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ABSTRACT

Developing the problem solving skills of children is a challenging
problem that is crucial for the future of our society. Given that artifi-
cial intelligence (AI) has been used to solve problems across a wide
variety of domains, Al offers unique opportunities to develop prob-
lem solving skills using a multitude of tasks that pique the curiosity
of children. To make this a reality, it is necessary to address the un-
interpretable “black-box” that Al often appears to be. Towards this
goal, we design a collaborative artificial intelligence algorithm that
uses a human-in-the-loop approach to allow students to discover
their own personalized solutions to problems. This collaborative
algorithm builds on state-of-the-art Al algorithms and leverages
additional interpretable structures, namely knowledge graphs and
decision trees, to create a fully interpretable process that is able
to explain solutions in their entirety. We describe this algorithm
when applied to solving the Rubik’s cube as well as our planned
user-interface and assessment methods.
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« Computing methodologies — Discrete space search; Se-
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1 INTRODUCTION

Developing problem-solving skills is a major challenge in educa-
tion considered the single most important 21st Century skill, but
it remains a major challenge in K-12 computer science education
[12, 24]. Algorithmic thinking, described as the ability to develop ef-
fective algorithms to solve problems [21], is a core skill for students
to foster computational thinking and solve computing problems
[19]. We believe the artificial intelligence (AI) technologies can
be a revolutionary change to the current education landscape to
better equip our youth to be more prepared for future work by
enhancing their ability to develop algorithms to solve problems.
Therefore, it is critical for us to explore how we can design cutting-
edge Al technologies to engage the youth in an Al-driven learning
environment.

Al has been
used to solve

many problems Algonthms Plans
that involve
algorithmic think-

ing, such as the
Rubik’s cube
[6], Go [32], and
chemical synthe-
sis [11]. However,

Y/

this possibility is
impeded by the
fact that AI is
currently unable

Figure 1: The student and AI agent ex-
change ideas to come up with a plan
to solve the Rubik’s cube using a set
of algorithms.

to explain its
problem solving
strategies to humans [1, 3]. To overcome this challenge, we seek to
build a collaborative Al algorithm and then design an engaging
interface to allow children to discover personalized solutions to
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challenging problems. In this paper, we focus on the Rubik’s cube
as a learning task for children due to its history of varied and
creative solutions (demonstrated by its dozens of unique solutions
[2]), its relationship to mathematics [20], and its decades long
history of public interest ranging from grade school students to the
frontiers of research [6, 23, 27]. By collaborating with Al students
will discover a plan to solve the Rubik’s cube as well as a set of
algorithms that they will use to fulfill that plan. An overview of
this process is shown in Figure 1.

2 RUBIK’S CUBE BACKGROUND

The Rubik’s cube is a three dimensional puzzle invented in 1974 by
Erno Rubik. The Rubik’s cube consists of 26 smaller cubes called
cubelets. Each cubelet has between 1 and 3 stickers, where each
sticker can be one of six colors. Cubelets are classified by their
sticker count: center, edge and corner cubelets have 1, 2 and 3
stickers, respectively. Since there are 6 center cubelets, 12 edge
cubelets, and 8 corner cubelets, the Rubik’s cube has 54 stickers
in total. The cube has 6 faces, where each face can be rotated 90°
clockwise or counter-clockwise. By rotating these faces, the Rubik’s
cube can take on 4.3 X 10!° possible configurations. The goal is to
rotate the faces to achieve the goal configuration where the stickers
on each face are the same color. A visualization of a scrambled
cube and cube that has been “solved” (returned to the goal con-
figuration) can be seen in Figure 2. The 9 stickers that make up
a face and their 12 adjacent stickers are referred to as a “layer”.

Actions  are
represented using
face notation: an
action is a letter
stating ~ which
face to rotate. F,
B, L, R, U, and
D correspond to
turning the front,
back, left, right,
up, and down
faces, respectively.
Each face name
is in reference to a fixed front face. A clockwise rotation is
represented with a single letter, a letter followed by an apostrophe
represents a counter-clockwise rotation, and a letter followed by a
“2” represents two rotations. For example: R rotates the right face
by 90° clockwise, R’ rotates it by 90° counter-clockwise, and R2
rotates the right face by two 90° rotations. Since these are the most
basic actions that can be taken, we will refer to these as “atomic
actions”.

