Uof

SC

UNIVERSITY OF SOUTH CAROLINA

Opportunities and Challenges for Domain-Independent Planning with Deep

Reinforcement Learning

Forest Agostinelli
University of South Carolina

Students

Ph.D. Students

Rojina Panta Vedant Khandelwal Misagh Soltani
B.S. Students

Christian Geils William Edwards

* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions

Pathfinding

* The objective of pathfinding is to find a sequence of actions that forms a path
between a given start state and a given goal

* A goalis a set of states
* Preference for minimum cost paths

* A pathfinding problem can be represented as a weighted directed graph where nodes
represent states, edges represent actions that transition between states, and edge
weights represent transition costs

* The cost of a path is the sum of transition costs

® start state
@ Goalstate

-—p Shortest path

Pathfinding Domains

e Pathfinding problems can be found throughout mathematics, computing, and
the natural sciences

* Puzzle solving, chemical synthesis, quantum circuit synthesis, theorem proving, program
synthesis, robotics

ARITH_TAC AN B
S> VzeN:((z+0=2) = (r+1+0=2+1)) f————> PROVEN RV

> I A A A> VreN:z+0=2a
> N NV > MATCH_MP_TAC NAT_INDUCTION :@M PROVEN

........ l Building Blocks
> %
> UV

a7
Br’ H:
C Figure 1: Formally proving Vz e N: 2 +0 = 2. Py ” ©\ p —
out> i
[}

/R
¢V

‘ M:‘ T /\©
for (i < 3) == K®
L.‘ '.: rectangle (3*i,-2%i+4, C;

O — 3%i+2,6)
&A B £ . .
() or (j <i+ 1)
circle(3*i+1,-2%j+5)

CTY oo Intermediate
" Compounds

reflect(y=8)
QD DO for(i<3)
O ——| if@(>0)
o-a rectangle(3*i-1,2,3%i,3)
O O circle(3%i+1,3%i+1) Target Molecule

Pathfinding Domain Definition

* The entire state space graph cannot be given to a pathfinding problem solver
because the number of states in a pathfinding problem can be very large.
* Rubik’s cube: ~101°
* 48-puzzle: ~10%?
* Organic chemistry: ~10°° (exact number unknown)

* Assumptions on what is given
* Action space
 State transition function
* Transition cost function
* Goal specification language
* Goal test function

* Objective: Create a domain independent algorithm
* Input: Pathfinding domain definition, start state, goal specification
e Output: Path to a goal state

* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions

Learned Heuristic Functions

* Heuristic function maps a state to an estimate of the cost of a shortest path
from that state, also known as the cost-to-go

h=2.5

h=20.0

® start state
@ Goalstate

-=p Shortest path

h=2.1

h=20.0

h=0.0

Value lteration

* Value iteration is a dynamic programming algorithm and is a foundational
algorithm in reinforcement learning

* In the context of pathfinding, value iteration is an algorithm for computing the
cost-to-go of finding a shortest path for each state in the state space

* Tabular value iteration loops over all states and applies the following update
until convergence (h stops changing)

* h(s) = min(c*(s) + h(T(s,a)))
. Guaranteceld to converge to h™ in the tabular setting
e S:state
* a: action
 T: state transition function
 ¢%: transition cost function

Value Iteration: Visualization

e Actions: up, down, left, right

* Transition costs
e 1 if square is blank
e 10 if square has a rock
e 50 if square has a plant

* Goal: shovel

e Updates propagate outwards from the
goal

Approximate Value lteration

* As the state space grows, tabular value iteration becomes infeasible

. Apgroximate value iteration uses an approximation architecture to approximate the value iteration
update

 When using a deep neural network as the approximation architecture, we refer to this as deep
approximate value iteration (DAVI)

* The update is approximated using the following loss function

+ 106 = (min(c?(s) + ho- (7(5,0))) — ho(s))
* Target is set to zero if s is a terminal state

* S:state

* a:action

e T: state transition function

e ¢%: transition cost function

e O: parameters

07 : parameters for target network
* |s periodically updated to 8 throughout training

