



#### Deep Reinforcement Learning and Heuristic Search

Forest Agostinelli University of South Carolina

## Students

Ph.D. Students



Rojina Panta



**Vedant Khandelwal** 



Misagh Soltani



Cale Workman

#### **B.S. Students**



**Christian Geils** 



William Edwards

#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

## Pathfinding

- The objective of pathfinding is to find a sequence of actions that forms a path between a given start state and a given goal
  - A goal is a set of states
  - Preference for minimum cost paths
- A pathfinding problem can be represented as a weighted directed graph where nodes represent states, edges represent actions that transition between states, and edge weights represent transition costs
  - The cost of a path is the sum of transition costs





## Pathfinding Domains

- Pathfinding problems can be found throughout mathematics, computing, and the natural sciences
  - Puzzle solving, chemical synthesis, quantum circuit synthesis, theorem proving, program synthesis, robotics



## Pathfinding Domain Definition

- The entire state space graph cannot be given to a pathfinding problem solver because the number of states in a pathfinding problem can be very large.
  - Rubik's cube:  $\sim 10^{19}$
  - 48-puzzle:  $\sim 10^{62}$
  - Organic chemistry:  $\sim 10^{60}$  (exact number unknown)
- Assumptions on what is given
  - Action space
  - State transition function
  - Transition cost function
  - Goal specification language
  - Goal test function
- Objective: Create a domain independent algorithm
  - Input: Pathfinding domain definition, start state, goal specification
  - Output: Path to a goal state

#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

#### Learned Heuristic Functions

• Heuristic function maps a state to an estimate of the cost of a shortest path from that state, also known as the cost-to-go





#### Value Iteration

- Value iteration is a dynamic programming algorithm and is a foundational algorithm in reinforcement learning
- In the context of pathfinding, value iteration is an algorithm for computing the cost-to-go of finding a shortest path for each state in the state space
- Tabular value iteration loops over all states and applies the following update until convergence (h stops changing)
  - $h(s) = \min_{a} (c^a(s) + h(T(s, a)))$
  - Guaranteed to converge to  $h^*$  in the tabular setting
- *s*: state
- *a*: action
- T: state transition function
- c<sup>a</sup>: transition cost function

#### Value Iteration: Visualization

- Actions: up, down, left, right
- Transition costs
  - 1 if square is blank
  - 10 if square has a rock
  - 50 if square has a plant
- Goal: shovel
- Updates propagate outwards from the goal



#### Approximate Value Iteration

- As the state space grows, tabular value iteration becomes infeasible
- Approximate value iteration uses an approximation architecture to approximate the value iteration update
- When using a deep neural network as the approximation architecture, we refer to this as deep approximate value iteration (DAVI)
- The update is approximated using the following loss function

• 
$$L(\theta) = \left(\min_{a}(c^{a}(s) + h_{\theta^{-}}(T(s,a))) - h_{\theta}(s)\right)^{2}$$

- Target is set to zero if s is a terminal state
- *s*: state
- a: action
- *T*: state transition function
- c<sup>a</sup>: transition cost function
- $\theta$ : parameters
- $\theta^-$ : parameters for target network
  - Is periodically updated to  $\theta$  throughout training

## Application to Puzzle Solving



| 22 | 12 | 4 2 |       | 5  |
|----|----|-----|-------|----|
| 17 | 16 | 3   | 6     | 9  |
| 20 | 19 | 18  | 18 11 |    |
| 23 | 1  |     | 24    | 13 |
| 21 | 14 | 10  | 8     | 15 |





- 1. Rubik's Cube
- 2. 15-puzzle
- 3. 24-puzzle
- 4. 35-puzzle
- 5. 48-puzzle
- 6. Lights Out
- 7. Sokoban



Rubik's cube

| 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 |    |
|    |    |    |    |    |

24 puzzle



Lights Out (7×7)



Sokoban

Largest state space is 3.0 x 10<sup>62</sup> (48-puzzle)

## **Generating States**

• Prioritized sweeping: Generate training data by taking moves in reverse from the goal