Figure 2: A visualization of a scram-
bled Rubik’s cube (left) and a solved
Rubik’s cube (right)

3 AI ALGORITHM DESIGNS: DEEPCUBEA
AND CDEEPCUBEA

3.1 DeepCubeA

We have created an artificial intelligence algorithm, called Deep-
CubeA, that learns to solve the Rubik’s cube without human guid-
ance. DeepCubeA uses deep reinforcement learning [4, 33] to train
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a deep neural network (DNN) [29] that maps a Rubik’s cube config-
uration to an estimate of the number of atomic actions left to solve
it. It then uses this DNN with a search method, called A* search [17],
to find a path (a sequence of atomic actions) to solve any Rubik’s
cube. The public also took interest in this work with coverage by
news outlets such as the BBC [8], Newsweek [25], and Forbes [14].
To allow the public to interact with DeepCubeA, we created a web
server that allows anyone to see the algorithm work in real time
[5], which currently has over 31,000 unique visitors.

Since DNNGs are generally considered to be uninterpretable, or
“black boxes” [9], it is not possible to explain DeepCubeA’s deci-
sion process. Therefore, DeepCubeA is useful for problem solving,
but not helping someone else learn to solve a problem. Our core
research task will be to extend DeepCubeA to produce explain-
able solutions to allow someone to learn to solve the Rubik’s cube
through collaboration.

3.2 CDeepCubeA

Each method for solving the Rubik’s cube has its own high-level
step-by-step plan and its own algorithms for achieving that plan
[2]. We define a plan as a series of subgoals to be achieved in order
to solve the cube where a subgoal can be any partial configuration
of the Rubik’s cube. A partial configuration specifies a subset of the
cube that must be in a particular configuration while allowing the
rest of the cube to be free to be in any configuration. An example
of a plan that solves the Rubik’s cube in a layer-wise fashion is
shown in Figure 3. We define an algorithm as a series of atomic
actions. The purpose of algorithms is to manipulate certain parts of
the cube while keeping other parts fixed. An algorithm that swaps
three edge pieces in the final layer of the cube while keeping the
other layers and edge pieces in place is shown in Figure 4. We
seek to create a collaborative version of DeepCubeA, collaborative
DeepCubeA (CDeepCubeA), that collaborates with each student
to find a high-level step-by-step plan that can be achieved using a
set of algorithms. Communication necessary for collaboration will
be made possible through the use of knowledge graphs [31] which
can be used to describe Rubik’s cube configurations and changes
between configurations in human-interpretable terms.

In our framework, the Al agent with whom the student is col-
laborating begins with knowledge of only rudimentary algorithms
and is given a high-level plan based on the student’s own ideas.
The agent then attempts to execute this plan with the rudimentary
algorithms and reports back to the student about which parts of
the plan were feasible and which appear to be infeasible. Some
plans may be infeasible by nature while others require more so-
phisticated algorithms. Based on this feedback, the student has the
opportunity to suggest a new plan or new algorithms or ask CDeep-
CubeA to suggest a new plan or new algorithms. If the student
chooses to ask CDeepCubeA for suggestions, after CDeepCubeA
gives its suggestions, the student can then choose which sugges-
tions they would like to consider for the next iteration. This can
be based on understanding, as some people may find some plans
or algorithms easier to understand than others, or their personal
preference. Learning new algorithms will also influence the kinds
of plans the students comes up with. This process repeats until the
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Figure 3: An example of a possible plan that solves the Rubik’s cube in a layer-wise fashion. The grey parts of the cube are

free to be in any configuration.

student finds a solution that they can understand. This exchange
of ideas between student and Al is illustrated in Figure 1.

3.3 Knowledge Graph Integration

Children cannot
be  guaranteed

to achieve the RFDF'D'R’

next subgoal by

blindly apply- -

ing algorithms.

