GC), fast forward (FF), and
causal graph (CG) heuristics. Comparisons are along the dimensions of solution length, percentage of instances solved, per-
centage of optimal solutions, number of nodes generated, time taken to solve the problem (in seconds), and number of nodes
generated per second. For the Rubik’s cube and sliding tile puzzles, experiments are done on canonical goal states (Canon)
and randomly generated goals (Rand). For testing DeepCubeA on Sokoban, we report numbers obtained from the DeepCubeA
GitHub repository2.

to be at the edge of the grid, what it means for a box to be
immovable, as well as basic constraints that state that two
objects cannot share the same location. In this domain, the
start state determines the ground atoms that will be present
in a goal state. In particular, the walls cannot be modified;
therefore, the specification of a goal must also take this into
account. To address this, we add the location of the walls to
the specification. We investigate the following goals: (1) all
boxes are immovable; (2) all boxes form a larger box; (3) the
four boxes occupy the four corners next to the agent.

Results Our experiments use 100 start states from the test
states used in Table 1 and follow Algorithm 1 (without set-

ting a maximum iteration) to find a path from these start
states to the goal. Given a specified goal, which is an an-
swer set program, we use clingo to find stable models and
use batch weighted A* search with a batch size of 1,000, a
weight of 0.6 on the path cost, and a search budget of 50
iterations to find a path to a sampled stable model. Visu-
alizations of reached goals for the four non-canonical Ru-
bik’s cube goals are shown in Figures 3, 4, 5, and 6, and
for Sokoban goals are shown in Figures 7, 8, and 9. A table
summarizing the path cost of solutions, number of models
sampled, time it takes to find stable models, and time it takes
to do search is shown in Table 2.

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024

ASP Specifications

• We build on this using answer set programming to describe goals with first-order logic
and use answer set solvers to solve for assignments that make these goals true
• For the Rubik’s cube

• Define basic background knowledge
• Colors, faces, cubelets
• Constraints: Cannot have two stickers of the same color on the same cubelet, cannot have two stickers from

the same cubelet on opposite faces
• Given basic background knowledge, specifications often only require a few lines of code

• face_same(F) :- face_col(F, FCol), #count{Cbl : onface(Cbl, FCol, F)}=9.
• canon_solved :- #count{F : face_same(F)}=6.

• Our specifications contain combinations of common patterns
• Note: the training procedure is unaware of what the specification will be at test time

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

% cup
cup(F1, F2, CCol) :- dif_face(F1, F2),
face_col(F1, F1Col), dif_col(F1Col,
CCol), edge_cbl(ECbl), onface(ECbl,
_, F2), onface(ECbl, F1Col, F1),
#count{Cbl: edge_or_corner(Cbl),
onface(Cbl, CCol, F1)} = 7.

% spot
spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

% canonical solved state
face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon_solved :- #count{F :
face_same(F)}=6.

(a) Example 1 (b) Example 2

Figure 3: Achieved goal of having a cross on all 6 faces
where the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Achieved goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Achieved goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Achieved goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) a goal state where all faces have a cross where the
cross is the same color as the center piece; (2) a goal where
the red, green, blue, and orange faces have a cup on them (3)
a goal where there is a spot adjacent to a cup with the open-
ing of the cup facing the spot; (4) a goal where there are two
checkerboard patterns (a cross combined with an X) on op-
posite faces and all other faces have uniform color. Given a
logic program, we use clingo (Gebser et al. 2012, 2014) to
find stable models. To achieve goals, we sample up to 10 sta-
ble models of the answer set program that represent the goal
and find a path to 100 goal states by randomly generating
start states and using batch weighted Q* search to find a path
from these start states to a goal state. We use a batch size of
10,000 and a weight of 0.6 when doing batch weighted Q*
search. Each randomly generated start state is a given a bud-
get of 50 iterations. If a goal is not found in that time, then a
new start state is generated. Visualizations of achieved goals
for the four non-canonical goals are shown in Figures 3, 4,
5, and 6. A table summarizing the time it takes to find stable
models, find 100 goals, as well as the average path cost is
shown in Table 1.

Table 1: The time it takes to find stable models for each goal,
the time it takes to find 100 goal states, and the average path
cost from the start states to the goal states.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

Discussion

To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that
it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-
edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about

Goal Reaching: Monotonic Specification

𝒮)!
𝑠%

𝒮)" = 𝒮)#
Π *

𝒮+$
𝒮+%

𝒮+&

Π: Answer set program

𝒮): set of states represented by program

𝒮,: set of states represented by assignment

• If our specification behaves monotonically, then all
candidate states are goal states
• Therefore, we can randomly sample assignments from
Π until we find one that we can reach

• Some of these assignments may represent the
empty set
• The answer set solver (we use clingo) used is

agnostic to the cost of a shortest path

Handling Non-Monotonicity

• If negation as failure is used in a program, Π, then Π	can exhibit non-monotonic
behavior
• A logic program is non-monotonic if some atoms that were previously derived can be

retracted by adding new knowledge
• Therefore, we can have a state that is a candidate state but not a goal state