Rubik’s cube

Application to Puzzle Solving

2 | 12 | 4 2 5
17 | 16 | 3 6 9
20 | 19 | 18 | 11 7
23 | 1 24 | 13
21 | 14 | 10 | 8 | 15
1 2 3 4 5
6 7 8 9 | 10
11 |12 | 13 | 14 | 15
16 | 17 | 18 | 19 | 20
21 | 22 | 23 | 24
24 puzzle

Lights Out (7x7)

Sokoban

== 1. Rubik’s Cube
': 2.15-puzzle
3 24-puzzle

4 35-puzzle
&= 5.48-puzzle
S 6. Lights Out

f.7.Sokoban

Largest state space is 3.0 x 10%2 (48-puzzle)

Generating States

* Prioritized sweeping: Generate training data by taking moves in reverse from
the goal

Training

* Deep neural network

* Input layer -> Two fully connected layers -> Four residual blocks ->
Linear output layer

e Same type of architecture used for all puzzles
e 24-puzzle has two more residual blocks

* Training
* Batch size of 5,000

* ~1,000,000 training iterations

e Parameters for target network updated when loss goes below some
target threshold

* Future work updates based on greedy policy performance

fcl

fc 1000

fc 1000

fc 1000

fc 1000

fc 1000

fc 1000

fc 1000

fc 1000

fc 1000

fc 5000

ip 324

Greedy Policy Performance

* Behave greedily with respect to the N
heuristic function —1 —10 —

* (s) = argmin(c?(s) + hy(T(s,a))) O — e —

[0}
o

* Does not solve all states

(o2}
o

N
o
1

N
o
1

Percent solved with greedy best-first search

o
1

0 0.2 0.4 0.6 0.8 1.0 1.2
lteration (x10°)

Integration with A* Search

e Learned heuristic function can be used as a heuristic in A* search
e A* Search

* Maintains a search tree where nodes are states and edges are actions
* |nitialized with a start node representing the start state

e Expands nodes according to the priority
* f(n) =g(n) + h(n.s)
* f(n): cost
» g(n): path cost (cost to get from start node to n)
* h(n.s): heuristic (estimated cost-to-go from n. s to a closest goal state)

* Terminates when a node associated with a goal state is selected for expansion

* Weighted A* Search
* Decreasing the weight on the path cost may result in expanding fewer nodes while possibly
increasing the length of paths found

* f(W) =2Axg() + h(n.s)

e Batch weighted A* Search
e Can take advantage of parallelism provided by GPUs by expanding multiple nodes at a time

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop. 2021.
Li, Tianhua, et al. "Optimal search with neural networks: Challenges and approaches." Proceedings of the International Symposium on Combinatorial Search. Vol. 15. No. 1. 2022.

DeepCubeA: Results

* When applied to seven different puzzles, it was able to solve all test instances
and found a shortest path in the majority of verifiable cases

e http://deepcube.igb.uci.edu/

m Solution Length | Percent Optimal | Time (seconds)

Solve the Rubik's Cube Using Deep

Leamiod Rubik’s Cube 21.50 60.3% 24.22
15-puzzle 52.03 99.4% 10.28
24-puzzle 89.49 96.98% 19.33

35-puzzle 124.64 N/A 28.45

48-puzzle 253.35 N/A 74.46

Lights Out 24.26 100.0% 3.27

Sokoban 32.88 N/A 2.35

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

http://deepcube.igb.uci.edu/

Limitations

* The goal is pre-determined
» Specifying a new goal requires re-training the DNN

* The domain is pre-determined
* A change in the state transition function requires re-training the DNN

* Heuristic functions are not as amenable to analysis as domain-independent
heuristics derived from PDDL

* No admissibility guarantees

Muppasani, Bharath, Vishal Pallagani, Biplav Srivastava, and Forest Agostinelli. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS HSDIP Workshop 2024

* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions

Generalizing Over Goals: Overview

* In the previous work, the goal is
predetermined

* We build on hindsight experience
replay to generalize over sets of
goal states

* |n our work

 State descriptors: assignments of
values to variables

* Specification language: Answer set
programming (ASP)

* ASP will be used to describe goals at
a high-level using formal logic and
an answer set solver will be used to
find assignments that represent a
subset of the goal

_ Reinforcement

" Learning Update

t
hg(S(), g)

To DNN representation

— Q> ... —>

Training steps

Specification

steps
Both

State to state descriptors

Specification to goal

descriptors
A

Specification

Language

State Representation

* |[n a given pathfinding domain, there are V variables
* Avariable, x;, can be assigned a single value from its (variable) domain, D (x;)

* An assignment is an assignment is a set of assignments of values to variables {x; = v;}
* All V; € D(Ul')
* If x; is not in the assignment then it is unassigned

e An assignment is a complete assignment iff all variables have been assigned values
e A state is a complete assignment
* For example, for the Rubik’s cube, variables are stickers and values are their colors

Goal Representation

e An assignment is a partial assignment iff at least one variable has not been assigned a
value

* A goal is a complete or partial assignment

* An assignment, A, represents a set of states, 5,4
* A complete assignment always represents a set of states of size 1
* Astate,s,isind, iffAC s
* In other words, all assignments in A are presentin s
* An empty assignment represents the set of all possible states
* For example, a visualization of an assignment for the “white cross” pattern for the
Rubik’s cube and a state that is in the set of states represented by this assignment

Training

Generate a start state

Take a random walk whose length is somewhere

_ Reinforcement
between O and T " Learning Update
* Future work could use artificial curiosity 4
* Convert the end state to its representation as an 1o (S0, 6)
assignment - 1 |
ubsample
* Subsample to obtain a goal t
* Convert this representation into one suitable for
the DNN To DNN representation)
* One-hot representation ! tate to a;s'g"ment
’ Graph — 1, —> — (] — . —>
* Etc.
* RL Update

2
+ 10) = (min(c?(s) + ho-(T(5,0)),9) = ho(s,))

Experiments

* ASP will be used to find assignments; therefore, we compare our method
(DeepCubeA,) to other methods capable of finding paths to goals that can be
represented as complete or partial assignments

* 500-1,000 test start and goal pairs
e 200 second time limit to solve test states
* DeepCubeA

* Predefined goal

 Fast Downward Planner

e Can automatically construct heuristics given a formal definition of the domain (including the
transition function) in the planning domain definition language (PDDL)

* Goal count heuristic, fast forward heuristic, causal graph heuristic
 A* search

* PDBs

. Eivides into subproblems and enumerates all possible combinations of the subproblem to create
euristic

