
First Order Logic
Forest Agostinelli

University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Outline

• Motivation
• Objects
• Functions
• Predicates
• Quantifiers
• Examples

Ontological Commitment
• What is being assumed about the nature of reality
• Propositional Logic
• The world consists of facts

• First-order logic
• The world consists of objects
• These objects have certain relations among them that do or do not hold
• In the simplest case, a relation amongst no objects is the same as a proposition

• “It is raining”
• 𝐼𝑠𝑅𝑎𝑖𝑛𝑖𝑛𝑔

• A relation amongst a single object is a property
• “The cat is brown”
• 𝐵𝑟𝑜𝑤𝑛(𝐶𝑎𝑡)

• A relation amongst two or more objects
• “John and Richard are brothers”
• 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

Motivation

• “The cat is brown and the sofa is brown and the cat is on the sofa”
• Propositional Logic
• 𝑐𝑏 ∧ 𝑠𝑏 ∧ 𝑐𝑜𝑠

• First-Order Logic
• 𝐵𝑟𝑜𝑤𝑛 𝐶𝑎𝑡 ∧ 𝐵𝑟𝑜𝑤𝑛 𝑆𝑜𝑓𝑎 ∧ 𝑂𝑛(𝐶𝑎𝑡, 𝑆𝑜𝑓𝑎)

• First order logic has objects and relations (predicates)
• Relations can have no arguments (propositions) be unary (properties) or n-ary

(relations between objects)

Motivation
• Imagine a knowledge base that describes sets
• How do we add statements describing intersection?

• If the world has 3 sets and integers ranging from 0 to 100
• Propositional logic

• 1 ∈ (𝑠!∩ 𝑠") ↔ (1 ∈ 𝑠! ∧ 1 ∈ 𝑠")
• 1 ∈ (𝑠!∩ 𝑠#) ↔ (1 ∈ 𝑠! ∧ 1 ∈ 𝑠#)
• 1 ∈ (𝑠"∩ 𝑠#) ↔ (1 ∈ 𝑠" ∧ 1 ∈ 𝑠#)
• 1 ∈ (𝑠"∩ 𝑠!) ↔ (1 ∈ 𝑠" ∧ 1 ∈ 𝑠!)
• …

• First-order logic
• ∀ 𝑥, 𝑠!, 𝑠" 𝑥 ∈ (𝑠!∩ 𝑠") ↔ (𝑥 ∈ 𝑠! ∧ 𝑥 ∈ 𝑠")

• First-order logic uses quantifiers and variables to make statements about entire
collections of objects without mentioning a particular object

Motivation

• “All brown cats blend in with brown sofas”
• “There exists a cat that is not brown”
• First-Order Logic
• ∀𝑥, 𝑦 𝐵𝑟𝑜𝑤𝑛 𝑥 ∧ 𝐶𝑎𝑡 𝑥 ∧ 𝐵𝑟𝑜𝑤𝑛 𝑦 ∧ 𝑆𝑜𝑓𝑎(𝑦) → 𝐵𝑙𝑒𝑛𝑑𝑠(𝑥, 𝑦)
• ∃𝑥 𝐶𝑎𝑡 𝑥 ∧ ¬𝐵𝑟𝑜𝑤𝑛(𝑥)

Motivation

• “All humans are mortal”
• Propositional logic
• ℎ! ∧ 𝑚!
• ℎ" ∧ 𝑚"
• ℎ# ∧ 𝑚#
• …

• First Order Logic
• ∀𝑥 𝐻𝑢𝑚𝑎𝑛 𝑥 → 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)

Motivation

• “Every dog wags its tail”
• ∀𝑥 𝐷𝑜𝑔 𝑥 → 𝑊𝑎𝑔(𝑥, 𝑇𝑎𝑖𝑙 𝑥)
• First-order logic uses functions that return objects

Overview

§∀𝑠 𝑆𝑚𝑒𝑙𝑙𝑦 𝑠 → 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝐻𝑜𝑚𝑒 𝑊𝑢𝑚𝑝𝑢𝑠 , 𝑠)

Constant
Objects in
the world

Quantifier
Universal
Existential

Variable Predicate
Expresses
relations.

