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1 Introduction

This article provides a concise overview of reinforcement learning, from its ori-
gins to deep reinforcement learning. Thousands of articles have been written
on reinforcement learning and we could not cite, let alone survey, all of them.
Rather we have tried to focus here on first principles and algorithmic aspects,
trying to organize a body of known algorithms in a logical way. A fairly com-
prehensive introduction to reinforcement learning is provided by [113]. Earlier
surveys of the literature can be found in [33,46,51].

1.1 Brief History

The concept of reinforcement learning has emerged historically from the combi-
nation of two currents of research: (1) the study of the behavior of animals in
response to stimuli; and (2) the development of efficient approaches to problems
of optimal control.

In behavioral psychology, the term reinforcement was introduced by Pavlov
in the early 1900s, while investigating the psychology and psychopathology of
animals in the context of conditioning stimuli and conditioned responses [47].
One of his experiments consisted in ringing a bell just before giving food to
a dog; after a few repetitions, Pavlov noticed that the sound of the bell alone
made the dog salivate. In classical conditioning terminology, the bell is the pre-
viously neutral stimulus, which becomes a conditioned stimulus after becoming
associated with the unconditioned stimulus (the food). The conditioned stimu-
lus eventually comes to trigger a conditioned response (salivation). Conditioning
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experiments led to Thorndike’s Law of Effect [118] in 1911, which states that:
“Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being equal,
be more firmly connected with the situation, so that, when it recurs, they will
be more likely to recur”.

This formed the basis of operant conditioning (or instrumental conditioning)
in which: (1) the strength of a behavior is modified by the behavior’s conse-
quences, such as reward or punishment; and (2) the behavior is controlled by
antecedents called “discriminative stimuli” which come to emit those responses.
Operant conditioning was studied in the 1930s by Skinner, with his experiments
on the behavior of rats exposed to different types of reinforcers (stimuli).

A few years later, in the Organization of Behavior [39] (1949), Hebb proposed
one of the first theories about the neural basis of learning using the notions of cell
assemblies and “Hebbian” learning, encapsulated in the sentence “When an axon
of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.” These
are some of the biological underpinnings and sources of inspiration for many
subsequent developments in reinforcement learning and other forms of learning,
such as supervised learning.

In 1954, in the context of optimal control theory, Bellman introduced
dynamic programming [9], and the concept of value functions. These functions
are computed using a recursive relationship, now called the Bellman equation.
Bellman’s work was within the framework of Markov Decision Process (MDPs),
which were studied in detail by [44]. One of Howard’s students, Drake, proposed
an extension with partial observability: the POMDP models [27].

In 1961, [70] discussed several issues in the nascent field of reinforcement
learning, in particular the problem of credit assignment, which is one of the core
problems in the field. Around the same period, reinforcement learning ideas
began to be applied to games. For instance, Samuel developed his checkers
player [93] using Temporal Differences method. Other experiments were car-
ried by Michie, including the development of the MENACE system to learn how
to play Noughts and Crosses [67,68], and the BOXES controller [69] which has
been applied to pole balancing problems.

In the 1970s, Tsetlin made several contributions within the area of Automata,
in particular in relation to the n-armed bandit problem, i.e. how to select which
levers to pull in order to maximize the gain in a game comprising n slot machines
without initial knowledge. This problem can be viewed as a special case of a
reinforcement learning problem with a single state. In 1975, Holland developed
genetic algorithms [42], paving the way for reinforcement learning based on evo-
lutionary algorithms.

In 1988, [126] presented the REINFORCE algorithms, which led to a variety
of policy gradient methods. The same year, Sutton introduced TD(λ) [111].
In 1989, Watkins proposed the Q-Learning algorithm [123].
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1.2 Applications

Reinforcement learning methods have been effective in a variety of areas, in par-
ticular in games. Success stories include the application of reinforcement learn-
ing to stochastic games (Backgammon [117]), learning by self-play (Chess [56]),
learning from games played by experts (Go [100]), and learning without using
any hand-crafted features (Atari games [72]).

When the objective is defined by a control task, reinforcement learning
has been used to perform low-speed sustained inverted hovering with an heli-
copter [77], balance a pendulum without a priori knowledge of its dynamics [3],
or balance and ride a bicycle [88]. Reinforcement learning has also found plenty
of applications in robotics [52], including recent success in manipulation [59] and
locomotion [97]. Other notable successes include solutions to the problems of ele-
vator dispatching [19], dynamic communication allocation for cellular radio chan-
nels [104], job-shop scheduling [129], and traveling salesman optimization [26].
Other potential industrial applications have included packet routing [12], finan-
cial trading [73], and dialog systems [58].

1.3 General Idea Behind Reinforcement Learning

Reinforcement learning is used to compute a behavior strategy, a policy, that
maximizes a satisfaction criteria, a long term sum of rewards, by interacting
through trials and errors with a given environment (Fig. 1).

Fig. 1. The agent-environment interaction protocol

A reinforcement learning problem consists of a decision-maker, called the
agent, operating in an environment modeled by states st ∈ S. The agent is
capable of taking certain actions at ∈ A(st), as a function of the current state
st. After choosing an action at time t, the agent receives a scalar reward rt+1 ∈ R

and finds itself in a new state st+1 that depends on the current state and the
chosen action.

At each time step, the agent follows a strategy, called the policy πt, which is
a mapping from states to the probability of selecting each possible action: π(s, a)
denotes the probability that a = at if s = st.

The objective of reinforcement learning is to use the interactions of the agent
with its environment to derive (or approximate) an optimal policy to maximize
the total amount of reward received by the agent over the long run.
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Remark 1. This definition is quite general: time can be continuous or discrete,
with finite or infinite horizon; the state transitions can be stochastic or determin-
istic, the rewards can be stationary or not, and deterministic or sampled from a
given distribution. In some cases (with an unknown model), the agent may start
with partial or no knowledge about its environment.