* Predefined goal
e |IDA* search

Puzzle Solver Path Cost | % Solved | % Opt Nodes Secs Nodes/Sec
PDBs* 20.67 100.00% | 100.0% | 2.05E+06 | 2.20 | L.79E-+06
P e rfO r m a n C e DeepCubeA 21.50 100.00% | 603% | 6.62E+06 | 2422 | 2.90E+05
RC (Canon) | DeepCubeA, | 22.03 100.00% | 35.00% | 2.44E+06 | 41.99 | 5.67E+04
FastDown (GC) | - 0.00% | 0.0% i - -
FastDown (FF) | - 0.00% | 0.0% - - -
: FastDown (CG) | - 0.00% | 0.0% - - -
e Canon: Canonical goal states DeepCubeA, | 1522 | 99.40% | - [O1E+06 | 3224 | 5.19E+04
SR ani e E—
P . 1 FastDown (FF . .20% - STE+ . 93E+
Rand: Random assignment FastDown (CG) | 7.85 33.80% | - [.I2E+06 | 11.62 | 5.81E+04
PDBs 52.02 100.00% | 100.0% | 3.22E+04 | 0.002 | L45E+07
selected as goal DeepCubeA | 52.03 100.00% | 99.4% | 3.85E+06 | 10.28 | 3.93E+05
° Ca N be as Ssma | | as th eem pty 15-P (Canon) DeepCubeA 52.02 100.00% | 100.0% 1.81E+05 | 2.61 6.94E+04
. FastDown (GC) | 36.75 0.80% | 0.80% | 9.05E+07 | T02.1T | S.66E+05
assignment FastDown (FF) | 52.75 80.80% | 24.80% | 2.92E+06 | 42.11 | 6.93E+04
: FastDown (CG) | 41.95 1.40% 120% | 2.00E+07 | 80.58 | 2.47E+05
* Methods that require a pre- DeepCubeh, | 33.98 100.00% | - LIIE+05 | .60 | 6.16E+04
definied goal cannot be 15.P (Rand) | F2stDown (GC) | 14.92 38.00% | - 1.61E+07 | 1877 | 5.46E+05
lied to thi : FastDown (FF) | 32.66 89.20% | - [24E+06 | 17.39 | 5.65E+04
appiiea to tnis scenario FastDown (CG) | 20.45 5T20% | - 3.90E406 | 21.41 | 1.20E+05
without considerable PDBs 89.41 100.00% | 100.00% | 8.19E+10 | 4239.54 | 1.91E+07
verhead DeepCubeA | 89.49 100.00% | 96.98% | 6.44E+06 | 19.33 | 3.34E+05
O 24P (Canon) | DeepCubeA, | 90.47 100.00% | 55.24% | 3.38E+05 | 5.22 | 6.4SE+04
, FastDown (GC) | - 0.00% | 0.00% |- - -
 PDBs+: Also includes group FastDown (FF) | 81.00 T01% [0.40% | 2.68E+06 | 89.84 | 2.01E+04
FastDown (CG) | - 0.00% | 0.00% | - - -
theo ry knowled ge DeepCubeA, | 66.28 99.60% | - 3.10E+05 | 491 6.16E+04
| SR a) el Em— e
° FastDown (FF . .00% - O9E+ S7 A1E+
DeepCu beAg consistent Iy . FastDown (CG) | 13.75 2.60% | - [42E+06 | 1442 | 6.85E+04
outpe rforms fastdownard in DeepCubeA | 32.88 100.00% | - 5.01E+03 | 2.71 1.84E+03
DeepCubeA, | 32.02 100.00% | - I.80E+04 | 0.95 1.79E+04
terms of percentage of states Sokoban [FastDown (GC) | 31.94 99.80% | - 3.17E+06 | 593 | 5.85E+05
FastDown (FF) | 33.15 100.00% | - 2.00E+04 | 0.32 | 7.49E-+04
solved FastDown (CG) | 33.12 100.00% | - 443E+04 | 0.51 7256404

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024

ASP Specifications

e We build on this using answer set programming to describe goals with first-order logic
and use answer set solvers to solve for assignments that make these goals true

 For the Rubik’s cube

» Define basic background knowledge

* Colors, faces, cubelets

* Constraints: Cannot have two stickers of the same color on the same cubelet, cannot have two stickers from
the same cubelet on opposite faces

* Given basic background knowledge, specifications often only require a few lines of code
« face_same(F) :— face col(F, FCol), #count{Cbl : onface(Cbl, FCol, F)}=9.
« canon_solved :- #count{F : face_same(F) }=6.

* Our specifications contain combinations of common patterns
* Note: the training procedure is unaware of what the specification will be at test time

(a) Cross (b) X (c) Cup (d) Spot

Reaching Goals

* If our specification behaves monotonically, then all
candidate states are goal states

* Therefore, we can randomly sample assignments from II until we
find one that we can reach

* Some of these assighments may represent the empty set

* The answer set solver (we use clingo) used is agnostic to the
cost of a shortest path

Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24 .41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 T7% 1.26 0.38 4.09

(a) Example 1

®

W

(b) Example 2

(a) Example 1

CupSpot

(b) Example 2

(a) Example 1

Cup4d

i

(b) Example 2

Checkers

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024

All boxes are immoveable

A box of boxes

Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24 .41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Boxes at the four corners of the agent