Returns true or
false

Function
Maps a
tuple of

objects to
an object

∀ s Smelly Home Wumpus
Adjacent

First-Order Logic (First-Order Predicate Logic)

• First-order logic (FOL) allow for objects, relations (predicates) amongst objects,
and quantifiers to express properties of many objects without having to
explicitly enumerate all objects
• “First-order” because quantified variables represent objects
• “Predicate calculus” because it quantifies over predicates on objects

Second-Order Logic

• First-order logic
• Variables represent objects
• E.g. we an state that a relationship is transitive
• ∀ x, y, z BrotherOf(x,y) ∧ BrotherOf(y,z) => BrotherOf(x,z)

• Second-order logic
• Variables represent predicates and functions
• E.g. we can define transitive
• ∀ P, x, y, z Transitive(P) <=>(P(x,y) ∧ P(y,z) => P(x,z))
• Second-order logic is beyond the scope of this class

Example
• R=Richard
• J=John

Objects

• Objects are nouns
• Objects: Richard, John, crown, Richard’s left

leg, John’s left leg

Functions

• Objects do not have to be listed explicitly
• Functions return objects
• Richard’s left leg and John’s left leg are not

given their own name
• 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝐽𝑜ℎ𝑛)
• 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝐶𝑟𝑜𝑤𝑛)

• What about 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝐶𝑟𝑜𝑤𝑛)?
• FOL requires total functions: there must be an

output for every input tuple
• To handle this, one can map 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝐶𝑟𝑜𝑤𝑛) to

some “invisible” value (i.e. NULL)

Predicates

• Predicates express relationships among objects
• Returns true or false, depending on its arguments

• 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑) <- True
• 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛, 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)) <- False
• 𝑂𝑛𝐻𝑒𝑎𝑑(𝐶𝑟𝑜𝑤𝑛, 𝐽𝑜ℎ𝑛) <- True

• Predicates with one argument are referred to as
properties
• 𝑃𝑢𝑟𝑝𝑙𝑒(𝐶𝑟𝑜𝑤𝑛)

• Predicates with zero arguments are the same as
propositions from propositional logic
• 𝐼𝑠𝑀𝑜𝑛𝑎𝑟𝑐ℎ𝑦

• FOL can also use equality
• 𝐹𝑎𝑡ℎ𝑒𝑟 𝐽𝑜ℎ𝑛 = 𝐻𝑒𝑛𝑟𝑦

Quantifiers

• Quantifiers express properties across different
objects
• Instead of enumerating all possible objects,

quantifiers use variables
• Universal quantifiers ∀
• Conjunction (AND) over all objects

• Existential quantifiers ∃
• Disjunction (OR) over all objects

• “All kings are persons”
• ∀𝑥 𝐾𝑖𝑛𝑔 𝑥 → 𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• “John has a crown on his head”
• ∃𝑥 𝐶𝑟𝑜𝑤𝑛 𝑥 ∧ 𝑂𝑛𝐻𝑒𝑎𝑑(𝑥, 𝐽𝑜ℎ𝑛)

Hints for Quantifiers

• “All kings are persons”
• ∀𝑥 𝐾𝑖𝑛𝑔 𝑥 → 𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)
• This is too strong: ∀𝑥 𝐾𝑖𝑛𝑔 𝑥 ∧ 𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• “John has a crown on his head”
• ∃𝑥 𝐶𝑟𝑜𝑤𝑛 𝑥 ∧ 𝑂𝑛𝐻𝑒𝑎𝑑 𝑥, 𝐽𝑜ℎ𝑛
• This is too weak: ∃𝑥 𝐶𝑟𝑜𝑤𝑛 𝑥 → 𝑂𝑛𝐻𝑒𝑎𝑑 𝑥, 𝐽𝑜ℎ𝑛

