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* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions



Pathfinding

* The objective of pathfinding is to find a sequence of actions that forms a path
between a given start state and a given goal

* A goalis a set of states
* Preference for minimum cost paths

* A pathfinding problem can be represented as a weighted directed graph where nodes
represent states, edges represent actions that transition between states, and edge
weights represent transition costs

* The cost of a path is the sum of transition costs

® start state
@ Goalstate

-—p Shortest path




Pathfinding Domains

e Pathfinding problems can be found throughout mathematics, computing, and
the natural sciences

* Puzzle solving, chemical synthesis, quantum circuit synthesis, theorem proving, program
synthesis, robotics
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Pathfinding Domain Definition

* The entire state space graph cannot be given to a pathfinding problem solver
because the number of states in a pathfinding problem can be very large.
* Rubik’s cube: ~101°
* 48-puzzle: ~10%?
* Organic chemistry: ~10°° (exact number unknown)

* Assumptions on what is given
* Action space
 State transition function
* Transition cost function
* Goal specification language
* Goal test function

* Objective: Create a domain independent algorithm
* Input: Pathfinding domain definition, start state, goal specification
e Output: Path to a goal state
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Learned Heuristic Functions

* Heuristic function maps a state to an estimate of the cost of a shortest path
from that state, also known as the cost-to-go
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Value lteration

* Value iteration is a dynamic programming algorithm and is a foundational
algorithm in reinforcement learning

* In the context of pathfinding, value iteration is an algorithm for computing the
cost-to-go of finding a shortest path for each state in the state space

* Tabular value iteration loops over all states and applies the following update
until convergence (h stops changing)

* h(s) = min(c*(s) + h(T(s,a)))
. Guaranteceld to converge to h™ in the tabular setting
e S:state
* a: action
 T: state transition function
 ¢%: transition cost function



Value Iteration: Visualization

e Actions: up, down, left, right

* Transition costs
e 1 if square is blank
e 10 if square has a rock
e 50 if square has a plant

* Goal: shovel

e Updates propagate outwards from the
goal




Approximate Value lteration

* As the state space grows, tabular value iteration becomes infeasible

. Apgroximate value iteration uses an approximation architecture to approximate the value iteration
update

 When using a deep neural network as the approximation architecture, we refer to this as deep
approximate value iteration (DAVI)

* The update is approximated using the following loss function

+ 106 = (min(c?(s) + ho- (7(5,0))) — ho(s))
* Target is set to zero if s is a terminal state

* S:state

* a:action

e T: state transition function

e ¢%: transition cost function

e O: parameters

07 : parameters for target network
* |s periodically updated to 8 throughout training



Rubik’s cube

Application to Puzzle Solving

2 | 12 | 4 2 5
17 | 16 | 3 6 9
20 | 19 | 18 | 11 7
23 | 1 24 | 13
21 | 14 | 10 | 8 | 15
1 2 3 4 5
6 7 8 9 | 10
11 |12 | 13 | 14 | 15
16 | 17 | 18 | 19 | 20
21 | 22 | 23 | 24
24 puzzle

Lights Out (7x7)

Sokoban

== 1. Rubik’s Cube
': 2.15-puzzle
3 24-puzzle

4 35-puzzle
&= 5.48-puzzle
S 6. Lights Out

f.7.Sokoban

Largest state space is 3.0 x 10%2 (48-puzzle)



Generating States

* Prioritized sweeping: Generate training data by taking moves in reverse from
the goal




Training

* Deep neural network

* Input layer -> Two fully connected layers -> Four residual blocks ->
Linear output layer

e Same type of architecture used for all puzzles
e 24-puzzle has two more residual blocks

* Training
* Batch size of 5,000

* ~1,000,000 training iterations

e Parameters for target network updated when loss goes below some
target threshold

* Future work updates based on greedy policy performance
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Greedy Policy Performance