1.4 Definitions

Return. To maximize the long-term cumulative reward after the current time t,
in the case of a finite time horizon that ends at time T , the return Rt is equal to:

Rt = rt+1 + rt+2 + rt+3 + ... + rT =
T∑

k=t+1

rk

In the case of an infinite time horizon, it is customary instead to use a discounted
return:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0

γkrt+k+1,

which will converge if we assume the rewards are bounded and γ < 1. Here
γ ∈ [0, 1] is a constant, called the discount factor. In what follows, in general we
will use this discounted definition for the return.

Value Functions. In order to find an optimal policy, some algorithms are based
on value functions, V (s), that represent how beneficial it is for the agent to reach
a given state s. Such a function provides, for each state, a numerical estimate of
the potential future reward obtainable from this state, and thus depends on the
actual policy π followed by the agent:

V π(s) = Eπ [Rt | st = s] = Eπ

[ ∞∑

k=0

γkrt+k+1

∣∣∣∣∣ st = s

]

where Eπ [.] denotes the expected value given that the agent follows policy π,
and t is any time step.

Remark 2. The existence and uniqueness of V π are guaranteed if γ < 1 or if
T is guaranteed to be finite from all states under the policy π [113].

Action-Value Functions. Similarly, we define the value of taking action a in
state s under a policy π as the action-value function Q:

Qπ(s, a) = Eπ [Rt | st = s, at = a]

= Eπ

[ ∞∑

k=0

γkrt+k+1

∣∣∣∣∣ st = s, at = a

]
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Optimal Policy. An optimal policy π∗ is a policy that achieves the greatest
expected reward over the long run. Formally, a policy π is defined to be better
than or equal to a policy π′ if its expected return is greater than or equal to that
of π′ for all states. Thus:

π∗ = argmax
π

V π(s) ∀s ∈ S

Remark 3. There is always at least one policy that is better than or equal to
all other policies. There may be more than one, but we denote all of them by π∗

because they share the same value function and action-value function, noted:

V ∗(s) = max
π

V π(s) ∀s ∈ S
Q∗(s, a) = max

π
Qπ(s, a) ∀s ∈ S, ∀a ∈ A(s)

1.5 Markov Decision Processes (MDPs)

A Markov Decision Process is a particular instance of reinforcement learning
where the set of states is finite, the sets of actions of each state are finite, and
the environment satisfies the following Markov property:

Pr(st+1 = s′|s0, a0, ...st, at) = Pr(st+1 = s′|st, at)

In other words, the probability of reaching state s′ from state s by action a is
independent of the other actions or states in the past (before time t). Hence, we
can represent a sequence of actions, states, rewards sampled from an MDP by a
decision network (see Fig. 2).

Most reinforcement learning research is based on the formalism of MDPs.
MDPs provide a simple framework in which to study basic algorithms and
their properties. We will continue to use this formalism in Sect. 2. Then, we
will emphasize its drawbacks in Sect. 3 and present potential improvements in
Sect. 4.

Fig. 2. Decision network representing an episode sampled from an MDP
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1.6 A Visualization of Reinforcement Learning Algorithms

An overview of the algorithms that will be presented in this chapter can be found
in Fig. 3. While this does not cover all reinforcement learning algorithms, we
present it as a tool for the reader to get an overview of the reinforcement learning
landscape. Each algorithm is color-coded according to whether it is model based
or model free. Model based methods, such as those presented in Sects. 2.2 and
2.5, require a model of the environment while model free methods, such as those
presented in Sects. 2.3 and 2.4, do not require a model of the environment. The
functions (value function, action-value function, and/or policy function) that
each algorithm uses are displayed beneath the algorithm. As shown in Sect. 5,
these functions can take the form of deep neural networks.

Fig. 3. An overview of the reinforcement learning algorithms that will be presented in
this paper. The functions associated with each reinforcement learning algorithm can
take the form of a deep neural network.

2 Main Algorithmic Approaches

Given a reinforcement learning problem, we now are going to present different
approaches to computing the optimal policy. There are two main approaches: one
based on searching in the space of value functions, and one based on searching in
the space of policies. Value function space search methods attempt to compute
the optimal value function V ∗ and deduce at the end the optimal policy π∗ from
V ∗. These methods include linear programming, dynamic programming, Monte-
Carlo methods, and temporal difference methods. Policy space search methods,
on the other hand, maintain explicit representations of policies and update them
over the time in order to compute the optimal policy π∗. Such methods typically
include evolutionary and policy gradient algorithms. We provide a brief overview
of these methods in the following sections.
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2.1 Linear Programming

In order to cast the goal of finding the optimal value function as a linear pro-
gramming problem [89], we treat the value function V as a cost function and
then try to minimize the cost from each starting state s. In order to minimize a
cost, we need to invert the sign of the rewards. We will note the cost function
gπ(st) = −rt+1. Thus here we want to minimize:

Jπ(s) = Eπ

[ ∞∑

k=0

γkgπ(sk)

∣∣∣∣∣ s0 = s

]

In order to perform this minimization, we define the optimal Bellman
operator T :

(TJ)(s) = min
π

(gπ(s) + γPπ(s)J)

where J is a vector of states, Pπ is the transition matrix with the (s, s′) entry
representing the probability of reaching s′ from s under policy π, and the mini-
mization is carried out component-wise.

The solution that minimizes the cost should verify the Bellman equation:

J(s) = (TJ)(s)

It can be found by solving the linear programming optimization (using, for exam-
ple, the simplex algorithm):

minJ μT J
s.t. TJ ≥ J

where μ is a vector of positive weights, known as the state-relevance weights.
From a theoretical perspective, linear programming provides the only known

algorithm that can solve MDPs in polynomial time, although in general linear
programming approaches to reinforcement learning problems do not fare well in
practice. In particular, the main problem for linear programming approaches is
that the time and space complexity can be extremely high.