• For example, a white cross with no yellow stickers on the white face
• The assignment for this specification is just a white cross
• However, there can be a state that is a specialization of this assignment, but has yellow on

the white face

Goal Reaching: Non-monotonic

𝒮)!
𝑠%

𝒮)" = 𝒮)#
Π *

Π- - rand

𝒮+$
𝒮+%

𝒮+&

𝒮+$ 𝒮+% 𝒮+&

Π: Answer set program

𝒮): set of states represented by program

𝒮,: set of states represented by assignment

To	reduce	the	size	of	candidate	states	while	ensuring	there	is	still	at	least	one	goal	state,	find	
another	minimal	assignment,	𝐴%,	such	that

𝐴 ⊂ 𝐴%
𝐴% ∈ 𝛼(Π)

Results
Goal Path Cost % Solved # Models Model Time Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39
Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14
Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) 23.85 100% 1 0.49 4.2
Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Table 2: Performance of DeepCubeAg when reaching goals specified with ASP.

(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
In Table 2 we see that the path cost for finding the Cross6
goal is almost half that of finding the canonical goal, even
though the canonical goal is a subset of the Cross6 goal.
This indicates that the trained heuristic function is capable
of estimating the cost-to-go to a closest state in a set of
goal states without needing to be explicitly told of a clos-
est state. This ability to discover paths to goal states which,

(a) Example 1 (b) Example 2

Figure 10: Start states that failed to reach both BoxBox and
AgentInBox.

themselves, are not known until a path is found, could be
extended to domains such as chemical synthesis. For ex-
ample, this would allow practitioners to specify properties
a molecule should or should not have, discover synthesis
routes to such molecules and, as a result, discover molecules
that meet these specifications.

In Algorithm 1, we sample a new stable model if we fail
to find a goal state. From Table 2, we see that the number
of models we need to sample for the canonical Rubik’s cube
goal state and Cross6 is only one. However, for Cup4 and
CupSpot, we must sample, on average, 42.5 and 27.68 mod-
els, respectively, to find a goal state. In cases where a goal
state was not found, A* search failed to find a path to the
sampled stable model. This may be because the sampled sta-
ble models represented only unreachable states. We discuss
ways to overcome this in the Future Work Section.

For Sokoban, we see that the BoxBox and AgentInBox
goals did not achieve a 100% success rate. Since we did not
set a maximum iteration for Algorithm 1, all failure cases
involved the algorithm terminating because all models were
banned. Therefore, A* search failed to find a path to all sta-
ble models, which may indicate that the goal was not reach-
able for these start states. Figure 10 shows start states that
failed to reach both the BoxBox and AgentInBox goals. The
figure shows that there was not enough room to reach these
goals.

Related Work
Action Schema Networks (ASNets) (Toyer et al. 2020) are
neural networks that exploit the structure of the Planning
Domain Definition Language (PDDL) to learn a policy that
generalizes across problem instances. However, ASNets are

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

% cup
cup(F1, F2, CCol) :- dif_face(F1, F2),
face_col(F1, F1Col), dif_col(F1Col,
CCol), edge_cbl(ECbl), onface(ECbl,
_, F2), onface(ECbl, F1Col, F1),
#count{Cbl: edge_or_corner(Cbl),
onface(Cbl, CCol, F1)} = 7.

% spot
spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

% canonical solved state
face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon_solved :- #count{F :
face_same(F)}=6.

(a) Example 1 (b) Example 2

Figure 3: Achieved goal of having a cross on all 6 faces
where the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Achieved goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Achieved goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Achieved goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) a goal state where all faces have a cross where the
cross is the same color as the center piece; (2) a goal where
the red, green, blue, and orange faces have a cup on them (3)
a goal where there is a spot adjacent to a cup with the open-
ing of the cup facing the spot; (4) a goal where there are two
checkerboard patterns (a cross combined with an X) on op-
posite faces and all other faces have uniform color. Given a
logic program, we use clingo (Gebser et al. 2012, 2014) to
find stable models. To achieve goals, we sample up to 10 sta-
ble models of the answer set program that represent the goal
and find a path to 100 goal states by randomly generating
start states and using batch weighted Q* search to find a path
from these start states to a goal state. We use a batch size of
10,000 and a weight of 0.6 when doing batch weighted Q*
search. Each randomly generated start state is a given a bud-
get of 50 iterations. If a goal is not found in that time, then a
new start state is generated. Visualizations of achieved goals
for the four non-canonical goals are shown in Figures 3, 4,
5, and 6. A table summarizing the time it takes to find stable
models, find 100 goals, as well as the average path cost is
shown in Table 1.

Table 1: The time it takes to find stable models for each goal,
the time it takes to find 100 goal states, and the average path
cost from the start states to the goal states.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

Discussion

To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that
it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-
edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

% cup
cup(F1, F2, CCol) :- dif_face(F1, F2),
face_col(F1, F1Col), dif_col(F1Col,
CCol), edge_cbl(ECbl), onface(ECbl,
_, F2), onface(ECbl, F1Col, F1),
#count{Cbl: edge_or_corner(Cbl),
onface(Cbl, CCol, F1)} = 7.