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024

Handling Non-Monotonicity

* |f negation as failure is used in a program, II, then Il can exhibit non-monotonic
behavior

* Alogic program is non-monotonic if some atoms that were previously derived can be retracted by
adding new knowledge

* Therefore, we can have a state that is a candidate state but not a goal state

* For example, a white cross with no yellow stickers on the white face
* The assignment for this specification is just a white cross

* However, there can be a state that is a specialization of this assignment, but has yellow on the
white face

* To address this, we use a conflict-driven approach that specializes assignments based
on why a state is not a goal state

Handling Non-Monotonicity

II: Answer set program
Spp: set of states represented by program

Sp: set of states represented by assignment

Goal SpecOp | Cost | %Solve | #Itr | #Assign | %reach | %not goal % S’Zii Secs
RC:VdiffCtrW - 11.54 | 70 3.34 33.43 7.68 0 12.77 | 7.5 564.94
RC:—dsameCtrW | Rand 1.67 99 7.2 63.02 87.84 69.06 0.06 1.04 | 95.46
Conflict | 1.26 100 5.43 36.31 99.34 52.36 0.06 0.07 | 5.98
24p:rOSumEven - 24.55 | 100 9.24 924 100 0 0.2 0.23 | 42.52
24p:—r0SumOdd | Rand 3.16 100 4.27 33.6 100 38.71 0.2 0.03 | 6.64
Conflict | 2.51 100 4.06 31.6 100 22.13 0.21 0.04 | 6.58
24p:VrSumEven - 83.71 | 100 9.19 91.9 50.41 0 0.88 1.77 | 250.18
24p:—~3drSumOdd | Rand 17.07 | 100 10.23 | 92.05 99.98 85.51 0.1 0.08 | 21.72
Conflict | 12.87 | 100 8.66 77.1 100 79.772 0.11 0.08 | 17.08
All stickers on the white face are All rows sum to an even number
different than the center sticker
12]22]6 9|5 17[10]20] 5 |22 12[22]6 915
', 71111912117 1[6 [14]15]16 71119]2117
ﬂ 16[13] 4 [20[21 12|13]23] |8 16[13] 4 [20[21
Start Mono: path cost 12 Non-mono: path cost 1 1111038 13191417 11115110 8
14]18]24]23 18[19] 2 [21[24 14|18]24] 3|23

Start

Mono: path cost 93

Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.” ICAPS 2024 HAXP Workshop

Non-mono: path cost 4

* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions

2131|123
4 6| 4 6
718|5||7|8

* If using only canonical actions, the cost-to-go is 16
* If including diagonal actions, the cost-to-go is 2

* To differentiate between these two scenarios, information about the domain
must also be given to the heuristic function

* For each example, randomly sample a domain
* For that domain, randomly sample a state
* RL Update

e L(O) = (main(ca(s) + hg-(T(s,a),D)) — hg(S,D))Z

e D: Domain

Preliminary Experiments

* For the 15-puzzle, generate different domains by sampling a subset of {U, D, L,
R, UL, UR, DL, DR} actions for each tile position

* 8 actions for each of the 16 positions, max 28*1¢ ~ 3.4x103® domains
* Ensure all sampled domains are reversible, for simplicity

* Represent the domain as a one-hot vector of which actions are allowed in each
position

 Compare heuristic performance with true cost-to-go for random states from
domains

* True cost-to-go computed with merge-and-shrink heuristic

 Compare when training a heuristic function across domains without domain
information

 Compare heuristic function with DeepCubeA trained for a fixed domain

Results

e (R?2=0.93, CCC=0.97)) ¢ ’ a0 e (R?=0.99, CCC = 1.00)) o»

e (R?2=0.96, CCC = 0.98)) o /
7 O ———- x=y : ———- X=y -“

N
«

v
o

N
S

24

ullt‘-" '

IS
o

e Adding action information
significantly improves performance

* Performs slightly worse when
compared to DeepCubeA trained
on that specific domain S End T amund i © R e T

