First Order Logic
Forest Agostinelli
University of South Carolina

Topics Covered in This Class

- Part 1: Search
- Pathfinding
- Uninformed search
- Informed search
- Adversarial search
- Optimization
- Local search
- Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
- Propositional logic
- First-order logic
- Prolog
- Part 3: Knowledge Representation and Reasoning Under Uncertainty
- Probability
- Bayesian networks

- Part 4: Machine Learning

- Supervised learning
- Inductive logic programming
- Linear models
- Deep neural networks
- PyTorch
- Reinforcement learning
- Markov decision processes
- Dynamic programming
- Model-free RL
- Unsupervised learning
- Clustering
- Autoencoders

Outline

- Motivation
- Objects
- Functions
- Predicates
- Quantifiers
- Examples

Ontological Commitment

- What is being assumed about the nature of reality
- Propositional Logic
- The world consists of facts
- First-order logic
- The world consists of objects
- These objects have certain relations among them that do or do not hold
- In the simplest case, a relation amongst no objects is the same as a proposition
- "It is raining"
- IsRaining
- A relation amongst a single object is a property
- "The cat is brown"
- Brown(Cat)
- A relation amongst two or more objects
- "John and Richard are brothers"
- Brother(John, Richard)

Motivation

- "The cat is brown and the sofa is brown and the cat is on the sofa"
- Propositional Logic
- cb \wedge sb $\wedge \cos$
- First-Order Logic
- Brown $($ Cat $) \wedge$ Brown $(S o f a) \wedge O n(C a t, S o f a)$
- First order logic has objects and relations (predicates)
- Relations can have no arguments (propositions) be unary (properties) or n-ary (relations between objects)

Motivation

- Imagine a knowledge base that describes sets
- How do we add statements describing intersection?
- If the world has 3 sets and integers ranging from 0 to 100
- Propositional logic
- $1 \in\left(s_{1} \cap s_{2}\right) \leftrightarrow\left(1 \in s_{1} \wedge 1 \in s_{2}\right)$
- $1 \in\left(s_{1} \cap s_{3}\right) \leftrightarrow\left(1 \in s_{1} \wedge 1 \in s_{3}\right)$
- $1 \in\left(s_{2} \cap s_{3}\right) \leftrightarrow\left(1 \in s_{2} \wedge 1 \in s_{3}\right)$
- $1 \in\left(s_{2} \cap s_{1}\right) \leftrightarrow\left(1 \in s_{2} \wedge 1 \in s_{1}\right)$
- ...
- First-order logic
- $\forall x, s_{1}, s_{2} x \in\left(s_{1} \cap s_{2}\right) \leftrightarrow\left(x \in s_{1} \wedge x \in s_{2}\right)$
- First-order logic uses quantifiers and variables to make statements about entire collections of objects without mentioning a particular object

Motivation

- "All brown cats blend in with brown sofas"
- "There exists a cat that is not brown"
- First-Order Logic
- $\forall x, y \operatorname{Brown}(x) \wedge \operatorname{Cat}(x) \wedge \operatorname{Brown}(y) \wedge \operatorname{Sofa}(y) \rightarrow \operatorname{Blends}(x, y)$
- $\exists x \operatorname{Cat}(x) \wedge \neg \operatorname{Brown}(x)$

Motivation

- "All humans are mortal"
- Propositional logic
- $h_{1} \wedge m_{1}$
- $h_{2} \wedge m_{2}$
- $h_{3} \wedge m_{3}$
- ...
- First Order Logic
- $\forall x \operatorname{Human}(x) \rightarrow \operatorname{Mortal}(x)$

Motivation

- "Every dog wags its tail"
- $\forall x \operatorname{Dog}(x) \rightarrow \operatorname{Wag}(x, \operatorname{Tail}(x))$
- First-order logic uses functions that return objects

Overview

- $\forall s$ Smelly $(s) \rightarrow$ Adjacent(Home(Wumpus), s)

| $\underline{\text { Quantifier }}$ | Variable | Predicate
 Universal
 Existential | | Expresses
 relations.
 Returnstrue or
 false |
| :---: | :---: | :---: | :---: | :---: | | Maps a |
| :---: |
| tuple of |
| objects to |
| an object |\quad| $\underline{\text { Constant }}$ |
| :---: |
| \forall |