2.2 Dynamic Programming

Dynamic programming algorithms are the simplest way to tackle a reinforcement
learning problem, however, this method requires perfect knowledge of the model
and is limited by its computational cost. The idea behind the dynamic program-
ming formulation of reinforcement learning is to choose a policy π, estimate its
value function V π (Algorithm 1), deduce a new policy π′ from V π (Algorithm 2),
and iterate this process until a satisfying policy is found (Algorithm 3). This pro-
cess is known as policy iteration. Since each step strictly improves the policy, the
algorithm is guaranteed to converge to the optimal policy. For computational
convenience, one can decide to stop the policy evaluation step when the change
in the value function is small between two iterations, as implemented below with
the threshold θ:
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Algorithm 1. Policy Evaluation
Data: π, the policy to be evaluated
Result: V ≈ V π, an approximation of the value function of π
repeat

Δ ← 0
for s ∈ S do

v ← V (s)
V (s) ← ∑

a π(s, a)
∑

s′ P a(s, s′)(Ra(s, s′) + γV (s′))
Δ ← max(Δ, |v − V (s)|)

until Δ < θ;

Remark 4. At each step k, the value function Vk+1 can be computed from the
previous one Vk in two ways [113]:

– Full Backup: using two distinct arrays to store the two functions Vk and Vk+1.
– In Place: using only one array, and overwriting Vk when computing Vk+1 for

each state.

The second approach is usually faster.

Algorithm 2. Policy Improvement
Data: π, the policy to be updated

V, the value function
Result: π, the updated policy
for s ∈ S do

π(s) ← argmax
a

∑
s′ P a(s, s′)(Ra(s, s′) + γV (s′))

Algorithm 3. Policy Iteration
Result: π∗, the optimal policy
Initialization: π chosen arbitrarily
repeat

π0 ← π
V = Policy evaluation(π)
π = Policy improvement(π, V )

until π0 = π;

One drawback of policy iteration is the policy evaluation step; which requires
multiple iterations over every state. Another way to proceed is to combine policy
evaluation and policy improvement in the same loop (Algorithm 4). This process
is called value iteration. Value iteration is not always better than policy iteration,
the efficiency depends on the nature of the problem and the parameters chosen.
These differences are discussed in [85].
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Algorithm 4. Value Iteration
Result: π∗, the optimal policy
Initialization: V chosen arbitrarily
repeat

Δ ← 0
for s ∈ S do

v ← V (s)
V (s) ← maxa

∑
s′ P a(s, s′)(Ra(s, s′) + γV (s′))

Δ ← max(Δ, |v − V (s)|)
until Δ < θ;
for s ∈ S do

π(s) ← argmax
a

∑
s′ P a(s, s′)(Ra(s, s′) + γV (s′))

2.3 Monte-Carlo Methods

The following algorithms correspond to online learning methods that do not
require any knowledge of the environment. To estimate the value function V π of
a policy π, we must generate a sequence of actions and states with π, called an
episode, compute the total reward at the end of this sequence, then update the
estimate of V π, V , for each state of the episode according to its contribution to
the final reward, and repeat this process. One way to achieve this is to compute
the average of the expected return from each state (Algorithm 5).

When one has a model of the environment, state values alone are sufficient
to determine a policy. At any state s, the action taken is:

π(s) ← argmax
a

∑

s′
P a(s, s′)(Ra(s, s′) + γV (s′))

However, without a model, we will not have access to the state transition
probabilities and/or the expected reward; therefore, we will not be able to find
action a that maximizes the aforementioned expression. Therefore, action-value

Algorithm 5. MC Policy Evaluation
Data: π, the policy to be evaluated
Result: V ≈ V π, an approximation of the value function of π
Initialization: V chosen arbitrarily

Returns(s) ← [] , ∀s ∈ S
repeat

episode = generate episode(π)
for s ∈ episode do

R ← Return following first occurrence of s
Returns(s).append(R)
V (s) ← average(Returns(s))

until;
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Algorithm 6. MC Exploring Starts
Result: π∗, the optimal policy
Initialization: Q chosen arbitrarily

π chosen arbitrarily
Returns(s, a) ← [], ∀s ∈ S , ∀a ∈ A(s)

repeat
episode = generate episode exploring starts(π)
for s, a ∈ episode do

R ← Return following first occurrence of s, a
Returns(s, a).append(R)
Q(s, a) ← average(Returns(s, a))

for s ∈ episode do
π(s) ← argmax

a
Q(s, a)

until;

functions are necessary to find the optimal policy. If we are following a deter-
ministic policy, many state-action pairs may never be visited. We present two
different methods for addressing this problem: exploring starts [113] and stochas-
tic policies. Similar to value iteration, the methods we present for exploring starts
and stochastic policies do not wait to complete policy evaluation before doing
policy improvement. Instead, policy evaluation and policy improvement are done
every episode.

Under the exploring starts assumption, each episode starts at a state-action
pair and every state-action pair has a nonzero chance of being the starting pair.
This algorithm is shown in Algorithm 6.

The exploring starts assumption may often be infeasible in practice. To
explore as many state-action pairs as possible, one must consider policies that
are stochastic. We distinguish between two different types of policies: The pol-
icy that is used to generate episodes (the behavior policy) and the policy that
is being evaluated and improved (the estimation policy). The behavior policy
must be stochastic in order to ensure new state-action pairs are explored. There
are two main types of methods that utilize stochastic policies: on-policy meth-
ods and off-policy methods. For on-policy methods, the behavior policy and the
estimation policy are the same; therefore, the policy that is being evaluated and
improved must also be stochastic. Algorithm 7 shows an on-policy MC algo-
rithm that utilizes an ε-greedy policy: with probability ε it chooses an action at
random, otherwise, it chooses the greedy action.