* Behave greedily with respect to the N
heuristic function —1 —10 —

* (s) = argmin(c?(s) + hy(T(s,a))) O — e —
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Integration with A* Search

e Learned heuristic function can be used as a heuristic in A* search
e A* Search

* Maintains a search tree where nodes are states and edges are actions
* |nitialized with a start node representing the start state

e Expands nodes according to the priority
* f(n) =g(n) + h(n.s)
* f(n): cost
» g(n): path cost (cost to get from start node to n)
* h(n.s): heuristic (estimated cost-to-go from n. s to a closest goal state)

* Terminates when a node associated with a goal state is selected for expansion

* Weighted A* Search
* Decreasing the weight on the path cost may result in expanding fewer nodes while possibly
increasing the length of paths found

* f(W) =2Axg() + h(n.s)

e Batch weighted A* Search
e Can take advantage of parallelism provided by GPUs by expanding multiple nodes at a time

Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop. 2021.
Li, Tianhua, et al. "Optimal search with neural networks: Challenges and approaches." Proceedings of the International Symposium on Combinatorial Search. Vol. 15. No. 1. 2022.



DeepCubeA: Results

* When applied to seven different puzzles, it was able to solve all test instances
and found a shortest path in the majority of verifiable cases

e http://deepcube.igb.uci.edu/

m Solution Length | Percent Optimal | Time (seconds)

Solve the Rubik's Cube Using Deep

Leamiod Rubik’s Cube 21.50 60.3% 24.22
15-puzzle 52.03 99.4% 10.28
24-puzzle 89.49 96.98% 19.33

35-puzzle 124.64 N/A 28.45

48-puzzle 253.35 N/A 74.46

Lights Out 24.26 100.0% 3.27

Sokoban 32.88 N/A 2.35

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.


http://deepcube.igb.uci.edu/

Limitations

* The goal is pre-determined
» Specifying a new goal requires re-training the DNN

* The domain is pre-determined
* A change in the state transition function requires re-training the DNN

* Heuristic functions are not as amenable to analysis as domain-independent
heuristics derived from PDDL

* No admissibility guarantees

Muppasani, Bharath, Vishal Pallagani, Biplav Srivastava, and Forest Agostinelli. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS HSDIP Workshop 2024
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Generalizing Over Goals: Overview

* In the previous work, the goal is
predetermined

* We build on hindsight experience
replay to generalize over sets of
goal states

* |n our work

 State descriptors: assignments of
values to variables

* Specification language: Answer set
programming (ASP)

* ASP will be used to describe goals at
a high-level using formal logic and
an answer set solver will be used to
find assignments that represent a
subset of the goal

_ Reinforcement
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State Representation

* |[n a given pathfinding domain, there are V variables
* Avariable, x;, can be assigned a single value from its (variable) domain, D (x;)

* An assignment is an assignment is a set of assignments of values to variables {x; = v;}
* All V; € D(Ul')
* If x; is not in the assignment then it is unassigned

e An assignment is a complete assignment iff all variables have been assigned values
e A state is a complete assignment
* For example, for the Rubik’s cube, variables are stickers and values are their colors




Goal Representation

e An assignment is a partial assignment iff at least one variable has not been assigned a
value

* A goal is a complete or partial assignment

* An assignment, A, represents a set of states, 5,4
* A complete assignment always represents a set of states of size 1
* Astate,s,isind, iffAC s
* In other words, all assignments in A are presentin s
* An empty assignment represents the set of all possible states
* For example, a visualization of an assignment for the “white cross” pattern for the
Rubik’s cube and a state that is in the set of states represented by this assignment




Training

Generate a start state

Take a random walk whose length is somewhere

_ Reinforcement
between O and T " Learning Update
* Future work could use artificial curiosity 4
* Convert the end state to its representation as an 1o (S0, 6)
assignment - 1 |
ubsample
* Subsample to obtain a goal t
* Convert this representation into one suitable for
the DNN To DNN representation )
* One-hot representation ! tate to a;s'g"ment
’ Graph — 1, —> — (] — . —>
* Etc.
* RL Update