First-Order Logic (First-Order Predicate Logic)

- First-order logic (FOL) allow for objects, relations (predicates) amongst objects, and quantifiers to express properties of many objects without having to explicitly enumerate all objects
- "First-order" because quantified variables represent objects
- "Predicate calculus" because it quantifies over predicates on objects

Second-Order Logic

- First-order logic
- Variables represent objects
- E.g. we an state that a relationship is transitive
- $\forall x, y, z$ BrotherOf $(x, y) \wedge \operatorname{BrotherOf}(y, z)=>\operatorname{BrotherOf}(x, z)$
- Second-order logic
- Variables represent predicates and functions
- E.g. we can define transitive
- $\forall P, x, y, z$ Transitive $(P)<=>(P(x, y) \wedge P(y, z)=>P(x, z))$
- Second-order logic is beyond the scope of this class

Example

- R=Richard
- J=John

Objects

- Objects are nouns
- Objects: Richard, John, crown, Richard's left leg, John's left leg

Functions

- Objects do not have to be listed explicitly
- Functions return objects
- Richard's left leg and John's left leg are not given their own name
- LeftLeg(John)
- LeftLeg(Crown)
-What about LeftLeg(Crown)?
- FOL requires total functions: there must be an output for every input tuple

- To handle this, one can map LeftLeg(Crown) to some "invisible" value (i.e. NULL)

Predicates

- Predicates express relationships among objects
- Returns true or false, depending on its arguments
- Brother(John, Richard) <- True
- Brother(John, LeftLeg(Richard)) <- False
- OnHead(Crown,John) <- True
- Predicates with one argument are referred to as properties
- Purple(Crown)
- Predicates with zero arguments are the same as propositions from propositional logic
- IsMonarchy
- FOL can also use equality
- Father (John) = Henry

Quantifiers

- Quantifiers express properties across different objects
- Instead of enumerating all possible objects, quantifiers use variables
- Universal quantifiers \forall
- Conjunction (AND) over all objects
- Existential quantifiers \exists
- Disjunction (OR) over all objects
- "All kings are persons"
- $\forall x \operatorname{King}(x) \rightarrow \operatorname{Person}(x)$
- "John has a crown on his head"
- $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $)$

Hints for Quantifiers

- "All kings are persons"
- $\forall x \operatorname{King}(x) \rightarrow \operatorname{Person}(x)$
- This is too strong: $\forall x \operatorname{King}(x) \wedge \operatorname{Person}(x)$
- "John has a crown on his head"
- $\exists x \operatorname{Crown}(x) \wedge$ OnHead (x, John)
- This is too weak: $\exists x \operatorname{Crown}(x) \rightarrow \operatorname{OnHead}(x$, John $)$

Nested Quantifiers

The order of "unlike" quantifiers is important.
Like nested variable scopes in a programming language.
Like nested ANDs and ORs in a logical sentence.
$\forall x \exists y \operatorname{Loves}(x, y)$

- For everyone ("all x ") there is someone ("exists y ") whom they love.
- There might be a different y for each x (y is inside the scope of x)
$\exists \mathrm{y} \forall \mathrm{x}$ Loves (x, y)
- There is someone ("exists y ") whom everyone loves ("all x ").
- Every x loves the same $y(x$ is inside the scope of y)

Clearer with parentheses: $\exists \mathrm{y}(\forall \mathrm{x}$ Loves $(\mathrm{x}, \mathrm{y}))$
The order of "like" quantifiers does not matter.
Like nested ANDs and ANDs in a logical sentence

$$
\begin{aligned}
& \forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y) \\
& \exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)
\end{aligned}
$$

Terms

- A term is a logical expression that refers to an object
- Constant symbols
- Functions
- Variables

First-Order Logic Grammar

```
    Sentence }->\mathrm{ AtomicSentence | ComplexSentence
AtomicSentence }->\mathrm{ Predicate | Predicate(Term,...)| Term = Term
ComplexSentence }->\mathrm{ (Sentence)
    | \neg Sentence
    | Sentence ^ Sentence
    | Sentence V Sentence
    | Sentence }=>\mathrm{ Sentence
    | Sentence \Leftrightarrow Sentence
    | Quantifier Variable,... Sentence
        Term -> Function(Term,...)
            | Constant
            | Variable
Quantifier }->\quad\forall|
    Constant }->A|\mp@subsup{X}{1}{}|\mathrm{ John | ..
    Variable }->a|x|s|
    Predicate }->\mathrm{ True | False | After | Loves | Raining | ...
    Function }->\mathrm{ Mother | LeftLeg|...
OPERATOR Precedence : }\neg,=,^,\vee,=>,
```