% spot
spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

% canonical solved state
face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon_solved :- #count{F :
face_same(F)}=6.

(a) Example 1 (b) Example 2

Figure 3: Achieved goal of having a cross on all 6 faces
where the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Achieved goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Achieved goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Achieved goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) a goal state where all faces have a cross where the
cross is the same color as the center piece; (2) a goal where
the red, green, blue, and orange faces have a cup on them (3)
a goal where there is a spot adjacent to a cup with the open-
ing of the cup facing the spot; (4) a goal where there are two
checkerboard patterns (a cross combined with an X) on op-
posite faces and all other faces have uniform color. Given a
logic program, we use clingo (Gebser et al. 2012, 2014) to
find stable models. To achieve goals, we sample up to 10 sta-
ble models of the answer set program that represent the goal
and find a path to 100 goal states by randomly generating
start states and using batch weighted Q* search to find a path
from these start states to a goal state. We use a batch size of
10,000 and a weight of 0.6 when doing batch weighted Q*
search. Each randomly generated start state is a given a bud-
get of 50 iterations. If a goal is not found in that time, then a
new start state is generated. Visualizations of achieved goals
for the four non-canonical goals are shown in Figures 3, 4,
5, and 6. A table summarizing the time it takes to find stable
models, find 100 goals, as well as the average path cost is
shown in Table 1.

Table 1: The time it takes to find stable models for each goal,
the time it takes to find 100 goal states, and the average path
cost from the start states to the goal states.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

Discussion

To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that
it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-
edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

% cup
cup(F1, F2, CCol) :- dif_face(F1, F2),
face_col(F1, F1Col), dif_col(F1Col,
CCol), edge_cbl(ECbl), onface(ECbl,
_, F2), onface(ECbl, F1Col, F1),
#count{Cbl: edge_or_corner(Cbl),
onface(Cbl, CCol, F1)} = 7.

% spot
spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

% canonical solved state
face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon_solved :- #count{F :
face_same(F)}=6.

(a) Example 1 (b) Example 2

Figure 3: Achieved goal of having a cross on all 6 faces
where the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Achieved goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Achieved goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Achieved goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) a goal state where all faces have a cross where the
cross is the same color as the center piece; (2) a goal where
the red, green, blue, and orange faces have a cup on them (3)
a goal where there is a spot adjacent to a cup with the open-
ing of the cup facing the spot; (4) a goal where there are two
checkerboard patterns (a cross combined with an X) on op-
posite faces and all other faces have uniform color. Given a
logic program, we use clingo (Gebser et al. 2012, 2014) to
find stable models. To achieve goals, we sample up to 10 sta-
ble models of the answer set program that represent the goal
and find a path to 100 goal states by randomly generating
start states and using batch weighted Q* search to find a path
from these start states to a goal state. We use a batch size of
10,000 and a weight of 0.6 when doing batch weighted Q*
search. Each randomly generated start state is a given a bud-
get of 50 iterations. If a goal is not found in that time, then a
new start state is generated. Visualizations of achieved goals
for the four non-canonical goals are shown in Figures 3, 4,
5, and 6. A table summarizing the time it takes to find stable
models, find 100 goals, as well as the average path cost is
shown in Table 1.

Table 1: The time it takes to find stable models for each goal,
the time it takes to find 100 goal states, and the average path
cost from the start states to the goal states.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

Discussion

To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that
it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-
edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about

Cross6 Cup4

CupSpot(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

% cup
cup(F1, F2, CCol) :- dif_face(F1, F2),
face_col(F1, F1Col), dif_col(F1Col,
CCol), edge_cbl(ECbl), onface(ECbl,
_, F2), onface(ECbl, F1Col, F1),
#count{Cbl: edge_or_corner(Cbl),
onface(Cbl, CCol, F1)} = 7.

% spot
spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

% canonical solved state
face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon_solved :- #count{F :
face_same(F)}=6.

(a) Example 1 (b) Example 2

Figure 3: Achieved goal of having a cross on all 6 faces
where the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Achieved goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Achieved goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Achieved goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) a goal state where all faces have a cross where the
cross is the same color as the center piece; (2) a goal where
the red, green, blue, and orange faces have a cup on them (3)
a goal where there is a spot adjacent to a cup with the open-
ing of the cup facing the spot; (4) a goal where there are two
checkerboard patterns (a cross combined with an X) on op-
posite faces and all other faces have uniform color. Given a
logic program, we use clingo (Gebser et al. 2012, 2014) to
find stable models. To achieve goals, we sample up to 10 sta-
ble models of the answer set program that represent the goal
and find a path to 100 goal states by randomly generating
start states and using batch weighted Q* search to find a path
from these start states to a goal state. We use a batch size of
10,000 and a weight of 0.6 when doing batch weighted Q*
search. Each randomly generated start state is a given a bud-
get of 50 iterations. If a goal is not found in that time, then a
new start state is generated. Visualizations of achieved goals
for the four non-canonical goals are shown in Figures 3, 4,
5, and 6. A table summarizing the time it takes to find stable
models, find 100 goals, as well as the average path cost is
shown in Table 1.