Instead, the algo-

rithm selected for Swap 3 edges  Yellow edges done

application must
depend on the
entire configura-
tion of the cube.
Instructions for
solving the Rubik’s cube describe a decision process based on
certain queries. For example, Figure 4 shows a configuration that
has three cubelets in the wrong place. However, one can notice
that these three cubelets are in each other’s correct position.
Therefore, if one were to swap the cubelets, they would both
be in the correct position. To figure out what to do, certain
queries must be answered: “Is the first layer complete?”, “Is the
second layer complete?”, “Is there a straight line at the bottom
layer?”, “Are there three edges that are out of place?". If all of
the aforementioned queries return true, then we can execute the
algorithm in Figure 4. Knowledge graphs [31] are able to encode
such relationships among objects. We will construct a knowledge
graph for describing a single configuration and changes between
configurations by scraping Rubik’s cube websites to find the most
frequent descriptions of these two categories. [26, 30, 31].

Figure 4: An algorithm that swaps
three edge cubelets.

3.4 Learning Explainable Solutions

The original DeepCubeA algorithm can be seen as a special case of
our framework where it executes a plan that has only one subgoal,
the solved configuration, and where the only algorithms it had
available to it are the atomic actions. DeepCubeA achieves the
solved configuration by mapping each configuration to an atomic
action. On the other hand, CDeepCubeA has a series of subgoals
to achieve and only has to achieve each subgoal from the previous
subgoal, significantly reducing the the number of configurations it
must consider when learning to achieve each subgoal. Furthermore,
CDeepCubeA will not use the atomic actions, but rather, algorithms,
which are combinations of these atomic actions. To achieve any

given subgoal, multiple algorithms may be needed and the order
in which the algorithms are used will depend on the particular
configuration. Moreover, a human must be able to understand the
process behind determining which algorithms to use. To accomplish
this, CDeepCubeA maps a configuration to a set of queries that
are answered by a knowledge graph. CDeepCubeA then maps the
results of those queries to an algorithm using an interpretable
model, namely, a decision tree [28]. As a result, we would expect
that CDeepCubeA can explain its entire strategy to a human by
telling the human the queries it uses and the decision process
behind mapping queries to algorithms. The difference between
how DeepCubeA and CDeepCubeA find solutions to the Rubik’s
cube is shown in Figure 5.

3.5 Collaborative Problem-Solving

3.5.1 Suggesting New Plans. The user can suggest a new plan to
CDeepCubeA through a visual interface where a user can click
on cubelets and edit their colors to create a sequence of subgoals.
CDeepCubeA can also suggest a new plan by showing the user a
visualization of the sequence of subgoals. To discover those new
plans CDeepCubeA will search for either 1) additional subgoals to
simplify transitions between subgoals; 2) alternative subgoals to
replace impractical or impossible subgoals.

To find additional subgoals, CDeepCubeA will monitor success-
ful transitions between subgoals during training and cluster the
configurations found in these transitions to see if certain types
of configurations appear frequently. If so, then CDeepCubeA will
create a subgoal from these frequently appearing configurations
using the knowledge graph to describe their similarities. To find al-
ternative subgoals, CDeepCubeA will remove a subgoal that is hard
to achieve. For example, if CDeepCubeA cannot get from subgoal 4
to 5, it can remove subgoal 5 and try to go directly from subgoal 4
to subgoal 6. If successful, it will use this same clustering method
to suggest an alternative subgoal to subgoal 5.

3.5.2 Suggesting New Algorithms. The user can suggest new algo-
rithms to CDeepCubeA by specifying a sequence of atomic actions
along with the queries that must be satisfied in order to use the
algorithm. Similarly, CDeepCubeA can specify a new algorithm in
the same manner. However, CDeepCubeA should also give the high-
level intuition behind what the algorithm is doing. For example, in
Figure 4, CDeepCubeA should be able to explain that this algorithm
swaps three edge pieces. To accomplish this, we will use knowledge
graphs to describe the relationship between two configurations.
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DeepCubeA

CDeepCubeA

Figure 5: DeepCubeA (left) maps configurations to atomic actions using an uninterpretable DNN. CDeepCubeA maps config-
urations to human-interpretable queries that can be answered by a knowledge graph. It then maps these queries to human-
interpretable algorithms. This creates a process that can be explained in solely human-interpretable terms.