Conventions and Assumptions

- Each quantifier has a unique variable
- The variable belongs to the innermost quantifier that mentions it
- This can be confusing
- $\forall x(\operatorname{Crown}(x) \vee(\exists x \operatorname{Brother}($ Richard, $x)))<-$ confusing
- $\forall x(\operatorname{Crown}(x) \vee(\exists z \operatorname{Brother}($ Richard,$z)))$ <- better
- Unique-names assumption
- Every constant symbol refers to a distinct object
- For example, John and Richard must be two different objects

De Morgan's Rule for Quantifiers

- Universal quantifiers are conjunctions (and) over the universe of objects
- Existential quantifiers are disjunctions (or) over the universe of objects

De Morgan's Law for Quantifiers

De Morgan's Rule
$P \wedge Q \equiv \neg(\neg P \vee \neg Q)$
$P \vee Q \equiv \neg(\neg P \wedge \neg Q)$
$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$
$\neg(P \vee Q) \equiv \neg P \wedge \neg Q$

Generalized De Morgan's Rule
$\forall x P \equiv \neg \exists x(\neg P)$
$\exists \times P \equiv \neg \forall x(\neg P)$
$\neg \forall x P \equiv \exists x(\neg P)$
$\neg \exists x P \equiv \forall x(\neg P)$

- "No one likes parsnips"
- $\forall x \neg \operatorname{Likes}(x$, Parsnips $) \equiv \neg \exists x \operatorname{Likes}(x$, Parsnips)
- "Everyone likes ice cream"
- $\forall x \operatorname{Likes}(x$, IceCream $) \equiv \neg \exists x \neg \operatorname{Likes}(x$, IceCream $)$

Examples

- "Brothers are siblings"
- $\forall x, y \operatorname{Brother}(x, y) \rightarrow \operatorname{Sibling}(x, y)$
- "The function Sibling is symmetric"
- $\forall x, y \operatorname{Sibling}(x, y) \leftrightarrow \operatorname{Sibling}(y, x)$
- "First cousin is a child of a parent's sibling"
- $\forall x, y$ FirstCousin $(x, y) \leftrightarrow \exists p, p s \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge \operatorname{Parent}(p s, y)$
- "All humans are mortal"
- $\forall x \operatorname{Human}(x) \rightarrow \operatorname{Mortal}(x)$
- "Fifi has a sister who is a cat"
- $\exists x \operatorname{Sister}($ Fifi,$x) \wedge \operatorname{Cat}(x)$

Examples

- "For every food, there is a person who eats that food"
- Use: $\operatorname{Food}(x), \operatorname{Person}(y), \operatorname{Eats}(y, x)$
- $\forall x \exists y \operatorname{Food}(x) \rightarrow \operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)$
- $\forall x \operatorname{Food}(x) \rightarrow \exists y \operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)$
- Pushing in the \exists
- $\forall x \neg F o o d(x) \vee(\exists y P e r s o n(y) \wedge \operatorname{Eats}(y, x))$
- Implication elimination
- Common mistakes:
- $\forall x \exists y \operatorname{Food}(x) \wedge \operatorname{Person}(y) \rightarrow \operatorname{Eats}(y, x)$
- For all x , if x is a food and there exists some person y , that person eats food x
- $\forall x \exists y \operatorname{Food}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)$
- Everything is a food and there exists a person that eats that food

Quick Quiz

- "Every person eats every food"
- "All greedy kings are evil"
- "Everyone has a favorite food"
- "Every person eats some food"
- "Some person eats some food"