On the other hand, off-policy methods can have a behavior policy that is
separate from the estimation policy. The behavior policy should still be stochas-
tic and must have a nonzero probability of selecting all actions that the esti-
mation policy might select, however, the estimation policy can be greedy and
always select the action a at state s that maximizes Q(s, a). The downside of
off-policy methods is that policy improvement is slower because it can only learn
from states where the behavior policy and the estimation policy take the same
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Algorithm 7. MC On-Policy Control
Result: π∗, the optimal policy
Initialization: Q chosen arbitrarily

π chosen arbitrarily
Returns(s, a) ← [] , ∀s ∈ S, ∀a ∈ A(s)

repeat
episode = generate episode(π)
for s, a ∈ episode do

R ← Return following first occurrence of s, a
Returns(s, a).append(R)
Q(s, a) ← average(Returns(s, a))

for s ∈ episode do
a∗ ← argmax

a
Q(s, a)

for a ∈ A(s) do

π(s, a) ←
{

1 − ε + ε/|A(s)| if a = a∗

ε/|A(s)| if a �= a∗

until;

actions. Differences between on-policy and off-policy methods are discussed fur-
ther in [113]. A well-known off-policy algorithm, Q-learning, will be presented
in Sect. 2.4.

Remark 5. The MC methods presented in this paper are first-visit MC methods.
The first-visit method averages the return following the first visit to a state s in
an episode, in the case of MC policy evaluation, or following the first occurrence
of the state-action pair s, a, in the case of MC exploring starts and MC on-
policy control. There are also every-visit methods that use the return from every
occurrence of s or s, a. However, these methods are less straightforward because
of the introduction of bias [106].

2.4 Temporal Difference Methods

TD(0). Whereas the Monte-Carlo algorithms are constrained to wait for the end
of an episode to update the value function, the TD(0) algorithm (Algorithm 8)
is able to compute an update after every step:

V (st) ← V (st) + α [rt+1 + γV (st+1) − V (st)]

When working with action-value functions, a well-known off-policy algorithm
known as Q-learning (Algorithm 9) approximates Q∗ regardless of the current
policy.

Q(st, at) ← Q(st, at) + α
[
rt+1 + γ max

a′
Q(st+1, a

′) − Q(st, at)
]
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Algorithm 8. TD(0)
Data: π, the policy to be evaluated
Result: V ≈ V π, an approximation of the value function of π
Initialization: V chosen arbitrarily
repeat

s ← get initial state()
while s not terminal do

a ← get action(π, s)
s′, r ← get next state(s, a)
V (s) ← V (s) + α(r + γV (s′) − V (s))
s ← s′

until;

Algorithm 9. Q-Learning
Result: π∗, the optimal policy
Initialization: Q chosen arbitrarily
repeat

s ← get initial state()
while s not terminal do

a ← get action(Q, s)
s′, r ← get next state(s, a)
Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a))
s ← s′

until;

Remark 6. An on-policy variant of the Q-Learning algorithm, called the
SARSA algorithm [90], consists of choosing a′ with respect to the current policy
for selecting the next action, rather than the max of the value function for the
next state.

TD(λ) [forward view]. The TD(λ) algorithm, with λ chosen between 0 and 1,
is a compromise between the full backup method of the Monte-Carlo algorithm
and the step-by-step update of the TD(0) algorithm. It relies on backups of
episodes that are used to update each state, while assigning a greater importance
to the very next step after each state.

We first define a n-step target: R
(n)
t =

∑n
k=1 γk−1rt+k + γnV (st+n) Then,

we can introduce the particular averaging of the TD(λ) algorithm on a state at
time t in an episode ending at time T :

Rλ
t = (1 − λ)

T−t−1∑

n=1

λn−1R
(n)
t + λT−t−1Rt
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This can be expanded as:

Rλ
t = (1 − λ)(rt+1 + γV (st+1))

+(1 − λ)λ(rt+1 + γrt+2 + γ2V (st+2))
+(1 − λ)λ2(rt+1 + γrt+2 + γ2rt+3 + γ3V (st+2))
...
+λT−t−1(rt+1 + γrt+2 + γ2rt+3 + ... + γT−1rT )

Finally, the update method used is:

V (st) ← V (st) + α
[
Rλ

t − V (st)
]

Remark 7. One can notice that the sum of the weights (1−λ)λn−1 and λT−t−1

is equal to 1. Moreover:

– If λ = 0, the algorithm corresponds to TD(0).
– If λ = 1, the algorithm corresponds to the MC algorithm.

TD(λ)[backward view]. The previous description of TD(λ) illustrates the
mechanism behind this method. However, it is not computationally tractable.
Here, we describe an equivalent approach that leads to an efficient implementa-
tion.

We have to introduce for each state the eligibility trace et(s) that represents
how much the state will influence the update of a future encountered state in an
episode:

et(s) =

⎧
⎨

⎩

0 if t = 0
γλet−1(s) if t > 0 and s �= st

γλet−1(s) + 1 if t > 0 and s = st

We can now define the update method to be applied at each step t to all
states si:

V (si) ← V (si) + αet(si) [rt+1 + γV (st+1) − V (st)]

yielding Algorithm 10.

