
Lab 08
Fleet of Vehicles

Objective:

Use classes and inheritance to create a vehicle system managing system.

Lab Solution

Requirements:

• Functionality. (80pts)
o No Syntax Errors. (80pts*)

§ *Code that cannot be compiled due to syntax errors is
nonfunctional code and will receive no points for this entire
section.

o Set-Up the Project (5pts)
§ Include the tester code in your project.
§ Do not alter the provided code.

o Write a class file called Vehicle
§ Instance Variables

• Manufacturer’s name: a non-null String that represents the
manufacturer of the vehicle. Default value is “none”.

• Number of Cylinders: a non-zero, positive whole number
value representing the number of cylinders. Default value is
6.

• Owner’s name: a non-null String that represents the
owner’s name of the vehicle. Default value is “none”.

§ Constructors
• Default: Must set all properties to their default values

mentioned in the “Instance Variables” section.
• Parameterized: Must take in a parameter for each instance

variable in the order named above. This means the first
instance variable is the first parameter, the second instance
variable is the second parameter, and so on. This must set
the instance variable values only if the given values are
valid, but otherwise it must set the instance variables to
their default values.

§ Methods
• Accessors and Mutators for the instance variables

o Make sure in the mutators check for valid values
named in the “Instance Variables” Section.

o If the value that is being set is not valid, then set the
instance variable to its default value.

https://www.cse.sc.edu/~shephejj/csce145/Labs/FleetOfVehiclesDriver/FleetOfVehicles.java

• Equals: This method takes in another instance of Vehicle
and only returns true if all of the instance variables match.

• ToString: This method returns a String with all of the
instance variable values concatenated together with the
format:

Manufacturer’s Name: <<Manufacturer’s Name>>\n
Number of Cylinders: <<Number of Cylinders>>\n
Owner’s Name: <<Owner’s Name>>\n

Where values in “<<>>” correspond to the instance
variable values.

§ All above must apply for full credit.
o Write a class file called Truck that inherits from Vehicle

§ Instance Variables
• Load Capacity: A non-negative decimal value that

represents number of tons the Truck can handle. Default
value is 1.0.

• Towing Capacity: A non-negative decimal value that
represents the number of tons the Truck can move. Default
value is 1.0.

§ Constructors
• Default: Must set all properties to their default values

mentioned in the “Instance Variables” section.
o Must also set Vehicle’s Default values as well.

• Parameterized: Must take in a parameter for each instance
variable in Vehicle and THEN Truck in the orders named
above. This means the first instance variable is the first
parameter, the second instance variable is the second
parameter, and so on. This must set the instance variable
values only if the given values are valid, but otherwise it
must set the instance variables to their default values.

o Must also set Vehicle’s Parameterized values as
well.

§ Methods
• Accessors and Mutators for the instance variables

o Make sure in the mutators check for valid values
named in the “Instance Variables” Section.

o If the value that is being set is not valid, then set the
instance variable to its default value.

• Equals: This method takes in another instance of Truck and
only returns true if all of the instance variables, both
Vehicle and Truck, match.

• ToString: This method returns a String with all of the
instance variable values concatenated together with the
format:

Manufacturer’s Name: <<Manufacturer’s Name>>\n
Number of Cylinders: <<Number of Cylinders>>\n

Owner’s Name: <<Owner’s Name>>\n
Towing Capacity: <<Towing Capacity>>\n
Load Capacity: <<Load Capacity>>\n

Where values in “<<>>” correspond to the instance
variable values.

§ All above must apply for full credit.
o Write a class file called Car that inherits from Vehicle

§ Instance Variables
• Gas Mileage: A non-negative decimal value that represents

number of gallons of gas per mile. Default value is 1.0.
• Number of Passengers: A non-negative whole number

value that represents the number of passengers the car can
contain. Default value is 1.

§ Constructors
• Default: Must set all properties to their default values

mentioned in the “Instance Variables” section.
o Must also set Vehicle’s Default values as well.

• Parameterized: Must take in a parameter for each instance
variable in Vehicle and THEN Car in the orders named
above. This means the first instance variable is the first
parameter, the second instance variable is the second
parameter, and so on. This must set the instance variable
values only if the given values are valid, but otherwise it
must set the instance variables to their default values.

o Must also set Vehicle’s Parameterized values as
well.

§ Methods
• Accessors and Mutators for the instance variables

o Make sure in the mutators check for valid values
named in the “Instance Variables” Section.

o If the value that is being set is not valid, then set the
instance variable to its default value.

• Equals: This method takes in another instance of Car and
only returns true if all of the instance variables, both
Vehicle and Car, match.

• ToString: This method returns a String with all of the
instance variable values concatenated together with the
format:

Manufacturer’s Name: <<Manufacturer’s Name>>\n
Number of Cylinders: <<Number of Cylinders>>\n
Owner’s Name: <<Owner’s Name>>\n
Gas Mileage: <<Gas Mileage>>\n
Number of Passengers: <<Number of Passengers>>\n

Where values in “<<>>” correspond to the instance
variable values.