Quick Quiz

- "Every person eats every food"
- $\forall x, y \operatorname{Person}(x) \wedge \operatorname{Food}(y) \rightarrow \operatorname{Eats}(x, y)$
- "All greedy kings are evil"
- $\forall x \operatorname{Greed} y(x) \wedge \operatorname{King}(x) \rightarrow \operatorname{Evil}(x)$
- "Everyone has a favorite food"
- $\forall x \exists y \operatorname{Person}(x) \rightarrow \operatorname{Food}(y) \wedge F a v o r i t e(y, x)$
- "Every person eats some food"
- $\forall x \exists y \operatorname{Person}(x) \rightarrow \operatorname{Food}(y) \wedge E a t s(x, y)$
- "Some person eats some food"
- $\exists x \exists y \operatorname{Person}(x) \wedge \operatorname{Food}(y) \wedge E a t s(x, y)$

Quick Quiz

1. (5 pts each, 30 pts total) Fill in each blank below with $\mathrm{Y}(=\mathrm{Yes})$ or $\mathrm{N}(=\mathrm{No})$ depending on whether or not the first order predicate logic sentence correctly expresses the English sentence.
a. \qquad "All cats are mammals." $\forall x \operatorname{Cat}(x) \& \operatorname{Mammal}(x)$
b. \qquad "Spot has a sister who is a cat." $\exists x \operatorname{Sister}(x, \operatorname{Spot}) \& \operatorname{Cat}(x)$
c. \qquad "For every person, there is someone whom that person likes." $\exists x \forall y \operatorname{Likes}(x, y)$
d. \qquad "There is someone who is liked by everyone." $\forall x \exists y \operatorname{Likes}(x, y)$
e. \qquad "Everyone likes ice cream." $\neg \exists x \neg \operatorname{Likes}(x$, IceCream)
f. \qquad "All men are mortal." $\forall \mathrm{x} \operatorname{Man}(\mathrm{x}) \Rightarrow \operatorname{Mortal(x)}$

Quick Quiz

1. (5 pts each, 30 pts total) Fill in each blank below with $\mathrm{Y}(=\mathrm{Yes})$ or $\mathrm{N}(=\mathrm{No})$ depending on whether or not the first order predicate logic sentence correctly expresses the English sentence.
a. \qquad "All cats are mammals." $\forall x \operatorname{Cat}(x) \& \operatorname{Mammal}(x)$
$\forall x \operatorname{Cat}(x) \& \operatorname{Mammal}(x)$ means "Everything is a cat and also is a mammal." $\forall x \operatorname{Cat}(x) \Rightarrow \operatorname{Mammal}(x)$ means "All cats are mammals."

Remember that implication is the natural connective to use with \forall.
b. Y "Spot has a sister who is a cat." $\exists x \operatorname{Sister}(x, \operatorname{Spot}) \& \operatorname{Cat}(x)$

Remember that conjunction is the natural connective to use with 7.
\qquad "For every person, there is someone whom that person likes." $\exists x \forall y \operatorname{Likes}(x, y)$
$\exists x \forall y \operatorname{Likes}(x, y)$ means "There is someone who likes everyone."
$\forall x \exists y \operatorname{Likes}(x, y)$ means "For every person, there is someone that that person likes."

Quick Quiz

\square "There is someone who is liked by everyone." $\forall x \exists y \operatorname{Likes}(x, y)$
$\forall x \exists y \operatorname{Likes}(x, y)$ means "For every person, there is someone that that person likes." $\exists x \forall y \operatorname{Likes}(y, x)$ means "There is someone who is liked by everyone."
e. Y "Everyone likes ice cream." $\neg \exists x \neg \operatorname{Likes}(x$, IceCream $)$
f. $\quad \mathrm{Y} \quad$ "All men are mortal." $\forall \mathrm{x} \operatorname{Man}(\mathrm{x}) \Rightarrow \operatorname{Mortal(x)}$

Quick Quiz

2. (5 pts each, 40 pts total) Let $P K F(x, y)$ mean "Person x Knows Fact y". For purposes of this question only, you may assume that the first argument is a person and the second is a fact. For each English sentence below, write the first order predicate logic sentence that best expresses it. Use " \neg " to mean "not." The first one is done for you as an example.
a. Every person knows every fact. \qquad $\forall x \forall y P K F(x, y)$
b. Every person knows at least one fact. \qquad -
c. There is a person who knows at least one fact. \qquad .
d. There is a person who knows every fact. \qquad .
e. No person knows every fact. \qquad .
f. There is a person who knows no fact. \qquad .
g. No person knows any fact. \qquad -.
h. There is a fact that is known by every person. \qquad .
i. There is a fact that no person knows. \qquad -

