
Research Poster:

Learning Discrete World Models for 
Heuristic Search
Forest Agostinelli and Misagh Soltani
Computer Science and Engineering, University of South Carolina

AI Institute of University of South Carolina

• We introduce DeepCubeAI, a domain-independent method for learning a model that operates on 

discrete latent states.

• We address the challenges of model degradation and lack of state re-identification.

• The learned model is used to learn a heuristic function that generalizes across problem 

instances.

• We combine the learned model and the heuristic function with search to solve problems.

• For the Rubik's cube, using a discrete model prevents error accumulation.

• DeepCubeAI solves 100% of test cases for Rubik's cube, Sokoban, IceSlider, and DigitJump, and 

99.9% of test cases for Rubik's cube reverse, demonstrating effective generalization across goal 

states.

Conclusion

Motivation

• Planning is crucial for solving sequential decision-making problems, but it requires a 

state-transition function, also known as a world model.

• In domains where the world model is unknown, such as robotics, model-based 

reinforcement learning can be used to learn it.

• Continuous world models face two major challenges:

o Lack of state re-identification

o Model degradation

Our Approach - DeepCubeAI

To solve these problems, we introduce DeepCubeAI (DeepCubeA + “Imagination”):

• A domain-independent method for training domain-specific heuristic functions that 

generalize across problem instances.

• DeepCubeAI consists of three key components:

o Discrete world model

▪ Learns a world model that represents states in a discrete latent space.

❑ Errors less than 0.5 in prediction can be corrected by simply rounding

❑ Can re-identify states by comparing two binary vectors

o Heuristic function

▪ Uses RL to learn a heuristic function that generalizes over start and goal states

o Search

▪ Combines learned model and learned heuristic function with heuristic search to 

solve problems.

Scan to access the 
paper

Scan to connect on 
LinkedIn

Scan for the GitHub 
repository

Learning Discrete World Models

• Encoder

o Maps the state to a discrete representation by rounding the output of the encoder.

o Uses a straight-through estimator to allow training with gradient descent.

• Decoder

o Maps the discrete representation to the state.

o Ensures the discrete representation is meaningful.

• Environment model

o Maps discrete states and actions to next discrete state.

o We train the autoencoder and model together to ensure that the parameters of the 

autoencoder are encouraged to learn a representation that the model can also learn.

o We use a weight ω to first weight the Lr loss higher than Lm and gradually adjust 

ω to be 0.5 to weight them equally:

• Another benefit of the discrete world model

o We can see the percentage of the bits that match.

▪ If the latent representation is meaningful and we can predict it accurately, then if 

the Markov assumption holds, we can roll it out for as many steps as we want.

Heuristic Learning and Search with Discrete Model

• We use offline data and the learned world model to generate training data.

• Heuristic learning: we use Q-learning with hindsight experience replay.

o Results in a domain-independent algorithm for training domain-specific heuristic functions that 

generalize across problem instances.

• Heuristic search: Q* search 1

o A variant of A* search for Deep Q-Networks.

o Q* search can compute the heuristic values for all next states with a single pass through a DQN.

o In practice, Q* search has been shown to perform similar to A* search while being orders of 

magnitude faster and more memory efficient.

Discrete vs Continuous Model Performance

• Left: A visualization of the reconstructions for models with continuous and discrete latent states 

at different timesteps.

• Right: Mean squared reconstruction error as a function of timestep.

Rubik’s Cube

Sokoban

DigitJump

IceSlider

Future Work

• Address rare mistakes in identifying latent goal states by training a DNN to correct slightly corrupted 

latent states or using Hallucinated Replay for self correction.2

• Improve goal specification in environments where goal images are difficult to generate, potentially 

using formal logic to specify goals without generating goal images.3

• Extend benefits of discrete models to stochastic and partially observable robotic tasks, enhancing 

exploration for training and obtaining more lookahead during search.4

1. Agostinelli, Forest, et al. "Q* Search: Heuristic Search with Deep Q-Networks." (2024).

2. Talvitie, Erik. "Self-correcting models for model-based reinforcement learning." Proceedings of the AAAI conference on AI. Vol. 31. No. 1. 2017.

3. Agostinelli, Forest, et al. "Specifying goals to deep neural networks with answer set programming." Proceedings of the ICAPS Vol. 34. 2024.

4. Kaiser, Lukasz, et al. "Model-based reinforcement learning for atari." arXiv preprint arXiv:1903.00374 (2019).

Problem Solving Performance

• Pattern Databases (PDBs) use human knowledge from group theory. DeepCubeA uses a predefined 

goal during training and requires retraining for each Rubik’s Cube Reverse problem instance.

• Poor performance when following heuristic values greedily highlights the necessity of planning.


	Slide 1