Actor-Critic Methods. Actor-Critic methods separate the policy and the
value function into two distinct structures [54]. The actor, or policy structure,
is used to select actions; while the critic, or the estimated value function V , is
used to criticize those actions in the form of a TD error:

δt = rt+1 + γV (st+1) − V (st)
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Algorithm 10. TD(λ)
Result: V ≈ V π, an approximation of the value function of π
Initialization: V chosen arbitrarily

e(s) = 0, ∀s ∈ S
repeat

s ← get initial state()
while s /∈ Terminal do

a ← get action(π, s)
s′, r ← get next state(s, a)
δ ← r + γV (s′) − V (s)
e(s) ← e(s) + 1
for u ∈ S do

V (u) ← V (u) + αδe(u)
e(u) ← γλe(u)

s ← s′

until;

A positive δt indicates that the policy’s decision to take action at in state
st should be strengthened, on the other hand, a negative δt indicates that the
policy’s decision should be weakened. In a simple case, if the policy for st and
at is just a scalar p(st, at) that is then normalized across all actions (i.e. using a
softmax function), we can adjust the parameters of the policy using δt:

p(st, at) ← p(st, at) + βδt(1 − πt(st, at))

where β is a positive scaling factor.
If πt(st, at) is a more complicated parameterized function, such as a deep

neural network, then δt is used for computing gradients.

2.5 Planning

The key difference between dynamic programming methods and temporal dif-
ference methods is the use of a model. Dynamic programming methods use a
model of the world to update the value of each state based on state transition
probabilities and expectations of rewards. However, temporal difference methods
achieve this through directly interacting with the environment.

A model produces a prediction about the future state and reward given a
state-action pair. There are two main types of models: distribution models and
sample models. A distribution model, like the one used in dynamic programming
methods, produces all the possible next states with their corresponding probabil-
ities and expected rewards, whereas a sample model only produces a sample next
state and reward. Distribution models are more powerful than sample models;
however, sample models can be more efficient in practice [113].
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The benefit of a model is that one can simulate interactions with the environ-
ment, which is usually less costly than interacting directly with the environment
itself. The downside is that a perfect model does not always exist. A model
may have to be approximated by hand or learned through real-world interac-
tion with the environment. Any sub-optimal behavior in the model can lead to
a sub-optimal policy. [112] presented an algorithm that combines reinforcement
learning, model learning, and planning (Algorithm 11) [113]. This algorithm
requires that the environment be deterministic. The resulting state and reward
of each observed state-action pair is stored in the model. The agent can then
use the model to improve the action-values associated with each previously seen
state-action pair without having to interact with the environment.

Algorithm 11. Dyna-Q
Result: π∗, the optimal policy
Initialization: Q chosen arbitrarily

Model(s, a) chosen arbitrarily ∀s ∈ S, ∀a ∈ A
N some positive integer

repeat
s ← current (nonterminal) state
a ← get action(Q, s)
s′, r ← get next state(s, a)
Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a))
Model(s, a) ← s′, r
n ← 0
repeat

s ← random previously seen state
a ← random action previously taken in s
s′, r ← Model(s, a)
Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a))
n ← n + 1

until n >= N ;

until;

A model can be used to improve a value function and policy or it can be
used to pick better actions given the current value function and policy. Heuristic
search does this by using the value function and policy as a “heuristic” to search
the state-space in order to select better actions. Monte Carlo tree search (MCTS)
[18,53] is a heuristic search algorithm which uses a model to run simulations from
the current state. When searching the state-space, the probability of selecting
an action a in state s is influenced by the policy as well as the number of times
that state-action pair has been selected. In order to encourage exploration, the
probability of selecting a state-action pair goes down each time that pair is
selected. Backed up values come from either running the simulation until the
end of the episode or from the value of the leaf nodes.
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2.6 Evolutionary Algorithms

We now turn to algorithms that search the policy space, starting with evolution-
ary algorithms. These algorithms mimic the biological evolution of populations
under natural selection (see [74] for more details). In reinforcement learning
applications, populations of policies are evolved using a fitness function. At each
generation, the most fit policies have a better chance of surviving and producing
offspring policies in the next generation.

The most straightforward way to represent a policy in an evolutionary algo-
rithm is to use a single chromosome per policy, with a single gene associated with
each observed state. Each allele (the value of a gene) represents the action-value
associated with the corresponding state. The algorithm (Algorithm 12) first gen-
erates a population of policies P (0), then selects the best ones according to a
given criteria (selection), then randomly perturbs these policies (for instance by
randomly selecting a state and then randomly perturbing the distribution of the
actions given that state) (mutation). The algorithm may also create new policies
by merging two different selected policies (crossover). This process is repeated
until the selected policies satisfy a given criteria.

The fitness of a policy in the population is defined as the expected accumu-
lated rewards for an agent that uses that policy. During the selection step, we
keep either the policies with the highest fitness, or use a probabilistic choice in
order to avoid local optima, such as:

Pr(pi) =
fitness(pi)∑n

j=1 fitness(pj)

Algorithm 12. Evolutionary Algorithm
Result: π ≈ π∗, an approximation of the optimal policy
Initialization: t = 0

population P (0) chosen arbitrarily
repeat

t ← t + 1
select P (t) from P (t − 1)
apply mutation(P (t))
apply crossover(P (t))

until;

2.7 Policy Gradient Algorithms

While other approaches tend to struggle with large or continuous state spaces,
policy gradient algorithms offer a good alternative for complex environments
solvable by relatively simple policies. Starting with an arbitrary policy, the idea
behind policy gradient is to modify the policy such that it obtains the largest
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reward possible. For this purpose, a policy is represented by a parametric prob-
ability distribution πθ(a|s) = P (a|s, θ) such that in state s action a is selected
according to the distribution P (a|s, θ). Hence, the objective here is to tune the
parameter θ to increase the probability of choosing episodes associated with
greater rewards. By computing the gradient of the average total return of a
batch of episodes sampled from πθ, we can use this value to update θ step-by-
step. This approach is exploited in the REINFORCE algorithm [126].

3 Limitations and Open Problems

3.1 Complexity Considerations

So far, we have presented several ways of tackling the reinforcement learning
problem in the framework of MDPs, but we have not described the theoretical
tractability of this problem.