## Training

- Deep neural network
  - Input layer -> Two fully connected layers -> Four residual blocks -> Linear output layer
  - Same type of architecture used for all puzzles
    - 24-puzzle has two more residual blocks
- Training
  - Batch size of 5,000
  - ~1,000,000 training iterations
  - Parameters for target network updated when loss goes below some target threshold
    - Future work updates based on greedy policy performance



## **Greedy Policy Performance**

- Behave greedily with respect to the heuristic function
- $\pi(s) = \underset{a}{\operatorname{argmin}}(c^{a}(s) + h_{\theta}(T(s, a)))$
- Does not solve all states



#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

#### Integration with A\* Search

- Learned heuristic function can be used as a heuristic in A\* search
- A\* Search
  - Maintains a search tree where nodes are states and edges are actions
  - Initialized with a start node representing the start state
  - Expands nodes according to the priority
    - f(n) = g(n) + h(n.s)
    - f(n): cost
    - g(n): path cost (cost to get from start node to n)
    - h(n.s): heuristic (estimated cost-to-go from n.s to a closest goal state)
  - Terminates when a node associated with a goal state is selected for expansion
- Weighted A\* Search
  - Decreasing the weight on the path cost may result in expanding fewer nodes while possibly increasing the length of paths found
  - $f(n) = \lambda * g(n) + h(n.s)$

## Batch Weighted A\* Search

- To take advantage of parallelism provided by GPUs, we can expand multiple nodes at once
- Guaranteed to be bounded suboptimal if
  - The heuristic function is admissible
  - If we terminate when
    - A node we expand from OPEN has a cost greater than or equal to the shortest path we have found so far
    - The number of children generated for that iteration is zero

# Algorithm 1 Batch Weighted A\* Search (BWAS) Input: start, DNN $v_{\theta}$ , batch size B, weight $\lambda$ OPEN $\leftarrow$ priority queue of nodes based on minimal fCLOSED $\leftarrow$ maps states to their shortest discovered path costs

```
CLOSED ← maps states to their shortest discovered path costs
UB, n_{UB} \leftarrow \infty, NIL
LB \leftarrow 0
n_{start} \leftarrow \text{NODE}(s = start, g = 0, p = \text{NIL}, f = v_{\theta}(start))
PUSH n_{start} to OPEN
while not IS_EMPTY(OPEN) do
   generated ← []
   while not IS_EMPTY(OPEN) and SIZE(generated) < B do
      n = (s, q, p, f) \leftarrow POP(OPEN)
      if IS_EMPTY (generated) then
         LB \leftarrow \max(f, LB)
      if IS\_GOAL(s) then
         if UB > q then
            UB, n_{UB} \leftarrow g, n
         continue loop
      for a in |\mathcal{A}| do
         s' \leftarrow A(s,a)
          g(s') \leftarrow g(s) + c^a(s)
         if s' not in CLOSED or g(s') < \text{CLOSED}[s'] then
            CLOSED[s'] \leftarrow g(s')
            APPEND(generated, (s', g(s'), n))
   if LB \geqslant \lambda \cdot UB then
      return PATH_TO_GOAL(n_{UB})
   generated\_states \leftarrow GET\_STATES(generated)
   heuristics \leftarrow v_{\theta} (generated_states)
   for 0 \le i \le SIZE(generated) do
      s, q, p \leftarrow \text{generated}[i]
      h \leftarrow \text{heuristics}[i]
      n_s \leftarrow \text{NODE}(s, q, p, f = \lambda \cdot q + h)
      PUSH n_s to OPEN
return PATH_TO_GOAL(n_{UB})
                                               // failure if n_{UB} is NIL
```

#### DeepCubeA: Results

- When applied to seven different puzzles, it was able to solve all test instances and found a shortest path in the majority of verifiable cases
- http://deepcube.igb.uci.edu/



| Puzzle       | Solution Length | Percent Optimal | Time (seconds) |
|--------------|-----------------|-----------------|----------------|
| Rubik's Cube | 21.50           | 60.3%           | 24.22          |
| 15-puzzle    | 52.03           | 99.4%           | 10.28          |
| 24-puzzle    | 89.49           | 96.98%          | 19.33          |
| 35-puzzle    | 124.64          | N/A             | 28.45          |
| 48-puzzle    | 253.35          | N/A             | 74.46          |
| Lights Out   | 24.26           | 100.0%          | 3.27           |
| Sokoban      | 32.88           | N/A             | 2.35           |