Quick Quiz

2. (5 pts each, 40 pts total) Let $\operatorname{PKF}(x, y)$ mean "Person x Knows Fact y". For purposes of this question only, you may assume that the first argument is a person and the second is a fact. For each English sentence below, write the first order predicate logic sentence that best expresses it. Use " \neg " to mean "not." The first one is done for you as an example.
a. Every person knows every fact. \qquad $\forall x \forall y P K F(x, y)$
b. Every person knows at least one fact. \qquad .
c. There is a person who knows at least one fact. \qquad $\exists x \exists y \operatorname{PKF}(x, y)$
d. There is a person who knows every fact. $\exists x \forall y P K F(x, y)$
e. No person knows every fact.

$$
\forall x \exists y \neg P K F(x, y) .
$$

alternatively $\quad \forall x \neg \forall y P K F(x, y) \quad$ or $\quad \neg \exists x \forall y P K F(x, y)$.

Quick Quiz

f. There is a person who knows no fact. $\quad \exists x \forall y \neg P K F(x, y)$.
alternatively $\quad \exists x \neg \exists y P K F(x, y) \quad$ or $\quad \neg \forall x \exists y P K F(x, y)$.
g. No person knows any fact. $\forall x \forall y \neg P K F(x, y)$ alternatively $\quad \forall x \neg \exists y \operatorname{PKF}(x, y) \quad$ or $\quad \neg \exists x \exists y P K F(x, y)$.
h. There is a fact that is known by every person. \qquad $\exists y \forall x P K F(x, y)$
i. There is a fact that no person knows. $\exists y \forall x \neg P K F(x, y)$
alternatively $\quad \exists y \neg \exists x \operatorname{PKF}(x, y) \quad$ or $\quad \neg \forall y \exists x \operatorname{PKF}(x, y)$.

Knowledge Engineering

- In FOL, there are many ways to represent the same thing
- "Ball-5 is red"
- HasColor(Ball-5, Red)
- Red(Ball-5)
- HasProperty(Ball-5, Color, Red)
- ColorOf(Ball-5) = Red
- HasColor(Ball-5(), Red())
- Where Ball-5 and Red() are functions with no arguments that return an object
- Therefore, it is important to agree upon knowledge representation conventions before encoding knowledge

Knowledge Engineering

- The general process of knowledge base construction
- Steps
- Identify the questions
- Assemble the relevant knowledge
- Decide on a vocabulary of predicates, functions, and constants
- Encode general knowledge about the domain
- Encode a description of the problem instance
- Pose queries to the inference procedure and get answers
- Debug and evaluate the knowledge base

Knowledge Engineering: Digital Circuit

Figure 8.6 A digital circuit C_{1}, purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

1 -in	2 -in	3 -in	1 -out	2 -out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Identify the questions

- There are many aspects of a digital circuit that an engineer may be concerned with
- Timing, power consumption, resources, etc.
- For this example, we will focus on functionality
- Does the circuit add properly?

Assemble the Relevant Knowledge

- Understand the scope of the knowledge
- May have to work with domain experts
- Knowledge relevant to the task
- Types of gates: AND, OR, XOR
- How the gates are connected
- The input and output signal of the gates
- Knowledge irrelevant to the task
- Size, shape, color, of gates
- Path the wires take

Decide on a Vocabulary

- This vocabulary is known as the ontology
- A particular theory of the nature of being or existence
- Determines what kinds of things exists, but does not determine their specific interrelationships
- To identify a particular terminal, we use the functions In and Out
- $\operatorname{In}\left(2, C_{1}\right)$, $\operatorname{Out}\left(1, X_{1}\right)$
- Second input to C1, first output of X1
- To identify the gate type, we use the function Type
- Type $\left(X_{1}\right)=X O R$
- We use the predicate Connected to represent connectivity
- Connected $\left(\operatorname{Out}\left(1, X_{1}\right), \operatorname{In}\left(1, X_{2}\right)\right)$