Recall that P is the class of all problems that can be solved in polynomial
time, and NC the class of the problems that can be solved in polylogarithmic
time on a parallel computer with a polynomial number of processors. As it seems
very unlikely that NC = P, if a problem is proved to be P-complete, one can
hardly expect to be able to find a parallel solution to this problem. In particular,
it has been proved that the MDP problem is P-complete in the case of proba-
bilistic transitions, and is in NC in the case of deterministic transitions, by [82].
Furthermore, in the case of high-dimensional MDPs, there exists a randomized
algorithm [50] that is able to compute an arbitrary near-optimal policy in time
independent of the number of states.

Remark 8. Note that NC ⊆ P, simply because parallel computers can be sim-
ulated on a sequential machine.

Other results for the POMDP framework (see Sect. 3.3) are presented in [64].
In particular:

– Computing an infinite (polynomial) horizon undiscounted optimal strategy
for a deterministic POMDP is PSPACE-hard (NP-complete).

– Computing an infinite (polynomial) horizon undiscounted optimal strategy
for a stochastic POMDP is EXPTIME-hard (PSPACE-complete).

3.2 Limitations of Markov Decision Processes (MDPs)

Despite its great convenience as a theoretical model, the MDP model suffers
from major drawbacks when it comes to real-world implementations. Here we list
the most important ones to highlight common pitfalls encountered in practical
applications.
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– High-dimensional spaces. For high-dimensional spaces, typical of real-
world control tasks, using a simple reinforcement learning framework becomes
computationally intractable: this phenomenon is known as the curse of dimen-
sionality. We can limit this by reducing the dimensionality of the prob-
lem [120], or by replacing the lookup table by a function approximator [15].
However, some precautions may need to be taken to ensure convergence [11].

– Continuous spaces. A variety of real world problems lead to continuous
state spaces or action spaces, yet it is not possible to store an arbitrary con-
tinuous function. To address this problem, one has to use function approxima-
tors [94] to obtain tractable models, value functions, or policies. Two common
techniques are tile coding [98] and fuzzy representation of the space [62].

– Convergence. While we have good guarantees on the convergence of rein-
forcement learning methods with lookup tables and linear approximators, our
knowledge of the conditions for convergence with non-linear approximators
is still very limited [119]. This is unfortunate because non-linear approxima-
tors are the most convenient and have been very successful on problems like
playing backgammon [117].

– Speed. One way to speed up the convergence of reinforcement learning algo-
rithms is to modify the reward function during learning to provide guidance
toward good policies. This technique, called shaping, has been successfully
applied to the problem of bike riding, which would not have been tractable
without this improvement [88].

– Stability. Highly dependent on the parameters, the stability of the process
of computing an optimal policy has not been studied sufficiently. However, it
is a key element in the success of a learning strategy. Stability and stability
guarantees have been studied in the context of kernel-based reinforcement
learning methods [81].

– Exploration vs Exploitation. To learn efficiently, an agent in general
should navigate the tradeoff between exploration and exploitation. Com-
mon heuristics such as ε-greedy and Boltzmann (softmax) provide means for
addressing this trade-off, yet suffer from major drawbacks in terms of conver-
gence speed and implementation (the choice of the parameters is non-trivial).
The R-max algorithm [13], relying on the optimism under uncertainty bias,
and model-based Bayesian exploration [22] offer convenient alternatives for
the exploration-exploitation dilemma.

– Initialization. The choice of the initial policy, or the initial value function,
may influence not only whether the algorithm converges, but also the speed
of convergence. In some cases, for example, choosing a random initialization
leads to drastically long computational times. One way to tackle this issue is
to learn first using a simpler but similar task, and then use this knowledge
to influence the learning process of the main task. This is the core principle
of transfer learning which can lead to significant improvements, as shown in
[116].
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Fig. 4. The POMDP model

3.3 The POMDP Model

The partially observable Markov decision process (POMDP) [130] is a general-
ization of the MDP model in which the learning agent does not know precisely
the current state in which it is operating. Instead, its knowledge relies on obser-
vations derived from its environment. Formally, a POMDP is an MDP with
a finite set of possible observations Z and an observation model based on the
probability ν(z|s) of observing z when the environment is in state s.

It has been shown in [105], that directly applying the MDP methods to this
problem can have arbitrarily poor performance. To address this problem, one has
to introduce an internal state distribution for the agent, the belief state bt(s),
that represents the probability of being in state s at time t (see Fig. 4). One
can then theoretically find an optimal solution to a POMDP problem [16] by
defining an equivalent MDP problem, as shown below, and use existing MDP
algorithms to solve it.

Assuming that the initial belief state b0 is known, one can iteratively compute
the belief state at any time t+1. We denote this operation by F (bt, at, zt) = bt+1

with:

bt+1(s′) =
ν(zt|s′)

∑
s∈S bt(s)Pat

(s, s′)∑
s′∈S ν(z|s′)

∑
s∈S bt(s)Pat

(s, s′)

The rewards are then given by:

r̄(b) =
∑

s∈S
b(s)r(s)

In order to compute the transition function, let us first introduce the probability
of observing z by applying action a in belief state b:

Pr(z|a, b) =
∑

s′∈S
ν(z|s′)

∑

s∈S
b(s)Pa(s, s′)

Hence, we can define a transition probability function for the POMDP by:

P̄a(b, b′) =
∑

z∈Z
F (bt,at,zt)=bt+1

Pr(zt|at, bt)
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If B represents the set of belief states, the value function can then be com-
puted as:

V̄t+1(b′) = max
a

[
r̄(b′) + γ

∑

b∈B
P̄a(b, b′)V̄t(b)

]

Remark 9. This approach is obviously quite limited because of the potentially
infinite size of B. Several algorithms have been proposed to improve this, such
as region-based pruning [31] and point-based algorithms [108], but they are also
unable to deal with very large state spaces. VDCBPI [86] is one of the few effi-
cient heuristics that seems to be able to find reasonable approximate solutions.