## Effect of Batch and Weight

- Increasing the batch size decreases the path cost, increases the nodes/second
- Decreasing the weight generally leads to longer solutions but faster run times



(a) Solution Length



(c) Solve Time



(b) Nodes Generated



(d) Nodes/Second

#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

## Generalizing Over Goals

- In the previous work, the goal is predetermined
- Building on hindsight experience replay, we can generalize over goal states or sets of goal states
  - Generate a start state
  - Take a random walk whose length is somewhere between 0 and T
    - Future work could use artificial curiosity
  - Convert terminal state to a set of descriptors
  - Subsample to obtain a goal
  - Convert this representation into one suitable for the DNN
    - One-hot representation
    - Graph
    - Etc.
  - RL Update



## Generalizing Over Goals: Training

• 
$$L(\theta) = \left(\min_{a}(c^{a}(s) + h_{\theta} - (T(s, a), \mathcal{G})) - h_{\theta}(s, \mathcal{G})\right)^{2}$$

- Given randomly generated start and goal pairs, additional data generated by following an epsilon-greedy policy
  - Can help identify depression regions
- Parameters for target network updated when the greedy policy improves
  - Tested every ~5,000 iterations

#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

#### Reaction Mechanisms

- Chemical reactions are composed of smaller steps called reaction mechanisms
- Knowledge of the reaction mechanisms that compose a chemical reaction allows practitioners to
  - Validate reaction feasibility
  - Improve reaction efficiency
  - Predict reaction outcome under different conditions
- Most chemical reaction prediction methods skip reaction mechanisms and predict products directly from reactants

10=20;20,21=21 Major Product

#### Reaction Mechanism Domain

- We create the state transition function using OrbChain, a model for reaction mechanism steps
  - Can take over a second to expand a state, limiting training data
- For simplicity, we assume all transition costs are 1
  - Future work will use negative log probabilities of reaction mechanism steps as transition costs
- We use extended-connectivity fingerprints to represent a molecule to the heuristic function
  - Future work will use a learned representation using graph neural networks
- We generate data using small molecules from the United States Patent and Trademark Office (USPTO) dataset of chemical reactions
  - Using random walks, we generate new molecules
- The heuristic function also takes a goal state as input

• 
$$L(\theta) = \left(\min_{a} \left(c^{a}(s) + h_{\theta} - \left(T(s, a), s_{g}\right)\right) - h_{\theta}(s, s_{g})\right)^{2}$$

#### Results

- Generate test data by performing a random walk between 0 and 6 steps
- The learned heuristic function outperforms uniform cost search and A\* search with the Tanimoto similarity metric

| Step/s  | Solver              | Path Cost | % Solved | Nodes   | Secs    | Nodes/Sec |
|---------|---------------------|-----------|----------|---------|---------|-----------|
| Steps=0 | DeepCubeA           | 0.00      | 100.00%  | 3.09E+2 | 3.87    | 79.97     |
|         | Uniform Cost Search | 0.00      | 100.00%  | 3.09E+2 | 4.61    | 67.13     |
|         | Tanimoto Similarity | 0.00      | 100.00%  | 3.09E+2 | 3.71    | 83.42     |
| Steps=1 | DeepCubeA           | 1.00      | 100.00%  | 7.49E+2 | 9.70    | 77.26     |
|         | Uniform Cost Search | 1.00      | 100.00%  | 4.26E+4 | 553.33  | 76.95     |
|         | Tanimoto Similarity | 1.00      | 100.00%  | 3.13E+4 | 429.29  | 72.97     |
| Steps=2 | DeepCubeA           | 2.07      | 100.00%  | 1.63E+4 | 267.16  | 60.87     |
|         | Uniform Cost Search | 1.67      | 20.00%   | 1.32E+5 | 1497.77 | 87.96     |
|         | Tanimoto Similarity | 1.75      | 26.67%   | 1.10E+5 | 1229.10 | 89.13     |
| Steps=3 | DeepCubeA           | 2.77      | 86.67%   | 4.14E+4 | 578.88  | 71.54     |
|         | Uniform Cost Search | -         | 0.00%    | -       | -       | -         |
|         | Tanimoto Similarity | -         | 0.00%    | -       | -       | -         |
| Steps=4 | DeepCubeA           | 3.33      | 60.00%   | 6.36E+4 | 821.64  | 77.36     |
|         | Uniform Cost Search | 3.00      | 6.67%    | 1.43E+5 | 1962.28 | 73.01     |
|         | Tanimoto Similarity | 3.00      | 6.67%    | 2.47E+4 | 272.15  | 90.64     |
| Steps=5 | DeepCubeA           | 3.40      | 33.33%   | 8.40E+4 | 968.49  | 86.69     |
|         | Uniform Cost Search | -         | 0.00%    | -       | -       | -         |
|         | Tanimoto Similarity | -         | 0.00%    | -       | -       | -         |
| Steps=6 | DeepCubeA           | 3.20      | 33.33%   | 6.14E+4 | 933.86  | 65.73     |
|         | Uniform Cost Search | -         | 0.00%    | -       | -       | -         |
|         | Tanimoto Similarity | -         | 0.00%    | -       | -       | -         |