 However, unlike DeepCubeA, it does

w

S
-
@

N

S
-
o

=
Proposed Trained Heuristic

Proposed Trained Heuristic
Proposed Trained Heuristic

-
o

o
o

&
o
®

0 10 20 30 40 50 0 5 10 15 20 [5 10 15 20 25 30 35 40

Ground Truth Ground Truth Ground Truth

—
o
=
5}

: (a) C: P vs GT (b) D: P vs GT (c) C+D: P vs GT
not need to be re-trained for that
domain
e (R2=0.99, CCC =1.00)) 'f? e (R2=1.00, CCC =1.00)) /’ 40 e (R2=1.00,CCC =1.00)) ,w’
50 1 50 1 s01 77T X=Y 7 wf XY ".’ I | St /

e (Rz=0.46, CCC = 0.74)) s (Rz=0.98, CCC = 0.99)) o’ g g e g
|| %=y N s s 2 40 g e 2%
45 40 1 = 40 03J 8 » ". a 25
_8 % ‘ z 30 z & z
:‘é 8 E E 10 "’ E ’ .’.'.'
< 30 L) o© o ” © 15
v ° = 20 = 4 =
S b g g P 5] 4
1] — O Q . P O 10 "0
5 e 0 [a] & [a) 2
D 201 = 201 ” s o
T o 4 &

L J

° g 0 o @ of &
£ g ;
e g

(d) C: DCA vs GT (e) D: DCA vs GT (f) C+D: DCA vs GT

0 10 20 30 40 50 0 10 20 30 40 50

Ground Truth Ground Truth

(a) Without Action Info (b) With Action Info

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024

Repeat training for 8-puzzle and
24-puzzle

Proposed approach compares
favorably to the fast downward
planner with the fast forward

heuristic

s slightly worse than
DeepCubeA, which must be re-
trained for each domain

Future work could build on work
by Felipe Trevizan and Sylvie
Thiebaux on using graph neural
networks to encode PDDL

domains

Domain Solver Len | Opt Nodes Secs Nodes/Sec| Solved
8 Puzzle (C) DeepCubeA| 18.38| 100% | 3.59E+04 | 0.69 5.2E+04 | 100%
8 Puzzle (C) Proposed 18.38| 100% | 7.17TE+04 | 1.76 4.07TE+04 | 100%
8 Puzzle (C) FD(FF) | 188 |81% | 5.56E4+02| 0.11 | 47E+03 | 100%
8 Puzzle (D) DeepCubeA| 1.44 | 100% | 1.95E+01 | 0.01 | 2.92B4+03 | 100%
8 Puzzle (D) Proposed 1.44 | 100% | 4.05E4+01 | 0.01 4.92E+03 | 100%
8 Puzzle (D) FD(FF) | 1.44 | 100% | 2.45E+00| 0.2 1.23E401 | 100%
8 Puzzle (C+D) DeepCubeA| 11.84| 100% | 6.2E+404 1.18 5.26E4+04 | 100%
8 Puzzle (C+D) Proposed 11.84| 100% | 6.23E+04 | 1.56 3.97TE+04 100%
8 Puzzle (C+D) FD(FF) 12.9 54.2% | 8.68E+01| 0.13 6.59E4-02 100%
15 Puzzle (C) DeepCubeA| 52.03| 99.4% | 1.82E405| 4.31 | 4.21E+04 | 100%
15 Puzzle (C) Proposed 52.18 | 93.76% | 3.62E+05 | 10.39 3.49E+04 100%
15 Puzzle (C) FD(FF) | 52.75 | 24.80 | 2.92E406 | 42.11 | 6.93E+04 | 80.80%
15 Puzzle (D) DeepCubeA| 10.8 | 100% | 8.2E+02 0.03 | 2.43E4+04 | 100%
15 Puzzle (D) Proposed 10.81 | 99.8% | 1.64E+03 | 0.05 3.01E404 | 100%
15 Puzzle (D) FD(FF) 10.86 | 96.8% | 4.18E401| 0.21 1.96E+4-02 100%
15 Puzzle (C+D) | DeepCubeA| 25.66| 100% | 1.78E+05 | 3.74 4.78E4+04 | 100%
15 Puzzle (C+D) | Proposed 25.67 | 99.8% | 1.78E405 | 4.72 3.78E+04 | 100%
15 Puzzle (C+D) | FD(FF) 29.32 | 13.4% | 8.4E+03 | 1.17 3.56E4-03 100%
24 Puzzle (C) DeepCubeA| 89.48| 96.98% 3.34E+05| 8.05 4.15E404 | 100%
24 Puzzle (C) Proposed 92.80 | 22.03% | 7.6E+05 24.06 | 3.16E+04 | 100%
24 Puzzle (C) FD(FF) | 81.00 | 0.40 | 2.68E+06 | 89.84 | 2.91E+04 | 1.01%
24 Puzzle (D) DeepCubeA| 14.9 | 100% | 2.55E+04 | 0.47 5.46E4+04 | 100%
24 Puzzle (D) Proposed 14.92 | 99.8% | 5.1E4+04 1.35 3.78E+4-04 100%
24 Puzzle (D) FD(FF) 15.16 | 89.2% | 2.64E+02| 0.12 | 2.05E+03 | 100%
24 Puzzle (C+D) | DeepCubeA| 31.33| 100% | 2.27TE4+05 | 4.83 4.69E+04 | 100%
24 Puzzle (C+D) | Proposed 31.34 | 99.6% | 2.27TE+05 | 6.78 3.34E+04 100%
24 Puzzle (C+D) | FD(FF) | 36.81 | 13.8% | 1.7TE4+04 | 535 | L77TE+03 | 99.4%