3.4 Multi-agent Paradigm

There are several reasons for studying the case of multiple agents interacting
with each other and seeking to maximize their rewards in a reinforcement learn-
ing fashion [14]. Many problems in areas as diverse as robotics, control, game
theory, and population modeling lend themselves to such a modeling approach.
Furthermore, the ability to parallelize learning across multiple agents is also
attractive for several reasons, including speed and robustness. In particular, one
may expect that if a particular agent fails, the other agents may be able to adapt
without leading to a system-wide failure. Lastly, one may be able to improve or
speed up learning of similar tasks by sharing experiences between individual
learners (transfer learning).

However, as can be expected, the multi-agent model comes with significant
challenges. By definition the multi-agent model has more variables and thus the
curse of dimensionality is heightened. Furthermore, the environment model is
more complex and suffers from non-stationarity during learning because of the
constantly evolving behavior of each agent, and the problem of coordination
between agents in order to achieve the desired results.

The starting model for the multi-agent paradigm corresponds to a stochastic
game. For a system with n agents, it is composed of a set of states X, the sets of
actions Ui for each agent i = 1, ..., n (we let U = U1×...×Un), the state transition
function f : X × U × X → [0, 1] and the reward function ρi : X × U × X → R.

There is a large collection of literature with different methods suitable for
different multi-agent settings. The two major characteristics of such algorithms
are their stability, which is related to their ability to converge to a stationary
policy, and their adaptation, which measures how well the agents react to a
change in the policy. Usually, it is difficult to guarantee both, and one must
favor one over the other. The relationships between the agents can be classified
in several classes, including:

– Fully cooperative: all the agents share a common set of objectives that have
to be maximized. The optimal adaptive learning algorithm [122] has been
proven to converge to an optimal Nash equilibrium (a configuration where no
agent can improve its expected payoff by deviating to a different strategy)
with probability 1. Good experimental results have also been obtained with
the coordinated reinforcement learning approach [36].
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– Fully competitive: the success of each agent directly depends on the failure of
the other agents. For such settings, the minimax-Q [63] algorithm has been
proposed, combining the minimax strategy (acting optimally while consider-
ing that the adversary will also act optimally) with the Q-learning method.

– Mixed: each agent has its own goal. As the objectives of this scenario are not
well defined, there exist a significant number of approaches designed to tackle
various formulations of this setting. An attempt to organize and clarify this
case has been proposed in [87], for instance, along with a comparison of the
most popular methods.

4 Other Directions of Research

4.1 Inverse Reinforcement Learning

Inverse reinforcement learning is the task of determining the reward function
given an observed behavior. This observed behavior can be an optimal policy
or a teacher’s demonstration. Thus, the objective here is to estimate the reward
attribution such that when reinforcement learning is applied with that reward
function, one obtains the original behavior (in the case of behaviors associated
with optimal policies), or even a better one (in the case of demonstrations).

This is particularly relevant in a situation where an expert has the ability
to execute a given task but is unable, due to the complexity of the task and
the domain, to precisely define the reward attribution that would lead to an
optimal policy. One of the most significant success stories of inverse reinforcement
learning is the apprenticeship of self driving cars [1].

To solve this problem in the case of MDPs, [78] identifies inequalities such
that any reward function satisfying them must lead to an optimal policy. In
order to avoid trivial answers, such as the all-zero reward function, these authors
propose to use linear programming to identify the reward function that would
maximize the difference between the value of an optimal action and the value of
the next-best action in the same state. It is also possible to add regularization on
the reward function to make it simpler (typically with non-zero reward on few
actions). Systematic applications of inverse reinforcement learning in the case of
POMDPs have not yet been developed.

4.2 Hierarchical Reinforcement Learning

In order to improve the time of convergence of reinforcement learning algorithms,
different approaches for reducing the dimensionality of the problem have been
proposed. In some cases, these approaches extend the MDP model to semi-
Markov Decision Process (SMDP), by relaxing the Markov property, i.e. policies
may base their choices on more than just the current state.

The option method [114] makes use of local policies that focus on simpler
tasks. Hence, along with actions, a policy π can choose an option O. When
the option O is chosen, a special policy μ associated with O is followed until a
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stochastic stop condition over the states and depending on O is reached. After
the stop condition is reached, the policy π is resumed. The reward associated
with O is the sum of the rewards of the actions performed under μ discounted
by γτ were τ is the number of steps needed to terminate the option O. These
option policies can be defined by an expert, or learned. There has been some
work to try to automate this process of creating relevant options, or deleting
useless ones [66].

State abstraction [4], used in the MAXQ algorithm [24] and in hierarchical
abstract machines [83], is a mapping of the problem representation to a new
representation that preserves some of its properties, in particular those needed
for learning an optimal policy.

4.3 Approximate Linear Programming

As noted before, the linear programming approach to reinforcement learning
typically suffers from the curse of dimensionality: the large number of states leads
to an intractable number of variables for applying exact linear programming. A
common way to overcome this issue is to approximate the cost-to-go function [30]
by carefully designing some basis functions φ1, ..., φK that map the state space
to rewards, and then constructing a linearly parameterized cost-to-go function:

J̃(·, r) =
K∑

k=1

rkφk

where r is a parameter vector to be approximated by linear programming. In
this way, the number of variables of the problem is drastically reduced, from the
original number of states to K. The work in [45] proposes automated methods
for generating a suitable basis functions φ for a given problem.

Using a dynamic Bayesian network to represent the transition model leads
to the concept of factored MDP that can lead to reduced computational times
on problems with a large number of states [35].