#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

## Q-learning

- In the context of pathfinding, Q-learning is used to compute the cost of a path when in a given state, taking a given action, and taking a shortest path from the next state
  - $Q(s,a) = Q(s,a) = c^a(s) + h(T(s,a))$
  - $h(s) = \min_{a} Q(s, a)$
- Tabular Q-learning applies the following update to each state seen in an episode
  - $Q(s,a) = Q(s,a) + \alpha[c^a(s) + \min_{a'} Q(T(s,a),a') Q(s,a)]$
  - $\alpha$  is the learning rate
  - Guaranteed to converge to  $q^*$  in the tabular setting if certain conditions are met

## Approximate Q-learning

Q-learning loss

• 
$$L(\theta) = \left(c^{a}(s) + \min_{a'} q_{\theta^{-}}(T(s, a), a') - q_{\theta}(s, a)\right)^{2}$$

- *s*: state
- a: action
- T: state transition function
- c<sup>a</sup>: transition cost function
- $\theta$ : parameters
- $\theta^-$ : parameters for target network
  - Is periodically updated to  $\theta$  throughout training

### Approximate Q-learning

Q-learning loss

• 
$$L(\theta) = \left(c^{a}(s) + \min_{a'} q_{\theta^{-}}(T(s, a), a') - q_{\theta}(s, a)\right)^{2}$$

- For each training iteration, an action to update is sampled randomly
- Since it is possible most actions are not part of a shortest path, this could bias the estimator to overestimate the cost-to-go
- Therefore, we sample actions according to a Boltzmann distribution

• 
$$\pi(a|s) = \frac{e^{(-\frac{h_{\theta}(s,a)}{T})}}{\sum_{a'=1}^{|\mathcal{A}|} e^{(-\frac{h_{\theta}(s,a')}{T})}}$$

### Deep Q-Networks

- Deep Q-networks (DQNs) can compute the estimated cost of taking all actions with a single forward pass
- We create a search algorithm that exploits this to find paths more efficiently and with less memory



#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

## A\* Search and Large Action Spaces

- Computation and memory grows linearly with the size of the action space
- Node expansion requires applying every action
- For all child nodes, the heuristic function must be applied
  - Particularly expensive for DNNs with many parameters
- Child nodes are then pushed to OPEN