2
+ 10) = (min(c?(s) + ho-(T(5,0)),9) = ho(s,))



Experiments

* ASP will be used to find assignments; therefore, we compare our method
(DeepCubeA,) to other methods capable of finding paths to goals that can be
represented as complete or partial assignments

* 500-1,000 test start and goal pairs
e 200 second time limit to solve test states
* DeepCubeA

* Predefined goal

 Fast Downward Planner

e Can automatically construct heuristics given a formal definition of the domain (including the
transition function) in the planning domain definition language (PDDL)

* Goal count heuristic, fast forward heuristic, causal graph heuristic
 A* search

* PDBs

. Eivides into subproblems and enumerates all possible combinations of the subproblem to create
euristic

* Predefined goal
e |IDA* search



Puzzle Solver Path Cost | % Solved | % Opt Nodes Secs Nodes/Sec
PDBs* 20.67 100.00% | 100.0% | 2.05E+06 | 2.20 | L.79E-+06
P e rfO r m a n C e DeepCubeA 21.50 100.00% | 603% | 6.62E+06 | 2422 | 2.90E+05
RC (Canon) | DeepCubeA, | 22.03 100.00% | 35.00% | 2.44E+06 | 41.99 | 5.67E+04
FastDown (GC) | - 0.00% | 0.0% i - -
FastDown (FF) | - 0.00% | 0.0% - - -
: FastDown (CG) | - 0.00% | 0.0% - - -
e Canon: Canonical goal states DeepCubeA, | 1522 | 99.40% | - [O1E+06 | 3224 | 5.19E+04
SR ani e E—
P . 1 FastDown (FF . .20% - STE+ . 93E+
Rand: Random assignment FastDown (CG) | 7.85 33.80% | - [.I2E+06 | 11.62 | 5.81E+04
PDBs 52.02 100.00% | 100.0% | 3.22E+04 | 0.002 | L45E+07
selected as goal DeepCubeA | 52.03 100.00% | 99.4% | 3.85E+06 | 10.28 | 3.93E+05
° Ca N be as Ssma | | as th eem pty 15-P (Canon) DeepCubeA 52.02 100.00% | 100.0% 1.81E+05 | 2.61 6.94E+04
. FastDown (GC) | 36.75 0.80% | 0.80% | 9.05E+07 | T02.1T | S.66E+05
assignment FastDown (FF) | 52.75 80.80% | 24.80% | 2.92E+06 | 42.11 | 6.93E+04
: FastDown (CG) | 41.95 1.40% 120% | 2.00E+07 | 80.58 | 2.47E+05
* Methods that require a pre- DeepCubeh, | 33.98 100.00% | - LIIE+05 | .60 | 6.16E+04
definied goal cannot be 15.P (Rand) | F2stDown (GC) | 14.92 38.00% | - 1.61E+07 | 1877 | 5.46E+05
lied to thi : FastDown (FF) | 32.66 89.20% | - [24E+06 | 17.39 | 5.65E+04
appiiea to tnis scenario FastDown (CG) | 20.45 5T20% | - 3.90E406 | 21.41 | 1.20E+05
without considerable PDBs 89.41 100.00% | 100.00% | 8.19E+10 | 4239.54 | 1.91E+07
verhead DeepCubeA | 89.49 100.00% | 96.98% | 6.44E+06 | 19.33 | 3.34E+05
O 24P (Canon) | DeepCubeA, | 90.47 100.00% | 55.24% | 3.38E+05 | 5.22 | 6.4SE+04
, FastDown (GC) | - 0.00% | 0.00% |- - -
 PDBs+: Also includes group FastDown (FF) | 81.00 T01% [ 0.40% | 2.68E+06 | 89.84 | 2.01E+04
FastDown (CG) | - 0.00% | 0.00% | - - -
theo ry knowled ge DeepCubeA, | 66.28 99.60% | - 3.10E+05 | 491 6.16E+04
| SR a) el Em— e
° FastDown (FF . .00% - O9E+ S7 A1E+
DeepCu beAg consistent Iy . FastDown (CG) | 13.75 2.60% | - [42E+06 | 1442 | 6.85E+04
outpe rforms fastdownard in DeepCubeA | 32.88 100.00% | - 5.01E+03 | 2.71 1.84E+03
DeepCubeA, | 32.02 100.00% | - I.80E+04 | 0.95 1.79E+04
terms of percentage of states Sokoban [ FastDown (GC) | 31.94 99.80% | - 3.17E+06 | 593 | 5.85E+05
FastDown (FF) | 33.15 100.00% | - 2.00E+04 | 0.32 | 7.49E-+04
solved FastDown (CG) | 33.12 100.00% | - 443E+04 | 0.51 7256404