Table 1: The time it takes to find stable models for each goal,
the time it takes to find 100 goal states, and the average path
cost from the start states to the goal states.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

Discussion

To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that
it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-
edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about

Checkers
Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024

Results
Goal Path Cost % Solved # Models Model Time Search Time
Rubik’s Cube (Canon) 24.41 100% 1 0.37 4.39
Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14
Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) 23.85 100% 1 0.49 4.2
Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Table 2: Performance of DeepCubeAg when reaching goals specified with ASP.

(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
In Table 2 we see that the path cost for finding the Cross6
goal is almost half that of finding the canonical goal, even
though the canonical goal is a subset of the Cross6 goal.
This indicates that the trained heuristic function is capable
of estimating the cost-to-go to a closest state in a set of
goal states without needing to be explicitly told of a clos-
est state. This ability to discover paths to goal states which,

(a) Example 1 (b) Example 2

Figure 10: Start states that failed to reach both BoxBox and
AgentInBox.

themselves, are not known until a path is found, could be
extended to domains such as chemical synthesis. For ex-
ample, this would allow practitioners to specify properties
a molecule should or should not have, discover synthesis
routes to such molecules and, as a result, discover molecules
that meet these specifications.

In Algorithm 1, we sample a new stable model if we fail
to find a goal state. From Table 2, we see that the number
of models we need to sample for the canonical Rubik’s cube
goal state and Cross6 is only one. However, for Cup4 and
CupSpot, we must sample, on average, 42.5 and 27.68 mod-
els, respectively, to find a goal state. In cases where a goal
state was not found, A* search failed to find a path to the
sampled stable model. This may be because the sampled sta-
ble models represented only unreachable states. We discuss
ways to overcome this in the Future Work Section.

For Sokoban, we see that the BoxBox and AgentInBox
goals did not achieve a 100% success rate. Since we did not
set a maximum iteration for Algorithm 1, all failure cases
involved the algorithm terminating because all models were
banned. Therefore, A* search failed to find a path to all sta-
ble models, which may indicate that the goal was not reach-
able for these start states. Figure 10 shows start states that
failed to reach both the BoxBox and AgentInBox goals. The
figure shows that there was not enough room to reach these
goals.

Related Work
Action Schema Networks (ASNets) (Toyer et al. 2020) are
neural networks that exploit the structure of the Planning
Domain Definition Language (PDDL) to learn a policy that
generalizes across problem instances. However, ASNets are

All boxes are immoveable

A box of boxes Boxes at the four corners of the agent

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024

Goal Reaching: Non-monotonic

𝒮)!
𝑠%

𝒮)" = 𝒮)#
Π *

Π- - rand

Π
- - conflict

𝒮+$
𝒮+%

𝒮+&

𝒮+$ 𝒮+% 𝒮+&

𝒮+$ 𝒮+% 𝒮+&

Π: Answer set program

𝒮): set of states represented by program

𝒮,: set of states represented by assignment

Combine this with a conflict-
driven branch-and-bound search

Results

Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.” ICAPS 2024 HAXP Workshop

Platinum CPU, otherwise. We give a time limit of 500 seconds for each test state. Results for our280

experiments are shown in Table 1. Figures showing goals reached are shown in Figures 2, 3, and 4.281

Goal Spec Cost %Solve #Itr #Assign %reach %not goal Secs
Spec

Secs
Path Secs

RC:8diffCtrW Rand 7.27 60 4.12 6.17 71.29 30.83 14.4 2.49 161.05
Conflict 6.29 49 3.71 5.31 75.06 26.53 11.81 2.17 133.22

RC:¬9sameCtrW Rand 4.35 46 15.04 101.74 91.47 46.04 0.02 0.77 36.45
Conflict 1.77 100 6.66 40.81 99.84 51.33 0.02 0.03 2.11

24p:r0SumEven Rand 14.18 100 1.93 4.6 100 22.83 0.06 0.05 1.31
Conflict 14.84 100 1.94 4.6 100 22.75 0.06 0.06 1.37

24p:¬r0SumOdd Rand 13.17 100 11.07 81.39 98.49 41.22 0.04 0.1 11.44
Conflict 2.71 100 3.45 15.2 100 25.89 0.04 0.02 2.12

24p:8rSumEven Rand 86.36 100 3.7 9.1 81.47 45.5 0.33 0.8 7.32
Conflict 87.39 100 3.9 9.1 77.32 45.5 0.36 0.92 8.35

24p:¬9rSumOdd Rand 32.91 87 43.55 209.89 94.37 81.27 0.08 0.3 43.99
Conflict 22.01 97 13.98 117.41 99.68 77.19 0.08 0.1 14.61

Table 1: Comparison of a random and conflict-driver specialization operator. Comparisons are along
the dimensions of average path cost, percentage solved, average number of iterations, average number
of assignments generated, the average percentage of specified assignments reached with A* search,
the average percentage of reached assignments that were not goal states, the average number of
seconds it took to do a single specialization, the average number of seconds it took to find a single
path (whether or not it was successful), and the average number of overall seconds it took to find a
solution.

