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Pathfinding
• The objective of pathfinding is to find a sequence of actions that forms a path 

between a given start state and a given goal
• A goal is a set of states
• Preference for minimum cost paths

• A pathfinding problem can be represented as a weighted directed graph where nodes 
represent states, edges represent actions that transition between states, and edge 
weights represent transition costs
• The cost of a path is the sum of transition costs
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Pathfinding Domains
• Pathfinding problems can be found throughout mathematics, computing, and 

the natural sciences
• Puzzle solving, chemical synthesis, quantum circuit synthesis, theorem proving, program 

synthesis, robotics

Background: Retrosynthesis Problem
Task: predict synthesis routes for 
target molecules.

Challenge: combinatorial search space. 

Sub-problems:
� One-step retrosynthesis
� Retrosynthetic planning

Target Molecule

Intermediate 
Compounds

Building Blocks

3



Pathfinding Domain Definition
• The entire state space graph cannot be given to a pathfinding problem solver 

because the number of states in a pathfinding problem can be very large.
• Rubik’s cube: ~10!" 
• 48-puzzle: ~10#$ 
• Organic chemistry: ~10#% (exact number unknown)

• Assumptions on what is given
• Action space
• State transition function
• Transition cost function
• Goal specification language
• Goal test function

• Objective: Create a domain independent algorithm
• Input: Pathfinding domain definition, start state, goal specification
• Output: Path to a goal state
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Learned Heuristic Functions

• Heuristic function maps a state to an estimate of the cost of a shortest path 
from that state, also known as the cost-to-go
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Value Iteration
• Value iteration is a dynamic programming algorithm and is a foundational 

algorithm in reinforcement learning
• In the context of pathfinding, value iteration is an algorithm for computing the 

cost-to-go of finding a shortest path for each state in the state space
• Tabular value iteration loops over all states and applies the following update 

until convergence (ℎ stops changing)
• ℎ 𝑠 = min

&
𝑐& 𝑠 + ℎ(𝑇(𝑠, 𝑎) )

• Guaranteed to converge to ℎ∗	in the tabular setting
• 𝑠: state
• 𝑎: action
• 𝑇: state transition function
• 𝑐!: transition cost function



Value Iteration: Visualization

• Actions: up, down, left, right
• Transition costs
• 1 if square is blank
• 10 if square has a rock
• 50 if square has a plant

• Goal: shovel
• Updates propagate outwards from the 

goal



Approximate Value Iteration
• As the state space grows, tabular value iteration becomes infeasible
• Approximate value iteration uses an approximation architecture to approximate the value iteration 

update
• When using a deep neural network as the approximation architecture, we refer to this as deep 

approximate value iteration (DAVI)
• The	update	is	approximated	using	the	following	loss	function

• 𝐿 𝜃 = min
!

𝑐! 𝑠 + ℎ"!(𝑇(𝑠, 𝑎) ) − ℎ" 𝑠
#

• Target is set to zero if 𝑠 is a terminal state
• 𝑠: state
• 𝑎: action
• 𝑇: state transition function
• 𝑐!: transition cost function
• 𝜃: parameters
• 𝜃": parameters for target network

• Is periodically updated to 𝜃 throughout training



Application to Puzzle Solving

Largest state space is 3.0 x 1062 (48-puzzle) 

1. Rubik’s Cube
2. 15-puzzle
3. 24-puzzle
4. 35-puzzle
5. 48-puzzle
6. Lights Out
7. Sokoban



Generating States
• Prioritized sweeping: Generate training data by taking moves in reverse from 

the goal

Goal

. . .. . .