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024
Chen, Dillon Z., Sylvie Thiébaux, and Felipe Trevizan. "Learning Domain-Independent Heuristics for Grounded and Lifted Planning." AAAI. Vol. 38. No. 18. 2024.

* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions

Approach

 When performing A* search with an admissible

heuristic function, every node popped from
OPEN is a lower bound on the cost-to-go

Algorithm 1: Approximately Admissible Conver-
sion

* We perform A* search with an admissible
heuristic on a representative set of states for a
given domain to get their lower bounds

e Start with a trivially admissible heuristic function of
always zero

* We can then use these lower bounds to correct
an |r]adm|55|ble he_urls’glc function based on its
maximum overestimation

* We can then repeat this process with the
adjusted inadmissible heuristic function to get
an improved estimation of the lower boun

Input:
h: Inadmissible heuristic function
X': Representative set
n: target increment for h®
Output:
h': Converted approximately admissible heuristic
function
h*(x) < 0,Vz € X
is_solved(x) < False,Vxr € X
while 3x € X' | is_solved(x) == False do
h' < adjust(h*,h, X)
forz € X do
| h%(z),is-solved(x) < A*(x,h',h*(z) + n)

h' < adjust(h®, h, X)
Return A’

* The larger the representative set of states, the
more accurate the adjustment process will be

* For the 15-puzzle

* Before adjustment: 71.37% overestimation, max

overestimation: 8.28

* After adjustment: 0.0019% overestimation, max

overestimation: 0.62

* The larger the representative set, the better the

adjustment

w
<)

N N
v

Maximum Overestimation
= =
o wv

o
]

©
<)

o

1 — 1K

— 10K

1 — 100K

—

Percent Inadmissible

0 10

20 30 40 50
Correction Step

(a) Max overestimation

N
wv

N
<)

[y
1%

=
o

o
U

o
<)

(b) Percent inadmissible

0 20

40
Cost of an Optimal Path

admissible conversion

— 1K

1 —— 10K

—— 100K

0 10

20 30
Correction Step

40

50

H = N N W W b
o v o

o
L

Average Heuristic Value

0

20 40 60
Cost of an Optimal Path

(a) Before approximately (b) After approximately ad-

missible conversion

(O]
L L L

(6]
L

o w
L L

17— 1K
{1 — 10K

—— 100K

0 10

20 30 40 50
Correction Step

(c) Average heuristic value

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop 2021.

* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
* Generalizing to domains with unknown transition functions

Learning Discrete World Models

* Addressing previous shortcomings

* Small errors in prediction can be corrected
by simply rounding

* Can reidentify states by comparing two
vectors Decoder

 Encoder

* Maps the state to a discrete
representation

* To allow training with gradient descent,
use a straight through estimator

e Decoder

* Maps the discrete representation to the
state

* Ensures the discrete representation is
meaningful
 Environment model S >m(s, a) > o/

* Maps discrete states and actions to next
discrete state

Experiments

* Rubik’s cube
* Two 32x32 RGB images showing both sides of the cube

* Sokoban
* One 40x40 RGB image

* Generate offline dataset of 300,000 episodes of 30 random steps, each

10 A L6

20, 3 204

30 1 | . . 30 A

Discrete vs Continuous Model Performance

* The continuous model eventually accumulates error for the Rubik’s cube

le—9

0.0010 25 4
0.0008

2.0 1
0.0006

1.5 ——— Continuous

—— Discret

0.0004

1.0 A
0.0002
0.0000

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(a) Rubik’s Cube (b) Sokoban

Discrete vs Continuous Model Performance

Continuous | 20-
30 B 30 -| T T T
0 0 10 20 30
nnet nnet nnet nnet
0 01 0 0 04 04
. 10 - 10 4 10 A 10 A 10 A 10 4
Discrete
201 201 20 A 20 A 20 - 20 A
30 -l T T T 30 -I T T T 30 -l T T T 30 -r T T T 30 A 30 A

Heuristic Learning and Search with Discrete Model

DeepCubeAl — DeepCubeA + “Imagination”
Learn discrete world model with offline data
Use offline data and the learned world model to generate training data
Heuristic learning: Q-learning with hindsight experience replay
* Generalize over goal states

Heuristic search: Q* search
* Helps when model uses computationally expensive DNN

Domain | Solver Len | Opt Nodes Secs | Nodes/Sec | Solved
PDBs™ 20.67 | 100.0% | 2.05E+06 | 2.20 | 1.79E+406 100%
RC DeepCubeA 21.50 | 60.3% | 6.62E+06 | 24.22 | 2.90E+05 100%

Greedy (ours) - 0% - - - 0%
DeepCubeAl (ours) | 22.85 | 19.5% | 2.00E405 | 6.21 | 3.22E+404 100%

RCrew Greedy (ours) - 0% - - - 0%
DeepCubeAl (ours) | 22.81 | 21.92% | 2.00E405 | 6.30 | 3.184-04 99.9%
LevinTS 39.80 | - 6.60E+03 | - - 100%

Sokoban LevinTS (*) 39.90 | - 5.03E403 | - - 100%
LAMA 51.60 | - 3.15E403 | - - 100%
DeepCubeA 32.88 | - 1.056E4+03 | 2.35 | 5.60E+01 100%
Greedy (ours) 29.55 | - - 1.68 | - 41.9%
DeepCubeAl (ours) | 33.12 | - 3.30E+03 | 2.62 | 1.38E+03 100%

Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement Learning Conference 2024

Questions?

* Papers

 Code

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature
Machine Intelligence 1.8 (2019): 356-363.

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwa
Answer Set Programming.” ICAPS 2024

Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.”
Reinforcement Learning Conference 2024

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic
Functions to Solve Pathfinding Problems.” arxiv, 2024

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep
reinforcement learning and A* search.” ICAPS PRL Workshop 2021.

Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.”
ICAPS 2024 HAXP Workshop
[=];

I o

Specifying Goals to Deep Neural Networks with

Many of these algorithms are publicly available on GitHub
https://github.com/forestagostinelli/deepxube

Email: foresta@cse.sc.edu
Website: https://cse.sc.edu/~foresta/

[=]

mailto:foresta@cse.sc.edu
https://cse.sc.edu/~foresta/