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024



ASP Specifications

e We build on this using answer set programming to describe goals with first-order logic
and use answer set solvers to solve for assignments that make these goals true

 For the Rubik’s cube

» Define basic background knowledge

* Colors, faces, cubelets

* Constraints: Cannot have two stickers of the same color on the same cubelet, cannot have two stickers from
the same cubelet on opposite faces

* Given basic background knowledge, specifications often only require a few lines of code
« face_same(F) :— face col(F, FCol), #count{Cbl : onface(Cbl, FCol, F)}=9.
« canon_solved :- #count{F : face_same(F) }=6.

* Our specifications contain combinations of common patterns
* Note: the training procedure is unaware of what the specification will be at test time

(a) Cross (b) X (c) Cup (d) Spot




Reaching Goals

* If our specification behaves monotonically, then all
candidate states are goal states

* Therefore, we can randomly sample assignments from II until we
find one that we can reach

* Some of these assighments may represent the empty set

* The answer set solver (we use clingo) used is agnostic to the
cost of a shortest path



Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24 .41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 T7% 1.26 0.38 4.09

(a) Example 1

®

W

(b) Example 2

(a) Example 1

CupSpot

(b) Example 2

(a) Example 1

Cup4d

i

(b) Example 2

Checkers

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024




All boxes are immoveable

A box of boxes

Goal Path Cost | % Solved | # Models | Model Time | Search Time
Rubik’s Cube (Canon) 24 .41 100% 1 0.37 4.39

Rubik’s Cube (Cross6) 13.11 100% 1 0.41 2.14

Rubik’s Cube (Cup4) 24.33 100% 42.5 34.65 374.11
Rubik’s Cube (CupSpot) | 17.99 100% 27.68 38.66 241.08
Rubik’s Cube (Checkers) | 23.85 100% 1 0.49 4.2

Sokoban (Immov) 35.15 100% 6.37 6.83 16.16
Sokoban (BoxBox) 33.77 88% 1.89 0.58 6.08
Sokoban (AgentInBox) 34.42 77% 1.26 0.38 4.09

Boxes at the four corners of the agent

Agostinelli, Forest, Rojina Panta, and Vedant Khandelwal. “Specifying Goals to Deep Neural Networks with Answer Set Programming.” ICAPS 2024



Handling Non-Monotonicity

* |f negation as failure is used in a program, II, then Il can exhibit non-monotonic
behavior

* Alogic program is non-monotonic if some atoms that were previously derived can be retracted by
adding new knowledge

* Therefore, we can have a state that is a candidate state but not a goal state

* For example, a white cross with no yellow stickers on the white face
* The assignment for this specification is just a white cross

* However, there can be a state that is a specialization of this assignment, but has yellow on the
white face

* To address this, we use a conflict-driven approach that specializes assignments based
on why a state is not a goal state