#### Batch Weighted Q\* Search

- Given a node, compute the transition cost and heuristic value for all child nodes with a single pass through a DQN
- Store tuples of nodes and actions in OPEN
  - Only part that grows linearly with action space
- Apply one action to one node each iteration
- Batch weighted version can also be used
- Guaranteed to be bounded suboptimal if
  - The heuristic function never overestimates
    - $c^{a}(s) + \min_{a'} q^{*}(T(s,a),a')$
  - If we terminate when
    - A node we expand from OPEN has a cost greater than or equal to the shortest path we have found so far
    - The number of children generated for that iteration is zero

```
Algorithm 2 Batch Weighted Q* Search (BWQS)
  Input: start, DNN q_{\phi}, batch size B, weight \lambda
  OPEN \leftarrow priority queue of nodes based on minimal f
  CLOSED ← maps states to their shortest discovered path costs
  U, n_U \leftarrow \infty, \text{NIL}
  LB \leftarrow 0
  n_{start} \leftarrow \text{NODE}(s = start, g = 0, p = \text{NIL}, a = 0)
  NO_{-}OP, f = 0
  PUSH n_{start} to OPEN
  while not IS_EMPTY(OPEN) do
     generated \leftarrow []
     while not IS_EMPTY(OPEN) and SIZE(generated) < B \, do
        n = (s, a, g, p, f) \leftarrow POP(OPEN)
        if IS_EMPTY (generated) then
            LB \leftarrow \max(f, LB)
        s' \leftarrow A(s,a)
        g(s') \leftarrow g(s) + c^a(s)
        if IS\_GOAL(s') then
            if U > g + c^a(s) then
               U, n_U \leftarrow g + c^a(s), n
            continue loop
        if s' not in CLOSED or g(s') < \text{CLOSED}[s'] then
            CLOSED[s'] \leftarrow g(s')
            for a' in |\mathcal{A}| do
               APPEND(generated, (s', q(s'), a', n))
     if LB \geqslant \lambda \cdot U then
        return PATH_TO_GOAL(n_U)
     generated_states_actions ← GET_STATES(generated)
     transition_costs, heuristics \leftarrow q_{\phi} (generated_states_actions)
     for 0 \le i \le SIZE(generated) do
        s, a, g, p \leftarrow \text{generated}[i]
        g' \leftarrow g + \text{transition\_costs}[i]
         h \leftarrow \text{heuristics}[i]
        n_{(s,a)} \leftarrow \text{NODE}(s, a, g, p, f = \lambda \cdot g' + h)
        PUSH n_{(s,a)} to OPEN
  return PATH_TO_GOAL(n_U)
                                                  // failure if n_U is NIL
```

### Experiments

- Domains: Rubik's cube, Lights Out, 35-pancake puzzle
- Case study: Adding combinations of actions to the Rubik's cube: 12 actions, 156 actions, 1884 actions
- Comparisons
  - A\* search
  - Deferred heuristic evaluation: assign heuristic of parent to children
- Did batch weighted search for all search methods
  - Weight in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
  - Batch size in {100, 1000, 10000}

#### Results

- Each point is a different search parameter setting
- Dashed line: Best path cost
- Solid line: Best of all parameter settings at that path cost
- Q\* search often outperforms A\* and deferred A\* by orders of magnitude
- Best average path cost is either the same or slightly longer



Figure 1: Relationship between the average path cost and the average time to find a solution.



Figure 2: Relationship between the average path cost and the average node generations.

#### Results

 With 157 times more actions, Q\* is only 3.7 times slower and uses 2.3 times more memory



Figure 3: Action space size ablation study on Rubik's cube: average path cost vs average time to find a solution.



Figure 4: Action space size ablation study on Rubik's cube: average path cost vs average node generations.

| Puzzle   | Actions | Method   | Time                         | Nodes Gen                     |
|----------|---------|----------|------------------------------|-------------------------------|
| RC(156)  | x13     | A*<br>Q* | 3.5(1.6)<br><b>0.9(0.7</b> ) | 8.7(2.2)<br><b>1.4(1.3)</b>   |
| RC(1884) | x157    | A*<br>Q* | 37.0(6.5)<br><b>3.7(4.0)</b> | 62.7(5.2)<br><b>2.3(3.6</b> ) |

#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

# Quantum Algorithm Compilation

- Given a quantum algorithm, a compiler must synthesize a quantum circuit for this algorithm from a given set of quantum gates
- If a given circuit is below an error threshold, then the problem is considered solved



## Quantum Algorithm Compilation

- Training data can be generated from a given gate set and a DQN trained to predict the distance of the current quantum circuit to the identity function
- Given a trained DQN, Q\* search can be used to search for a circuit for a given algorithm



# Q-learning and Q\* Search

Accuracy increases given more time for synthesis

universal basis set



Qiuhao, Chen, et al. "Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning." Quantum Science and Technology (2024).

universal basis set

## Other Applications to Quantum Algorithm Compilation

- Topological quantum compiling
- Clifford synthesis
- Can produce near-optimal solutions