(a) Start (b) Rand (c) Conf (NAF)

Figure 2: An example of reaching the goal where all stickers on the white face are different than the
center sticker. Without NAF, the path cost is 12, with NAF and conflict-driven search, the path cost is
1.

6 Discussion282

The results in Table 1 show that expressing goals using NAF significantly improves path cost for both283

the random specialization operator and the conflict-driven specialization operator. When NAF is used,284

the conflict-driven specialization operator is significantly faster and finds significantly shorter paths285

when compared to the random specialization operator. Furthermore, when looking at the average286

percentage of assignments that were reached when performing A* search, this is larger in the majority287

of cases where NAF is used. This is because, all the assignments that make a specification true when288

not using NAF also make a specification true when using NAF, provided both specifications represent289

Goal SpecOp Cost %Solve #Itr #Assign %reach %not goal Secs
Spec

Secs
Path Secs

RC:8diffCtrW - 11.54 70 3.34 33.43 7.68 0 12.77 7.5 564.94
RC:¬9sameCtrW Rand 1.67 99 7.2 63.02 87.84 69.06 0.06 1.04 95.46

Conflict 1.26 100 5.43 36.31 99.34 52.36 0.06 0.07 5.98
24p:r0SumEven - 24.55 100 9.24 92.4 100 0 0.2 0.23 42.52
24p:¬r0SumOdd Rand 3.16 100 4.27 33.6 100 38.71 0.2 0.03 6.64

Conflict 2.51 100 4.06 31.6 100 22.13 0.21 0.04 6.58
24p:8rSumEven - 83.71 100 9.19 91.9 50.41 0 0.88 1.77 250.18
24p:¬9rSumOdd Rand 17.07 100 10.23 92.05 99.98 85.51 0.1 0.08 21.72

Conflict 12.87 100 8.66 77.1 100 79.72 0.11 0.08 17.08

8

Start Mono: path cost 12 Non-mono: path cost 1

(a) Start (b) Rand (c) Conf (NAF)

Figure 3: An example of reaching the goal where the sum of row zero (top row) is even. Without
NAF, the path cost is 30, with NAF and conflict-driven search, the path cost is 4.

(a) Start (b) Rand (c) Conf (NAF)

Figure 4: An example of reaching the goal where the sum of all rows are even. Without NAF, the
path cost is 93, with NAF and conflict-driven search, the path cost is 4.

an equivalent set of goal states. However, when using NAF there exists more general additional290

assignments that also make the NAF specification true. Therefore, A* search can find paths more291

reliably. On the other hand, a smaller percentage of terminal states along these paths encountered are292

goal states. However, the conflict-driven approach exploits this. For the goal where all rows are even,293

the NAF case does not solve 100% of all states. This could be due to a need for a complete search294

algorithm or better prioritization of assignments. We discuss this more in Future Work.295

Note that, for all specifications that do not use NAF, the only time when a state found along a path is296

not a goal state is in the first iteration because the search is initialized with an assignment where all297

variables are unassigned. As a result, since the answer set solver is not aware of the start state, it could298

sample an assignment from ↵(⇧), which could be far away from the start state. When using NAF,299

however, having the ability to iteratively make small changes to the assignment through specialization300

results in being able to prioritize closer assignments over those further away, whereas, when not using301

NAF, the assignment cannot be further refined after the first iteration.302

When looking at the time it takes to do a specialization, the answer set solver is much faster in303

the NAF case. For example, for the Rubik’s cube, it can take up to 14 seconds per specialization304

without NAF and 0.02 seconds per specialization with NAF. This shows that, when the set of minimal305

assignments that make a goal is true is very large, it can be computationally convenient to, instead,306

specify when the goal is not true using NAF.307

7 Related Work308

Expressive specification languages have been of interest to the planning community for expressive309

goal specification as well as for expressive action precondition specification for declarative planning310

languages such as PDDL. Axioms in PDDL allow users to define axioms that can be used to derive311

predicates. (author?) [27] show that axioms are computationally beneficial and can lead to better312

overall performance. Domain independent heuristics that take advantage of axioms have been derived313

[18]. Furthermore, existential quantification can play a big role in NAF, like it has done in our314

experiments. Heuristics that are computed from existentially quantified variables have also been315

derived for STRIPS [12] planners [13].316

8 Future Work317

The branch and bound algorithm in Algorithm 1 handles the fact that there can be a very large number318

specializations by sampling, at most, B specializations. However, this results in an incomplete search319

algorithm that could miss some specializations that represent sets of states closer to the starting state320

or it could not find a solution at all. To modify the algorithm to make it complete, it could maintain321

a second priority queue where an assignment and all its previous specializations are pushed. After322

the first priority queue is empty, the first queue would be set to the second queue and the second323

9

Start Mono: path cost 93 Non-mono: path cost 4

All stickers on the white face are
different than the center sticker

All rows sum to an even number

Platinum CPU, otherwise. We give a time limit of 500 seconds for each test state. Results for our280

experiments are shown in Table 1. Figures showing goals reached are shown in Figures 2, 3, and 4.281