Handling Non-Monotonicity

II: Answer set program
Spp: set of states represented by program

Sp: set of states represented by assignment



Goal SpecOp | Cost | %Solve | #Itr | #Assign | %reach | %not goal % S’Zii Secs
RC:VdiffCtrW - 11.54 | 70 3.34 33.43 7.68 0 12.77 | 7.5 564.94
RC:—dsameCtrW | Rand 1.67 99 7.2 63.02 87.84 69.06 0.06 1.04 | 95.46
Conflict | 1.26 100 5.43 36.31 99.34 52.36 0.06 0.07 | 5.98
24p:rOSumEven - 24.55 | 100 9.24 924 100 0 0.2 0.23 | 42.52
24p:—r0SumOdd | Rand 3.16 100 4.27 33.6 100 38.71 0.2 0.03 | 6.64
Conflict | 2.51 100 4.06 31.6 100 22.13 0.21 0.04 | 6.58
24p:VrSumEven - 83.71 | 100 9.19 91.9 50.41 0 0.88 1.77 | 250.18
24p:—~3drSumOdd | Rand 17.07 | 100 10.23 | 92.05 99.98 85.51 0.1 0.08 | 21.72
Conflict | 12.87 | 100 8.66 77.1 100 79.772 0.11 0.08 | 17.08
All stickers on the white face are All rows sum to an even number
different than the center sticker
12]22]6 9|5 17[10]20] 5 |22 12[22]6 915
', 71111912117 1[6 [14]15]16 71119]2117
ﬂ 16[13] 4 [20[21 12|13]23] |8 16[13] 4 [20[21
Start Mono: path cost 12 Non-mono: path cost 1 1111038 13191417 11115110 8
14]18]24]23 18[19] 2 [21[24 14|18]24] 3|23

Start

Mono: path cost 93

Agostinelli, Forest. “A Conflict-Driven Approach for Reaching Goals Specified with Negation as Failure.” ICAPS 2024 HAXP Workshop

Non-mono: path cost 4
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2131|123
4 6| 4 6
718|5||7|8

* If using only canonical actions, the cost-to-go is 16
* If including diagonal actions, the cost-to-go is 2

* To differentiate between these two scenarios, information about the domain
must also be given to the heuristic function



* For each example, randomly sample a domain
* For that domain, randomly sample a state
* RL Update

e L(O) = (main(ca(s) + hg-(T(s,a),D)) — hg(S,D))Z

e D: Domain



Preliminary Experiments

* For the 15-puzzle, generate different domains by sampling a subset of {U, D, L,
R, UL, UR, DL, DR} actions for each tile position

* 8 actions for each of the 16 positions, max 28*1¢ ~ 3.4x103® domains
* Ensure all sampled domains are reversible, for simplicity

* Represent the domain as a one-hot vector of which actions are allowed in each
position

 Compare heuristic performance with true cost-to-go for random states from
domains

* True cost-to-go computed with merge-and-shrink heuristic

 Compare when training a heuristic function across domains without domain
information

 Compare heuristic function with DeepCubeA trained for a fixed domain



Results
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Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024



Repeat training for 8-puzzle and
24-puzzle

Proposed approach compares
favorably to the fast downward
planner with the fast forward

heuristic

s slightly worse than
DeepCubeA, which must be re-
trained for each domain

Future work could build on work
by Felipe Trevizan and Sylvie
Thiebaux on using graph neural
networks to encode PDDL