4.4 Relational Reinforcement Learning

Relational reinforcement learning [28] combines reinforcement learning with a
relational representation of the state space, for instance by using inductive logic
programming [75]. The goal is to propose a formalism that is able to perform
well on problems requiring a large number of states, but can be represented
compactly using a relational representation. In particular, experiments highlight
the ability of this approach to take advantage of learning on simple tasks to
accelerate the learning on more complex ones. This representation allows the
learning of more “abstract” concepts, which leads to a reduced number of states
that can significantly benefit generalization.
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4.5 Quantum Reinforcement Learning

By taking advantage of the properties of quantum superposition, there is a possi-
bility for considering novel quantum algorithms for reinforcement learning. The
study in [25] presents potentially promising results, through simulated experi-
ments, in regards to the speed of convergence and the trade-off between explo-
ration and exploitation. Much work remains to be done in relation to modeling
the environment, implementing function approximations, and deriving theoreti-
cal guarantees for quantum reinforcement learning (Fig. 5).

5 Deep Reinforcement Learning

Neural networks and deep learning approaches have well known universal approx-
imation properties [21,43]. In recent years, and although they are far from new
[96], neural networks and deep learning approaches have been used to suc-
cessfully tackle a variety of problems in engineering, ranging from computer
vision [5,20,38,55,109,115] to speech recognition [34], to natural language pro-
cessing [32,107,110]. Likewise, deep learning is playing an essential role in the
natural sciences, in areas ranging from high energy physics [7,92], to chemistry
[48,49,65], and to biology [2,6,23,29,131]. Most of these applications use super-
vised, or semi-supervised learning, with stochastic gradient descent as the main
learning algorithm and have benefited from significant increases in the amounts
of available training data and computing power, including GPUs, as well as the
development of good neural network software libraries. [71] also showed that, in
certain cases, it is more efficient to train deep reinforcement learning algorithms
using many CPUs instead of just one GPU.

It is therefore natural to try to combine deep learning methods with reinforce-
ment learning methods, possibly in combination with frameworks for massively
distributed reinforcement learning, such as Gorila [76]. This has been done, for
instance, for the game of Go. The early work in [127,128] used deep learning
methods, in the form of recursive grid neural networks, to evaluate the board or
decide the next move. One characteristic of this approach is the ability to trans-
fer learning between different board sizes (e.g. learn from games played on 9 × 9
or 11 × 11 boards and transfer the knowledge to larger boards). More recently,
reinforcement learning combined with massive convolutional neural networks has
been used to achieve the AI milestone of building an automated Go player [100]
that can outperform human experts. Thus, deep reinforcement learning is a very
active current area of research.

5.1 Value-Based Deep Reinforcement Learning

For value-based deep reinforcement learning, the value function is approximated
by a deep neural network. [72] used Deep Q-networks that combine Q-learning
with such a neural representation in order to teach an agent to play Atari video
games, without any game-specific feature engineering. In this case, the state is
represented by the stack of four previous frames, with the deep network consist-
ing of multiple convolutional and fully-connected layers, and the action consisting
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Fig. 5. Two types of deep reinforcement learning

of the 18 joystick positions. Since directly using neural networks as the func-
tion approximator leads to instability or divergence, the authors used additional
heuristics such as replaying histories to reduce correlations, or using updates that
change the parameters only periodically. Agents using this approach learned to
play the majority of the games at a level equal or higher than the level of pro-
fessional human players for the same game. There has been subsequent work
to improve this approach, such as addressing stability [8], and applying Double
Q-Learning [37] to avoid overestimation of the action-value functions in Deep
Q-Networks [121]. Other extensions include multi-task learning [91,95], and
rapid learning [10], among others.

5.2 Policy-Based Deep Reinforcement Learning

The second class of approaches, policy-based deep reinforcement learning, approx-
imates the policy with deep neural networks. Policy-based approaches, by avoid-
ing the search over the possible actions, converge and train much faster for
many problems, especially with high-dimensional or continuous action spaces.
The deterministic policy gradient, proposed by [102] and subsequently extended
to deep representations by [61], were shown to be more efficient than their
stochastic variants, thus extending deep reinforcement learning to continuous
action spaces. [71] introduced the asynchronous advantage actor-critic (A3C)
algorithm, that lets agents efficiently learn tasks with continuous action spaces,
and works both on 2D and 3D games, with both feed-forward and recurrent
neural approximators. As an application to robotic grasping, [60] uses a policy-
gradient approach with a single deep convolutional network that combines the
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visual input and the gripper motor control to predict the grasp success probabil-
ity. For multi-agent reinforcement learning, deep reinforcement learning has been
used to learn agents by combining the fictitious self-play (FSP) approach [40]
with neural representations [41], and applied to games such as poker.

Of course, both value- and policy-based deep reinforcement learning can be
combined together with search algorithms. This is precisely the approach used
in [100] for the game of Go.

5.3 Planning with Deep Reinforcement Learning

In Algorithm 11, a look up table served as the model of the environment.
However, it is intractable to represent high-dimensional environments, such as
images, with a simple lookup table. To address this issue, deep neural networks
have been trained to predict the next state and the reward given a state-action
pair and thus, perform the task of the model. When the environment takes the
form of an image, deep neural networks have been shown to be able to produce
realistic images that the agent can use to plan [17,57,79,84,124,125]. However,
the predicted images are sometimes noisy and are sometimes missing key ele-
ments of the state. An alternative approach is to use a deep neural network to
encode the current state into an abstract state and then, given an action, learn
to predict the next abstract state along with its value and reward [80,99].

In addition to improving action selection, heuristic search algorithms have
been combined with value and policy networks to improve the value and policy
networks themselves. When applying deep reinforcement learning to Go, [100]
mainly used the MCTS algorithm for action selection while the value and policy
networks relied heavily on gameplay from human experts. However, [103] used
MCTS to train a value and policy network from scratch by using the heuristic
search algorithm for self-play, which resulted in an agent that outperformed all
previous Go agents. This approach was also used when learning to play chess
and shogi [101].
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