To suggest new algorithms, CDeepCubeA will use knowledge
graphs to infer what changes in configurations will be desirable
and then search for algorithms that can fulfill this description. For
example, CDeepCubeA can infer that swapping three edges that
are out of place will get it closer to reaching a given subgoal. If it
does not have an algorithm that can already do this, then it can
search for one that does this while keeping all other relevant parts
of the cube fixed.

4 USER INTERFACE DESIGN FOR
AI-CHILDREN INTERACTIONS

To connect students to the CDeepCubeA algorithm, we plan to build
a web-based interface embedded with a chatbot to translate queries
and the decision process behind them to natural language. We will
follow an iterative user-centered participatory design approach to
design usable user interfaces (Uls) for end-users (i.e., children). First,
user requirements for such a Ul design will be acquired through
a think-aloud method and observations with a small sample of 5
students who are familiar with Rubik’s cube, 5 students who are not
familiar with Rubik’s cube, and the interface designer. The initial
exploration lies in understanding how the CDeepCubeA algorithm
behaves, what type of concepts that users will need to help solve
the Rubik’s cube, what user preferences are, and what types of
social interactions/cues students would like to have when they are
engaged in this game problem-solving process. Based on the user
input, we will propose two alternative UI designs for initial A/B
testing. With a few rounds of design iterations and usability testing,
we will revise our initial UI design plans to select the more optimal
one for prototype development. The objectives of this UI design
are multi-folded: (1) to provide relevant and real-time feedback for
students to cognitively engage and comfortably suggest and take
suggestions regarding plans and algorithms in an understandable
manner; (2) to provide visual feedback on the worked examples
and guide students for next-step problem-solving presented on the
main web-based interface; (3) to provide understandable natural
language descriptions of suggestions provided by CDeepCubeA;

and (4) to provide informative cues for students to understand
how CDeepCubeA is collaborating with them with explicit signals
on the UI, such as for when CDeepCubeA suggests new plans or
algorithms. The current system will support American English.
However, we recognize that children users can prefer other dialects
and languages. One can create multiple variants of the system for
other dialects and languages using localization and international-
ization practices of programming for rendering strings [34] and
using machine translators for content. We will defer this avenue to
future work after the first stable release in American English.

5 ASSESSMENT

A design-based research [18] will be conducted to assure the usabil-
ity of CDeepCubeA in fostering students’ algorithm thinking. To
improve the validity of the usability testing, twenty students will be
recruited [7]. The selection of the participants will follow the maxi-
mum variation [13] methods to include participants from different
academic backgrounds and grades and with different levels of math-
ematics and algorithmic knowledge. Formative and summative eval-
uations will be conducted to collect evidence about the effectiveness
and usefulness of the platform. Specifically, formative evaluation
activities will include a focus group interview with participants [16]
and video recorded sessions of user-platform interaction [22]. Semi-
structured interview protocols will be provided to structure the
focus groups and also attend to novel insights that emerge during
the focus groups [16]. The focus group will be audio/video recorded
for analysis. Video recorded sessions of user-platform interaction
will be collected through high-resolution camera (face-to-face) or
Zoom (online) contingent upon the COVID-19 safety protocol. The
video recorded sessions will be imported to Nvivo 12 for analysis.
Thematic analysis [10] will be conducted on those two sources of
formative evaluation data to identify problems in the prototype
and uncover opportunities to improve the design. Summative eval-
uation activities will follow one-group pretest-posttest design [15]
including a pretest and a posttest on students’ algorithm knowledge
and thinking [19]. Descriptive statistics and inferential statistics
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will be performed to gauge the effectiveness of the collaborative
Al platform. The evaluation results will be converged to inform
the revision to the prototype of CDeepCubeA. Another iteration of
the design-based research [18] will be done to confirm whether the
revision impacts student algorithm thinking.
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