domains

Domain Solver Len | Opt Nodes Secs Nodes/Sec| Solved
8 Puzzle (C) DeepCubeA| 18.38| 100% | 3.59E+04 | 0.69 5.2E+04 | 100%
8 Puzzle (C) Proposed 18.38| 100% | 7.17TE+04 | 1.76 4.07TE+04 | 100%
8 Puzzle (C) FD(FF) | 188 |81% | 5.56E4+02| 0.11 | 47E+03 | 100%
8 Puzzle (D) DeepCubeA| 1.44 | 100% | 1.95E+01 | 0.01 | 2.92B4+03 | 100%
8 Puzzle (D) Proposed 1.44 | 100% | 4.05E4+01 | 0.01 4.92E+03 | 100%
8 Puzzle (D) FD(FF) | 1.44 | 100% | 2.45E+00| 0.2 1.23E401 | 100%
8 Puzzle (C+D) DeepCubeA| 11.84| 100% | 6.2E+404 1.18 5.26E4+04 | 100%
8 Puzzle (C+D) Proposed 11.84| 100% | 6.23E+04 | 1.56 3.97TE+04 100%
8 Puzzle (C+D) FD(FF) 12.9 54.2% | 8.68E+01| 0.13 6.59E4-02 100%
15 Puzzle (C) DeepCubeA| 52.03| 99.4% | 1.82E405| 4.31 | 4.21E+04 | 100%
15 Puzzle (C) Proposed 52.18 | 93.76% | 3.62E+05 | 10.39 3.49E+04 100%
15 Puzzle (C) FD(FF) | 52.75 | 24.80 | 2.92E406 | 42.11 | 6.93E+04 | 80.80%
15 Puzzle (D) DeepCubeA| 10.8 | 100% | 8.2E+02 0.03 | 2.43E4+04 | 100%
15 Puzzle (D) Proposed 10.81 | 99.8% | 1.64E+03 | 0.05 3.01E404 | 100%
15 Puzzle (D) FD(FF) 10.86 | 96.8% | 4.18E401| 0.21 1.96E+4-02 100%
15 Puzzle (C+D) | DeepCubeA| 25.66| 100% | 1.78E+05 | 3.74 4.78E4+04 | 100%
15 Puzzle (C+D) | Proposed 25.67 | 99.8% | 1.78E405 | 4.72 3.78E+04 | 100%
15 Puzzle (C+D) | FD(FF) 29.32 | 13.4% | 8.4E+03 | 1.17 3.56E4-03 100%
24 Puzzle (C) DeepCubeA| 89.48| 96.98% 3.34E+05| 8.05 4.15E404 | 100%
24 Puzzle (C) Proposed 92.80 | 22.03% | 7.6E+05 24.06 | 3.16E+04 | 100%
24 Puzzle (C) FD(FF) | 81.00 | 0.40 | 2.68E+06 | 89.84 | 2.91E+04 | 1.01%
24 Puzzle (D) DeepCubeA| 14.9 | 100% | 2.55E+04 | 0.47 5.46E4+04 | 100%
24 Puzzle (D) Proposed 14.92 | 99.8% | 5.1E4+04 1.35 3.78E+4-04 100%
24 Puzzle (D) FD(FF) 15.16 | 89.2% | 2.64E+02| 0.12 | 2.05E+03 | 100%
24 Puzzle (C+D) | DeepCubeA| 31.33| 100% | 2.27TE4+05 | 4.83 4.69E+04 | 100%
24 Puzzle (C+D) | Proposed 31.34 | 99.6% | 2.27TE+05 | 6.78 3.34E+04 100%
24 Puzzle (C+D) | FD(FF) | 36.81 | 13.8% | 1.7TE4+04 | 535 | L77TE+03 | 99.4%

Khandelwal, Vedant, Amit Sheth, Forest Agostinelli. “Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems.” arxiv, 2024
Chen, Dillon Z., Sylvie Thiébaux, and Felipe Trevizan. "Learning Domain-Independent Heuristics for Grounded and Lifted Planning." AAAI. Vol. 38. No. 18. 2024.




* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
e Generalizing to domains with unknown transition functions



Approach

 When performing A* search with an admissible

heuristic function, every node popped from
OPEN is a lower bound on the cost-to-go

Algorithm 1: Approximately Admissible Conver-
sion

* We perform A* search with an admissible
heuristic on a representative set of states for a
given domain to get their lower bounds

e Start with a trivially admissible heuristic function of
always zero

* We can then use these lower bounds to correct
an |r]adm|55|ble he_urls’glc function based on its
maximum overestimation

* We can then repeat this process with the
adjusted inadmissible heuristic function to get
an improved estimation of the lower boun