Encode General Knowledge About the Domain

$$
\begin{aligned}
& \forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right) \\
& \forall \mathrm{t} \text { Signal }(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0 \\
& 1 \neq 0 \\
& \forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Connected}\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right) \\
& \forall \mathrm{g} \text { Type }(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\text { Out }(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{n} \operatorname{Signal}(\ln (\mathrm{n}, \mathrm{~g}))=1 \\
& \forall \mathrm{~g} \text { Type }(\mathrm{g})=\operatorname{AND} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n} \mathrm{Signal}(\ln (\mathrm{n}, \mathrm{~g}))=0 \\
& \forall \mathrm{~g} \text { Type }(\mathrm{g})=\text { XOR } \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \operatorname{Signal}(\ln (1, \mathrm{~g})) \neq \operatorname{Signal}(\operatorname{In}(2, \mathrm{~g})) \\
& \forall \mathrm{g} \text { Type }(\mathrm{g})=\text { NOT } \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq \operatorname{Signal}(\operatorname{In}(1, \mathrm{~g}))
\end{aligned}
$$

Encode the Specific Problem Instance

$\operatorname{Type}\left(X_{1}\right)=$ XOR	Type $\left(X_{2}\right)=$ XOR
$\operatorname{Type}\left(A_{1}\right)=$ AND	Type $\left(A_{2}\right)=$ AND

Type $\left(X_{2}\right)=$ XOR
Type $\left(\mathrm{A}_{2}\right)=$ AND

Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(1, X_{2}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(2, A_{2}\right)\right)$
Connected(Out(1, $\left.\left.A_{2}\right), \ln \left(1, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.A_{1}\right), \ln \left(2, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(1, X_{2}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(2, A_{2}\right)\right)$
Connected(Out(1, $\left.\left.A_{2}\right), \ln \left(1, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.A_{1}\right), \ln \left(2, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(1, X_{2}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(2, A_{2}\right)\right)$
Connected(Out(1, $\left.\left.A_{2}\right), \ln \left(1, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.A_{1}\right), \ln \left(2, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(1, X_{2}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(2, A_{2}\right)\right)$
Connected(Out(1, $\left.\left.A_{2}\right), \ln \left(1, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.A_{1}\right), \ln \left(2, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(1, X_{2}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(2, A_{2}\right)\right)$
Connected(Out(1, $\left.\left.A_{2}\right), \ln \left(1, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.A_{1}\right), \ln \left(2, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(1, X_{2}\right)\right)$
Connected(Out(1, $\left.\left.X_{1}\right), \ln \left(2, A_{2}\right)\right)$
Connected(Out(1, $\left.\left.A_{2}\right), \ln \left(1, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.A_{1}\right), \ln \left(2, O_{1}\right)\right)$
Connected(Out(1, $\left.\left.X_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)$

Type $\left(\mathrm{O}_{1}\right)=$ OR

Connected $\left(\ln \left(1, C_{1}\right), \ln \left(1, X_{1}\right)\right)$
Connected $\left(\ln \left(1, C_{1}\right), \ln \left(1, A_{1}\right)\right)$
Connected $\left(\ln \left(2, C_{1}\right), \ln \left(2, X_{1}\right)\right)$
Connected $\left(\ln \left(2, C_{1}\right), \ln \left(2, A_{1}\right)\right)$
Connected $\left(\ln \left(3, C_{1}\right), \ln \left(2, X_{2}\right)\right)$
Connected $\left(\ln \left(3, C_{1}\right), \ln \left(1, A_{2}\right)\right)$

Pose Queries to the Inference Procedure

$$
\begin{gathered}
\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{O}_{1}, \mathrm{o}_{2} \operatorname{Signal}\left(\operatorname{In}\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\operatorname{In}\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{2} \wedge \operatorname{Signal}\left(\operatorname{In}\left(3, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{3} \\
\wedge \text { Signal }\left(\text { Out }\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{1} \wedge \operatorname{Signal}\left(\text { Out }\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{2}
\end{gathered}
$$

- The KB should return all possible substitutions
- This should hopefully be the same as the the truth table for a full adder

Debug the Knowledge Base

- For example, if we forget to tell the knowledge base that $0 \neq 1$, we would get unexpected results
- Just like in programming, we will have to get creative when debugging
- For example, we can look at the output of each gate

Summary

- First-Order Logic
- Quantifiers
- Variables
- Constants
- Functions
- Predicates
- Order of unlike quantifiers matters
- Knowledge engineering
- Inference in first-order logic