Training

• Deep neural network
• Input layer -> Two fully connected layers -> Four residual blocks -> 

Linear output layer
• Same type of architecture used for all puzzles

• 24-puzzle has two more residual blocks

• Training
• Batch size of 5,000
• ~1,000,000 training iterations
• Parameters for target network updated when loss goes below some 

target threshold
• Future work updates based on greedy policy performance



Greedy Policy Performance

• Behave greedily with respect to the 
heuristic function
• 𝜋 𝑠 = argmin

!
𝑐! 𝑠 + ℎ"(𝑇(𝑠, 𝑎) )

• Does not solve all states
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Integration with A* Search

• Learned heuristic function can be used as a heuristic in A* search
• A* Search
• Maintains a search tree where nodes are states and edges are actions
• Initialized with a start node representing the start state
• Expands nodes according to the priority

• 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛. 𝑠)
• 𝑓 𝑛 : cost
• 𝑔 𝑛 : path cost (cost to get from start node to 𝑛)
• ℎ(𝑛. 𝑠): heuristic (estimated cost-to-go from 𝑛. 𝑠 to a closest goal state)

• Terminates when a node associated with a goal state is selected for expansion

• Weighted A* Search
• Decreasing the weight on the path cost may result in expanding fewer nodes while 

possibly increasing the length of paths found
• 𝑓 𝑛 = 𝜆 ∗ 𝑔 𝑛 + ℎ(𝑛. 𝑠)



Batch Weighted A* Search

• To take advantage of parallelism provided by 
GPUs, we can expand multiple nodes at once
• Guaranteed to be bounded suboptimal if
• The heuristic function is admissible 
• If we terminate when 

• A node we expand from OPEN has a cost greater than or 
equal to the shortest path we have found so far

• The number of children generated for that iteration is zero

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop. 2021.
Li, Tianhua, et al. "Optimal search with neural networks: Challenges and approaches." Proceedings of the International Symposium on Combinatorial Search. Vol. 15. No. 1. 2022.



DeepCubeA: Results

• When applied to seven different puzzles, it was able to solve all test instances 
and found a shortest path in the majority of verifiable cases
• http://deepcube.igb.uci.edu/

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

Puzzle Solution Length Percent Optimal Time (seconds)
Rubik’s Cube 21.50 60.3% 24.22

15-puzzle 52.03 99.4% 10.28
24-puzzle 89.49 96.98% 19.33
35-puzzle 124.64 N/A 28.45
48-puzzle 253.35 N/A 74.46
Lights Out 24.26 100.0% 3.27
Sokoban 32.88 N/A 2.35

http://deepcube.igb.uci.edu/


Effect of Batch and Weight

• Increasing the batch size 
decreases the path cost, 
increases the nodes/second
• Decreasing the weight 

generally leads to longer 
solutions but faster run 
times
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Generalizing Over Goals
• In the previous work, the goal is 

predetermined
• Building on hindsight experience replay, we 

can generalize over goal states or sets of 
goal states
• Generate a start state
• Take a random walk whose length is 

somewhere between 0 and T
• Future work could use artificial curiosity

• Convert terminal state to a set of descriptors
• Subsample to obtain a goal
• Convert this representation into one suitable 

for the DNN
• One-hot representation
• Graph
• Etc.

• RL Update

DNN

𝒔𝟎 𝒔𝟏𝒂𝟎 𝒂𝟏 … 𝒔𝒕

State to state descriptors

To DNN representation

𝓖𝒉𝜽(𝒔𝟎, 𝓖)

Reinforcement 
Learning Update

𝑮(𝒔𝒕)

Sample

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024



Generalizing Over Goals: Training

• 𝐿 𝜃 = min
!

𝑐! 𝑠 + ℎ"!(𝑇(𝑠, 𝑎), 𝒢 ) − ℎ" 𝑠, 𝒢
-

• Given randomly generated start and goal pairs, additional data generated by 
following an epsilon-greedy policy
• Can help identify depression regions

• Parameters for target network updated when the greedy policy improves
• Tested every ~5,000 iterations
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Reaction Mechanisms

• Chemical reactions are composed of 
smaller steps called reaction 
mechanisms
• Knowledge of the reaction mechanisms 

that compose a chemical reaction allows 
practitioners to
• Validate reaction feasibility
• Improve reaction efficiency
• Predict reaction outcome under different 

conditions

• Most chemical reaction prediction 
methods skip reaction mechanisms and 
predict products directly from reactants



Reaction Mechanism Domain
• We create the state transition function using OrbChain, a model for reaction 

mechanism steps
• Can take over a second to expand a state, limiting training data

• For simplicity, we assume all transition costs are 1
• Future work will use negative log probabilities of reaction mechanism steps as transition costs

• We use extended-connectivity fingerprints to represent a molecule to the heuristic 
function
• Future work will use a learned representation using graph neural networks

• We generate data using small molecules from the United States Patent and Trademark 
Office (USPTO) dataset of chemical reactions
• Using random walks, we generate new molecules

• The heuristic function also takes a goal state as input

• 𝐿 𝜃 = min
!