Goal Spec Cost %Solve #Itr #Assign %reach %not goal Secs
Spec

Secs
Path Secs

RC:8diffCtrW Rand 7.27 60 4.12 6.17 71.29 30.83 14.4 2.49 161.05
Conflict 6.29 49 3.71 5.31 75.06 26.53 11.81 2.17 133.22

RC:¬9sameCtrW Rand 4.35 46 15.04 101.74 91.47 46.04 0.02 0.77 36.45
Conflict 1.77 100 6.66 40.81 99.84 51.33 0.02 0.03 2.11

24p:r0SumEven Rand 14.18 100 1.93 4.6 100 22.83 0.06 0.05 1.31
Conflict 14.84 100 1.94 4.6 100 22.75 0.06 0.06 1.37

24p:¬r0SumOdd Rand 13.17 100 11.07 81.39 98.49 41.22 0.04 0.1 11.44
Conflict 2.71 100 3.45 15.2 100 25.89 0.04 0.02 2.12

24p:8rSumEven Rand 86.36 100 3.7 9.1 81.47 45.5 0.33 0.8 7.32
Conflict 87.39 100 3.9 9.1 77.32 45.5 0.36 0.92 8.35

24p:¬9rSumOdd Rand 32.91 87 43.55 209.89 94.37 81.27 0.08 0.3 43.99
Conflict 22.01 97 13.98 117.41 99.68 77.19 0.08 0.1 14.61

Table 1: Comparison of a random and conflict-driver specialization operator. Comparisons are along
the dimensions of average path cost, percentage solved, average number of iterations, average number
of assignments generated, the average percentage of specified assignments reached with A* search,
the average percentage of reached assignments that were not goal states, the average number of
seconds it took to do a single specialization, the average number of seconds it took to find a single
path (whether or not it was successful), and the average number of overall seconds it took to find a
solution.

(a) Start (b) Rand (c) Conf (NAF)

Figure 2: An example of reaching the goal where all stickers on the white face are different than the
center sticker. Without NAF, the path cost is 12, with NAF and conflict-driven search, the path cost is
1.

6 Discussion282

The results in Table 1 show that expressing goals using NAF significantly improves path cost for both283

the random specialization operator and the conflict-driven specialization operator. When NAF is used,284

the conflict-driven specialization operator is significantly faster and finds significantly shorter paths285

when compared to the random specialization operator. Furthermore, when looking at the average286

percentage of assignments that were reached when performing A* search, this is larger in the majority287

of cases where NAF is used. This is because, all the assignments that make a specification true when288

not using NAF also make a specification true when using NAF, provided both specifications represent289

Goal SpecOp Cost %Solve #Itr #Assign %reach %not goal Secs
Spec

Secs
Path Secs

RC:8diffCtrW - 11.54 70 3.34 33.43 7.68 0 12.77 7.5 564.94
RC:¬9sameCtrW Rand 1.67 99 7.2 63.02 87.84 69.06 0.06 1.04 95.46

Conflict 1.26 100 5.43 36.31 99.34 52.36 0.06 0.07 5.98
24p:r0SumEven - 24.55 100 9.24 92.4 100 0 0.2 0.23 42.52
24p:¬r0SumOdd Rand 3.16 100 4.27 33.6 100 38.71 0.2 0.03 6.64

Conflict 2.51 100 4.06 31.6 100 22.13 0.21 0.04 6.58
24p:8rSumEven - 83.71 100 9.19 91.9 50.41 0 0.88 1.77 250.18
24p:¬9rSumOdd Rand 17.07 100 10.23 92.05 99.98 85.51 0.1 0.08 21.72

Conflict 12.87 100 8.66 77.1 100 79.72 0.11 0.08 17.08

8

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Vedant Khandelwal

Example

• If using only canonical actions, the cost-to-go is 16
• If including diagonal actions, the cost-to-go is 2
• To differentiate between these two scenarios, information about the domain

must also be given to the heuristic function

Start state Goal state

Training

• For each example, randomly sample a domain
• For that domain, randomly sample a state
• RL Update

• 𝐿 𝜃 = min
&

𝑐& 𝑠 + ℎ)%(𝑇 𝑠, 𝑎 , 𝐷) − ℎ) 𝑠, 𝐷
$

• 𝐷: Domain

Preliminary Experiments

• For the 15-puzzle, generate different domains by sampling a subset of {U, D, L,
R, UL, UR, DL, DR} actions for each tile position
• 8 actions for each of the 16 positions, max 2M∗!# ≈ 3.4×10NM domains
• Ensure all sampled domains are reversible, for simplicity

• Represent the domain as a one-hot vector of which actions are allowed in each
position
• Compare heuristic performance with true cost-to-go for random states from

domains
• True cost-to-go computed with merge-and-shrink heuristic

• Compare when training a heuristic function across domains without domain
information
• Compare heuristic function with DeepCubeA trained for a fixed domain

Results
• Adding action information

significantly improves performance
• Performs slightly worse when

compared to DeepCubeA trained
on that specific domain
• However, unlike DeepCubeA, it does

not need to be re-trained for that
domain

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024

Results
• Repeat training for 8-puzzle and

24-puzzle
• Proposed approach compares

favorably to the fast downward
planner with the fast forward
heuristic
• Is slightly worse than

DeepCubeA, which must be re-
trained for each domain
• Future work could build on work

by Felipe Trevizan and Sylvie
Thiebaux on using graph neural
networks to encode PDDL
domains

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024
Chen, Dillon Z., Sylvie Thiébaux, and Felipe Trevizan. "Learning Domain-Independent Heuristics for Grounded and Lifted Planning." AAAI. Vol. 38. No. 18. 2024.