#### Outline

- Background and overview
- Learned heuristic functions and heuristic search
  - Approximate value iteration
  - Batch weighted A\* search
  - Generalizing over goals
  - Applications to reaction mechanism pathway prediction
- Learned action-heuristic functions and heuristic search
  - Q-learning
  - Batch weighted Q\* search
  - Applications to quantum computing
- Learned discrete world models and heuristic search

## Learning Discrete World Models

- Addressing previous shortcomings
  - Small errors in prediction can be corrected by simply rounding
  - Can reidentify states by comparing two vectors
- Encoder
  - Maps the state to a discrete representation
  - To allow training with gradient descent, use a straight through estimator
- Decoder
  - Maps the discrete representation to the state
  - Ensures the discrete representation is meaningful
- Environment model
  - Maps discrete states and actions to next discrete state



# Experiments

- Rubik's cube
  - Two 32x32 RGB images showing both sides of the cube
- Sokoban
  - One 40x40 RGB image
- Generate offline dataset of 300,000 episodes of 30 random steps, each







#### Discrete vs Continuous Model Performance

• The continuous model eventually accumulates error for the Rubik's cube





(a) Rubik's Cube

(b) Sokoban

### Discrete vs Continuous Model Performance



## Heuristic Learning and Search with Discrete Model

- DeepCubeAI DeepCubeA + "Imagination"
  - Learn discrete world model with offline data
  - Use offline data and the learned world model to generate training data
  - Heuristic learning: Q-learning with hindsight experience replay
    - Generalize over goal states
  - Heuristic search: Q\* search
    - Helps when model uses computationally expensive DNN

| Domain     | Solver            | Len   | Opt    | Nodes      | Secs  | Nodes/Sec  | Solved |
|------------|-------------------|-------|--------|------------|-------|------------|--------|
|            | PDBs <sup>+</sup> | 20.67 | 100.0% | 2.05E+06   | 2.20  | 1.79E + 06 | 100%   |
| RC         | DeepCubeA         | 21.50 | 60.3%  | 6.62E + 06 | 24.22 | 2.90E + 05 | 100%   |
|            | Greedy (ours)     | _     | 0%     | -          | _     | -          | 0%     |
|            | DeepCubeAI (ours) | 22.85 | 19.5%  | 2.00E+05   | 6.21  | 3.22E+04   | 100%   |
| $RC_{rev}$ | Greedy (ours)     | _     | 0%     | -          | _     | -          | 0%     |
|            | DeepCubeAI (ours) | 22.81 | 21.92% | 2.00E+05   | 6.30  | 3.18+04    | 99.9%  |
| Sokoban    | LevinTS           | 39.80 | -      | 6.60E + 03 | _     | -          | 100%   |
|            | LevinTS (*)       | 39.50 | -      | 5.03E+03   | _     | -          | 100%   |
|            | LAMA              | 51.60 | -      | 3.15E + 03 | _     | -          | 100%   |
|            | DeepCubeA         | 32.88 | -      | 1.05E+03   | 2.35  | 5.60E + 01 | 100%   |
|            | Greedy (ours)     | 29.55 | -      | -          | 1.68  | -          | 41.9%  |
|            | DeepCubeAI (ours) | 33.12 | -      | 3.30E+03   | 2.62  | 1.38E+03   | 100%   |

### Questions?

#### Papers

- Agostinelli, Forest, et al. "Solving the Rubik's cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.
- Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. "Specifying Goals to Deep Neural Networks with Answer Set Programming." ICAPS 2024
- Panta, Rojina, et al. "Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search." ICAPS PRL Workshop 2024
- Agostinelli, Forest, et al. "Q\* Search: Heuristic Search with Deep Q-Networks." ICAPS PRL Workshop 2024
- Agostinelli, Forest and Soltani, Misagh "Learning Discrete World Models for Heuristic Search." Reinforcement Learning Conference 2024
- Agostinelli, Forest. "A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure." ICAPS 2024 HAXP Workshop

#### Code

- Many of these algorithms are publicly available on GitHub
- https://github.com/forestagostinelli/deepxube

Email: foresta@cse.sc.edu

Website: https://cse.sc.edu/~foresta/