𝑐! 𝑠 + ℎ#! 𝑇 𝑠, 𝑎 , 𝑠$ − ℎ# 𝑠, 𝑠$
%



Results

• Generate test data by 
performing a random walk 
between 0 and 6 steps
• The learned heuristic 

function outperforms 
uniform cost search and 
A* search with the 
Tanimoto similarity metric

Panta, Rojina, et al. “Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search.” ICAPS PRL Workshop 2024
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Q-learning

• In the context of pathfinding, Q-learning is used to compute the cost of a path 
when in a given state, taking a given action, and taking a shortest path from the 
next state
• 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 = 𝑐& 𝑠 + ℎ(𝑇(𝑠, 𝑎))
• ℎ 𝑠 = min

&
𝑄(𝑠, 𝑎)	

• Tabular Q-learning applies the following update to each state seen in an episode
• 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼[𝑐& 𝑠 + min

&,
𝑄 𝑇 𝑠, 𝑎 , 𝑎( − 𝑄(𝑠, 𝑎)]

• 𝛼 is the learning rate
• Guaranteed to converge to 𝑞∗ in the tabular setting if certain conditions are met



Approximate Q-learning

• Q-learning loss

• 𝐿 𝜃 = 𝑐& 𝑠 + min
&(

𝑞)-(𝑇(𝑠, 𝑎), 𝑎() − 𝑞) 𝑠, 𝑎
$

• 𝑠: state
• 𝑎: action
• 𝑇: state transition function
• 𝑐!: transition cost function
• 𝜃: parameters
• 𝜃.: parameters for target network
• Is periodically updated to 𝜃 throughout training



Approximate Q-learning

• Q-learning loss

• 𝐿 𝜃 = 𝑐& 𝑠 + min
&(

𝑞)-(𝑇(𝑠, 𝑎), 𝑎() − 𝑞) 𝑠, 𝑎
$

• For each training iteration, an action to update is sampled randomly
• Since it is possible most actions are not part of a shortest path, this could bias 

the estimator to overestimate the cost-to-go
• Therefore, we sample actions according to a Boltzmann distribution

• 𝜋 𝑎 𝑠 = *(-
./ 0,1

2 )

∑
1,34
|𝒜| *(-

./ 0,1,
2 )



Deep Q-Networks

• Deep Q-networks (DQNs) can compute the 
estimated cost of taking all actions with a single 
forward pass
• We create a search algorithm that exploits this to 

find paths more efficiently and with less memory 𝑞" 𝑠, 𝑎# …𝑞" 𝑠, 𝑎|𝒜|

𝜽

𝑠
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A* Search and Large Action Spaces

• Computation and memory grows linearly with the size of the action space
• Node expansion requires applying every action
• For all child nodes, the heuristic function must be applied
• Particularly expensive for DNNs with many parameters

• Child nodes are then pushed to OPEN



Batch Weighted Q* Search

• Given a node, compute the transition cost and 
heuristic value for all child nodes with a single pass 
through a DQN
• Store tuples of nodes and actions in OPEN

• Only part that grows linearly with action space

• Apply one action to one node each iteration
• Batch weighted version can also be used
• Guaranteed to be bounded suboptimal if

• The heuristic function never overestimates 
• 𝑐! 𝑠 + min

!7
𝑞∗(𝑇(𝑠, 𝑎), 𝑎7)	

• If we terminate when 
• A node we expand from OPEN has a cost greater than or 

equal to the shortest path we have found so far
• The number of children generated for that iteration is zero



Experiments

• Domains: Rubik’s cube, Lights Out, 35-pancake puzzle
• Case study: Adding combinations of actions to the Rubik’s cube: 12 actions, 156 

actions, 1884 actions
• Comparisons
• A* search
• Deferred heuristic evaluation: assign heuristic of parent to children