Domain Solver Len Opt Nodes Secs Nodes/Sec Solved
8 Puzzle (C) DeepCubeA 18.38 100% 3.59E+04 0.69 5.2E+04 100%
8 Puzzle (C) Proposed 18.38 100% 7.17E+04 1.76 4.07E+04 100%
8 Puzzle (C) FD(FF) 18.8 81% 5.56E+02 0.11 4.7E+03 100%
8 Puzzle (D) DeepCubeA 1.44 100% 1.95E+01 0.01 2.92E+03 100%
8 Puzzle (D) Proposed 1.44 100% 4.05E+01 0.01 4.92E+03 100%
8 Puzzle (D) FD(FF) 1.44 100% 2.45E+00 0.2 1.23E+01 100%
8 Puzzle (C+D) DeepCubeA 11.84 100% 6.2E+04 1.18 5.26E+04 100%
8 Puzzle (C+D) Proposed 11.84 100% 6.23E+04 1.56 3.97E+04 100%
8 Puzzle (C+D) FD(FF) 12.9 54.2% 8.68E+01 0.13 6.59E+02 100%
15 Puzzle (C) DeepCubeA 52.03 99.4% 1.82E+05 4.31 4.21E+04 100%
15 Puzzle (C) Proposed 52.18 93.76% 3.62E+05 10.39 3.49E+04 100%
15 Puzzle (C) FD(FF) 52.75 24.80 2.92E+06 42.11 6.93E+04 80.80%
15 Puzzle (D) DeepCubeA 10.8 100% 8.2E+02 0.03 2.43E+04 100%
15 Puzzle (D) Proposed 10.81 99.8% 1.64E+03 0.05 3.01E+04 100%
15 Puzzle (D) FD(FF) 10.86 96.8% 4.18E+01 0.21 1.96E+02 100%
15 Puzzle (C+D) DeepCubeA 25.66 100% 1.78E+05 3.74 4.78E+04 100%
15 Puzzle (C+D) Proposed 25.67 99.8% 1.78E+05 4.72 3.78E+04 100%
15 Puzzle (C+D) FD(FF) 29.32 13.4% 8.4E+03 1.17 3.56E+03 100%
24 Puzzle (C) DeepCubeA 89.48 96.98% 3.34E+05 8.05 4.15E+04 100%
24 Puzzle (C) Proposed 92.80 22.03% 7.6E+05 24.06 3.16E+04 100%
24 Puzzle (C) FD(FF) 81.00 0.40 2.68E+06 89.84 2.91E+04 1.01%
24 Puzzle (D) DeepCubeA 14.9 100% 2.55E+04 0.47 5.46E+04 100%
24 Puzzle (D) Proposed 14.92 99.8% 5.1E+04 1.35 3.78E+04 100%
24 Puzzle (D) FD(FF) 15.16 89.2% 2.64E+02 0.12 2.05E+03 100%
24 Puzzle (C+D) DeepCubeA 31.33 100% 2.27E+05 4.83 4.69E+04 100%
24 Puzzle (C+D) Proposed 31.34 99.6% 2.27E+05 6.78 3.34E+04 100%
24 Puzzle (C+D) FD(FF) 36.81 13.8% 1.7E+04 5.35 1.77E+03 99.4%

Table 1: Performance comparison of DeepCubeA action variants, the proposed model, and the Fast
Downward Planner using the Fast Forward heuristic (FD(FF)). Metrics include average solution
length (Len), optimality (Opt), average nodes generated (Nodes), average computation time (Secs),
nodes processed per second (Nodes/Sec), and percentage of problems solved (Solved). Action vari-
ants cover (C), (D), and (C+D) actions for the 8-puzzle, 15-puzzle, and 24-puzzle domains. The
proposed model performs comparably to DeepCubeA, and better than Fast Downward Planner.

9 Conclusion

In this preliminary work, we have integrated state transition information with state representations
to train heuristic functions capable of generalizing across di�erent 15-puzzle action space variation
domains. Our approach demonstrates that incorporating state transition information enables the
heuristic function to predict cost-to-go values in previously unseen domains without fine-tuning.
Comparative analysis with DeepCubeA variants shows that our model performs competitively de-
spite training on a smaller dataset. These findings highlight the potential of our method to enhance
generalization and e�ciency in pathfinding problems. Future work will focus on incorporating transi-
tion dynamics to improve the model’s domain understanding, exploring generalization across various
puzzle domains, and employing advanced techniques such as graph neural networks and knowledge
graphs to further enhance the adaptability and robustness of heuristic functions.