Input:
h: Inadmissible heuristic function
X': Representative set
n: target increment for h®
Output:
h': Converted approximately admissible heuristic
function
h*(x) < 0,Vz € X
is_solved(x) < False,Vxr € X
while 3x € X' | is_solved(x) == False do
h' < adjust(h*,h, X)
forz € X do
| h%(z),is-solved(x) < A*(x,h',h*(z) + n)

h' < adjust(h®, h, X)
Return A’

* The larger the representative set of states, the
more accurate the adjustment process will be



* For the 15-puzzle

* Before adjustment: 71.37% overestimation, max

overestimation: 8.28

* After adjustment: 0.0019% overestimation, max

overestimation: 0.62

* The larger the representative set, the better the

adjustment
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Agostinelli, Forest, et al. "Obtaining approximately admissible heuristic functions through deep reinforcement learning and A* search." ICAPS PRL Workshop 2021.



* Background
* Generalizing over states
* Generalizing over goals

* Generalizing over domains
* Towards obtaining approximately admissible heuristic functions
* Generalizing to domains with unknown transition functions



Learning Discrete World Models

* Addressing previous shortcomings

* Small errors in prediction can be corrected
by simply rounding

* Can reidentify states by comparing two
vectors Decoder

 Encoder

* Maps the state to a discrete
representation

* To allow training with gradient descent,
use a straight through estimator

e Decoder

* Maps the discrete representation to the
state

* Ensures the discrete representation is
meaningful
 Environment model S >m(s, a) > o/

* Maps discrete states and actions to next
discrete state




Experiments

* Rubik’s cube
* Two 32x32 RGB images showing both sides of the cube

* Sokoban
* One 40x40 RGB image

* Generate offline dataset of 300,000 episodes of 30 random steps, each

10 A L6

20, 3 204

30 1 | . . 30 A




Discrete vs Continuous Model Performance

* The continuous model eventually accumulates error for the Rubik’s cube
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Discrete vs Continuous Model Performance
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Heuristic Learning and Search with Discrete Model

DeepCubeAl — DeepCubeA + “Imagination”
Learn discrete world model with offline data
Use offline data and the learned world model to generate training data
Heuristic learning: Q-learning with hindsight experience replay
* Generalize over goal states

Heuristic search: Q* search
* Helps when model uses computationally expensive DNN

Domain | Solver Len | Opt Nodes Secs | Nodes/Sec | Solved
PDBs™ 20.67 | 100.0% | 2.05E+06 | 2.20 | 1.79E+406 100%
RC DeepCubeA 21.50 | 60.3% | 6.62E+06 | 24.22 | 2.90E+05 100%

Greedy (ours) - 0% - - - 0%
DeepCubeAl (ours) | 22.85 | 19.5% | 2.00E405 | 6.21 | 3.22E+404 100%

RCrew Greedy (ours) - 0% - - - 0%
DeepCubeAl (ours) | 22.81 | 21.92% | 2.00E405 | 6.30 | 3.184-04 99.9%
LevinTS 39.80 | - 6.60E+03 | - - 100%

Sokoban LevinTS (*) 39.90 | - 5.03E403 | - - 100%
LAMA 51.60 | - 3.15E403 | - - 100%
DeepCubeA 32.88 | - 1.056E4+03 | 2.35 | 5.60E+01 100%
Greedy (ours) 29.55 | - - 1.68 | - 41.9%
DeepCubeAl (ours) | 33.12 | - 3.30E+03 | 2.62 | 1.38E+03 100%

Agostinelli, Forest and Soltani, Misagh “Learning Discrete World Models for Heuristic Search.” Reinforcement Learning Conference 2024



Questions?

* Papers

 Code
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Specifying Goals to Deep Neural Networks with

Many of these algorithms are publicly available on GitHub
https://github.com/forestagostinelli/deepxube

Email: foresta@cse.sc.edu
Website: https://cse.sc.edu/~foresta/
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