§ All above must apply for full credit.

Example Dialog:
Welcome to the fleet manager
Enter 1: to add a Vehicle
Enter 2: to remove a Vehicle
Enter 9 to quit
1
Enter 1: if it is a car
Enter 2: if it is a truck
Enter 3: if it is unclassified
1
Enter the manufacturer's name
Nissan
Enter the number of cylinders
6
Enter the owner's name
QWERTY
Enter the car's gas mileage
29
Enter the number of passengers
5
The Fleet currently
Manufacturer's Name: Nissan
Number Of Cylinders: 6
Owner's Name: QWERTY
Gas Mileage: 29.0
Number of Passengers: 5

Enter 1: to add a Vehicle
Enter 2: to remove a Vehicle
Enter 9 to quit
1
Enter 1: if it is a car
Enter 2: if it is a truck
Enter 3: if it is unclassified
2

Enter the manufacturer's name
Chevy
Enter the number of cylinders
8
Enter the owner's name
ASDF01
Enter the truck's load capacity
1
Enter the truck's towing capacity
2
The Fleet currently
Manufacturer's Name: Nissan
Number Of Cylinders: 6
Owner's Name: QWERTY
Gas Mileage: 29.0
Number of Passengers: 5

Manufacturer's Name: Chevy
Number Of Cylinders: 8
Owner's Name: ASDF01
Towing Capacity: 2.0
Load Capacity: 1.0

Enter 1: to add a Vehicle
Enter 2: to remove a Vehicle
Enter 9 to quit
1
Enter 1: if it is a car
Enter 2: if it is a truck
Enter 3: if it is unclassified
3
Enter the manufacturer's name
Ford
Enter the number of cylinders
6

Enter the owner's name
ASDF02
The Fleet currently
Manufacturer's Name: Nissan
Number Of Cylinders: 6
Owner's Name: QWERTY
Gas Mileage: 29.0
Number of Passengers: 5

Manufacturer's Name: Chevy
Number Of Cylinders: 8
Owner's Name: ASDF01
Towing Capacity: 2.0
Load Capacity: 1.0

Manufacturer's Name: Ford
Number Of Cylinders: 6
Owner's Name: ASDF02

Enter 1: to add a Vehicle
Enter 2: to remove a Vehicle
Enter 9 to quit
2
Enter 1: if it is a car
Enter 2: if it is a truck
Enter 3: if it is unclassified
2
Enter the manufacturer's name
Chevy
Enter the number of cylinders
8
Enter the owner's name
ASDF01
Enter the truck's load capacity
1

Enter the truck's towing capacity
2
The Fleet currently
Manufacturer's Name: Nissan
Number Of Cylinders: 6
Owner's Name: QWERTY
Gas Mileage: 29.0
Number of Passengers: 5

Manufacturer's Name: Ford
Number Of Cylinders: 6
Owner's Name: ASDF02

Enter 1: to add a Vehicle
Enter 2: to remove a Vehicle
Enter 9 to quit
9
The Fleet currently
Manufacturer's Name: Nissan
Number Of Cylinders: 6
Owner's Name: QWERTY
Gas Mileage: 29.0
Number of Passengers: 5

Manufacturer's Name: Ford
Number Of Cylinders: 6
Owner's Name: ASDF02

Goodbye

Solution Tests:

1. Is your name written as a comment in all source files?
2. Does the solution compile (no syntax errors)?
3. Does your output match the example dialog?

Lab Report

1. Create a section named “Problem” and describe this lab’s problem in your own
words. (10pts).

2. Create a section named “Solution Description” and describe how the code solves
the problem in your own words. (10pts).

3. Create a section named “Problems Encountered” and describe the various syntax,
run-time, and logic errors that were encountered while implementing the solution.
(10pts).

4. Describe inheritance in OOP. (10pts).
5. When creating a class, what reserved word in Java creates the inheritance, “is a”

relationship? (10pts).
6. When calling a method or accessing a property from an inherited / “parent” class,

what reserved word in Java must be called? (10pts).
7. Is it possible to call a private method or access a private property from an

inherited class? (10pts).
8. In Java, is it possible to inherit from multiple classes? (10pts).
9. Assuming that we have Classes “ParentClass” and “ChildClass”, where

“ChildClass” inherits from “ParentClass”. Would the following code work
without error? If there is an error explain why and how it can be fixed.

10. Assuming that we have Classes “ParentClass” and “ChildClass”, where

“ChildClass” inherits from “ParentClass”. Would the following code work
without error? If there is an error explain why and how it can be fixed.

Finally:
Upload the source code (.JAVA File Extension) and written lab report (.DOC, .DOCX, or
.PDF file extension) to the CSCE Dropbox.