• Did batch weighted search for all search methods
• Weight in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
• Batch size in {100, 1000, 10000}



Results
• Each point is a different 

search parameter setting
• Dashed line: Best path cost
• Solid line: Best of all 

parameter settings at that 
path cost
• Q* search often 

outperforms A* and 
deferred A* by orders of 
magnitude
• Best average path cost is 

either the same or slightly 
longer

Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024



Results

Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024

• With 157 times more 
actions, Q* is only 3.7 
times slower and uses 2.3 
times more memory
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Quantum Algorithm Compilation

• Given a quantum algorithm, a compiler 
must synthesize a quantum circuit for 
this algorithm from a given set of 
quantum gates
• If a given circuit is below an error 

threshold, then the problem is 
considered solved



Quantum Algorithm Compilation

• Training data can be generated from a given gate set and a DQN trained to 
predict the distance of the current quantum circuit to the identity function
• Given a trained DQN, Q* search can be used to search for a circuit for a given 

algorithm



Q-learning and Q* Search
• Accuracy increases given more time for synthesis

Qiuhao, Chen, et al. "Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning." Quantum Science and Technology (2024).

Quantum compilation on two-qubit 
universal basis set

Quantum compilation on inverse-free 
universal basis set



Other Applications to Quantum Algorithm Compilation

• Topological quantum compiling
• Clifford synthesis
• Can produce near-optimal solutions

Zhang, Yuan-Hang, et al. "Topological Quantum Compiling with Reinforcement Learning." Physical Review Letters 125.17 (2020): 170501.
Bao, Ning, and Gavin S. Hartnett. "Twisty-puzzle-inspired approach to Clifford synthesis." Physical Review A 109.3 (2024): 032409.
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Learning Discrete World Models
• Addressing previous shortcomings

• Small errors in prediction can be corrected 
by simply rounding

• Can reidentify states by comparing two 
vectors

• Encoder
• Maps the state to a discrete 

representation
• To allow training with gradient descent, 

use a straight through estimator
• Decoder

• Maps the discrete representation to the 
state

• Ensures the discrete representation is 
meaningful

• Environment model 
• Maps discrete states and actions to next 

discrete state
𝑠 𝑠′

Encoder Encoder

Decoder

�̂� $𝑠′

Decoder

�̃� 3𝑠′m(�̃�,a)

𝑎

𝑚(𝑠, 𝑎)



Experiments

• Rubik’s cube
• Two 32x32 RGB images showing both sides of the cube

• Sokoban
• One 40x40 RGB image

• Generate offline dataset of 300,000 episodes of 30 random steps, each



Discrete vs Continuous Model Performance

• The continuous model eventually accumulates error for the Rubik’s cube



Discrete vs Continuous Model Performance

Ground 
Truth

Continuous

Discrete

1000 
steps

4000 
steps

9000 
steps



Heuristic Learning and Search with Discrete Model
• DeepCubeAI – DeepCubeA + “Imagination”

• Learn discrete world model with offline data
• Use offline data and the learned world model to generate training data
• Heuristic learning: Q-learning with hindsight experience replay

• Generalize over goal states
• Heuristic search: Q* search

• Helps when model uses computationally expensive DNN

Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement Learning Conference 2024



Questions?
• Papers

• Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature 
Machine Intelligence 1.8 (2019): 356-363.

• Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with 
Answer Set Programming.” ICAPS 2024

• Panta, Rojina, et al. “Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and 
Heuristic Search.” ICAPS PRL Workshop 2024

• Agostinelli, Forest, et al. “Q* Search: Heuristic Search with Deep Q-Networks.” ICAPS PRL Workshop 2024
• Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” 

Reinforcement Learning Conference 2024
• Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.” 

ICAPS 2024 HAXP Workshop
• Code

• Many of these algorithms are publicly available on GitHub
• https://github.com/forestagostinelli/deepxube

Email: foresta@cse.sc.edu
Website: https://cse.sc.edu/~foresta/ 

mailto:foresta@cse.sc.edu
https://cse.sc.edu/~foresta/