8

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Misagh Soltani

Learning Discrete World Models
• Addressing previous shortcomings

• Small errors in prediction can be corrected
by simply rounding

• Can reidentify states by comparing two
vectors

• Encoder
• Maps the state to a discrete

representation
• To allow training with gradient descent,

use a straight through estimator
• Decoder

• Maps the discrete representation to the
state

• Ensures the discrete representation is
meaningful

• Environment model
• Maps discrete states and actions to next

discrete state
𝑠 𝑠′

Encoder Encoder

Decoder

𝑠̂ $𝑠′

Decoder

𝑠̃ P𝑠′m(𝑠̃,a)

𝑎

𝑚(𝑠, 𝑎)

Experiments

• Rubik’s cube
• Two 32x32 RGB images showing both sides of the cube

• Sokoban
• One 40x40 RGB image

• Generate offline dataset of 10,000 episodes of 30 random steps, each

Discrete vs Continuous Model Performance

• The continuous model eventually accumulates error for the Rubik’s cube

Ground
Truth

Continuous

Discrete

Heuristic Learning and Search with Discrete Model
• DeepCubeAI – DeepCubeA + “Imagination”

• Learn discrete world model with offline data
• Use offline data and the learned world model to generate training data
• Heuristic learning: Q-learning with hindsight experience replay

• Generalize over goal states
• Heuristic search: Q* search

• Helps when model uses computationally expensive DNN

Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement Learning Conference 2024

Outline

• Background
• Approximate value iteration and batch weighted A* search
• Approximate Q-learning and batch weighted Q* seaerch
• Generalization
• Generalizing over goals
• Generalizing over domains
• Generalizing to domains with unknown transition functions

• Applications

Rojina Panta Christian Geils

Reaction Mechanisms

• Chemical reactions are composed of
smaller steps called reaction
mechanisms
• Knowledge of the reaction mechanisms

that compose a chemical reaction allows
practitioners to
• Validate reaction feasibility
• Improve reaction efficiency
• Predict reaction outcome under different

conditions

• Most chemical reaction prediction
methods skip reaction mechanisms and
predict products directly from reactants

Reaction Mechanism Domain
• We create the state transition function using OrbChain, a model for reaction

mechanism steps
• Can take over a second to expand a state, limiting training data

• For simplicity, we assume all transition costs are 1
• Future work will use negative log probabilities of reaction mechanism steps as transition costs

• We use extended-connectivity fingerprints to represent a molecule to the heuristic
function
• Future work will use a learned representation using graph neural networks

• We generate data using small molecules from the United States Patent and Trademark
Office (USPTO) dataset of chemical reactions
• Using random walks, we generate new molecules

• The heuristic function also takes a goal state as input

• 𝐿 𝜃 = min
!

𝑐! 𝑠 + ℎ$& 𝑇 𝑠, 𝑎 , 𝑠% − ℎ$ 𝑠, 𝑠%
&

Results

• Generate test data by
performing a random walk
between 0 and 6 steps
• The learned heuristic

function outperforms
uniform cost search and
A* search with the
Tanimoto similarity metric

Panta, Rojina, et al. “Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search.” ICAPS PRL Workshop 2024

Quantum Algorithm Compilation

• Given a quantum algorithm, a compiler
must synthesize a quantum circuit for
this algorithm from a given set of
quantum gates
• If a given circuit is below an error

threshold, then the problem is
considered solved

Quantum Algorithm Compilation
• Training data can be generated from a given gate set

and a DQN trained to predict the distance of the
current quantum circuit to the identity function
• Given a trained DQN, Q* search can be used to

search for a circuit for a given algorithm
• Accuracy increases given more time for synthesis

Quantum compilation on two-qubit
universal basis set

Qiuhao, Chen, et al. "Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning." Quantum Science and Technology (2024).

Other Applications to Quantum Algorithm Compilation

• Topological quantum compiling
• Clifford synthesis
• Can produce near-optimal solutions

Zhang, Yuan-Hang, et al. "Topological Quantum Compiling with Reinforcement Learning." Physical Review Letters 125.17 (2020): 170501.
Bao, Ning, and Gavin S. Hartnett. "Twisty-puzzle-inspired approach to Clifford synthesis." Physical Review A 109.3 (2024): 032409.

Questions?
• Papers

• Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine
Intelligence 1.8 (2019): 356-363.

• Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024
• Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer

Set Programming.” ICAPS 2024
• Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.” ICAPS 2024

HAXP Workshop
• Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions

to Solve Pathfinding Problems.” arxiv, 2024
• Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement

Learning Conference 2024
• Panta, Rojina, et al. “Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic

Search.” ICAPS PRL Workshop 2024
• Code

• Many of these algorithms are publicly available on GitHub
• https://github.com/forestagostinelli/deepxube

Email: foresta@cse.sc.edu
Website: https://cse.sc.edu/~foresta/

mailto:foresta@cse.sc.edu
https://cse.sc.edu/~foresta/