Nested Quantifiers

Terms

• A term is a logical expression that refers to an
object
• Constant symbols
• Functions
• Variables

First-Order Logic Grammar

Conventions and Assumptions

• Each quantifier has a unique variable
• The variable belongs to the innermost quantifier that mentions it
• This can be confusing

• ∀𝑥 𝐶𝑟𝑜𝑤𝑛 𝑥 ∨ ∃𝑥 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑥 <- confusing

• ∀𝑥 𝐶𝑟𝑜𝑤𝑛 𝑥 ∨ ∃𝑧 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑧 <- better

• Unique–names assumption
• Every constant symbol refers to a distinct object
• For example, John and Richard must be two different objects

De Morgan’s Rule for Quantifiers

• Universal quantifiers are conjunctions (and) over the universe of objects
• Existential quantifiers are disjunctions (or) over the universe of objects

• “No one likes parsnips”
• ∀𝑥¬𝐿𝑖𝑘𝑒𝑠 𝑥, 𝑃𝑎𝑟𝑠𝑛𝑖𝑝𝑠 ≡ ¬∃𝑥 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝑃𝑎𝑟𝑠𝑛𝑖𝑝𝑠)

• “Everyone likes ice cream”
• ∀𝑥 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚 ≡ ¬∃𝑥¬𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚)

Examples

• “Brothers are siblings”
• ∀𝑥, 𝑦 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 → 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦)

• “The function Sibling is symmetric”
• ∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔 𝑥, 𝑦 ↔ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑦, 𝑥)

• “First cousin is a child of a parent’s sibling”
• ∀𝑥, 𝑦 𝐹𝑖𝑟𝑠𝑡𝐶𝑜𝑢𝑠𝑖𝑛 𝑥, 𝑦 ↔ ∃𝑝, 𝑝𝑠 𝑃𝑎𝑟𝑒𝑛𝑡 𝑝, 𝑥 ∧ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔 𝑝𝑠, 𝑝 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝𝑠, 𝑦)

• “All humans are mortal”
• ∀𝑥 𝐻𝑢𝑚𝑎𝑛 𝑥 → 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)

• “Fifi has a sister who is a cat”
• ∃𝑥 𝑆𝑖𝑠𝑡𝑒𝑟 𝐹𝑖𝑓𝑖, 𝑥 ∧ 𝐶𝑎𝑡(𝑥)

Examples
• “For every food, there is a person who eats that food”
• Use: 𝐹𝑜𝑜𝑑(𝑥), 𝑃𝑒𝑟𝑠𝑜𝑛(𝑦), 𝐸𝑎𝑡𝑠(𝑦, 𝑥)

• ∀𝑥∃𝑦 𝐹𝑜𝑜𝑑 𝑥 → 𝑃𝑒𝑟𝑠𝑜𝑛 𝑦 ∧ 𝐸𝑎𝑡𝑠(𝑦, 𝑥)
• ∀𝑥 𝐹𝑜𝑜𝑑 𝑥 → ∃𝑦 𝑃𝑒𝑟𝑠𝑜𝑛 𝑦 ∧ 𝐸𝑎𝑡𝑠(𝑦, 𝑥)
• Pushing in the ∃

• ∀𝑥¬𝐹𝑜𝑜𝑑 𝑥 ∨ (∃𝑦𝑃𝑒𝑟𝑠𝑜𝑛 𝑦 ∧ 𝐸𝑎𝑡𝑠(𝑦, 𝑥))
• Implication elimination

• Common mistakes:
• ∀𝑥∃𝑦 𝐹𝑜𝑜𝑑 𝑥 ∧ 𝑃𝑒𝑟𝑠𝑜𝑛 𝑦 → 𝐸𝑎𝑡𝑠(𝑦, 𝑥)

• For all x, if x is a food and there exists some person y, that person eats food x
• ∀𝑥∃𝑦 𝐹𝑜𝑜𝑑 𝑥 ∧ 𝑃𝑒𝑟𝑠𝑜𝑛 𝑦 ∧ 𝐸𝑎𝑡𝑠 𝑦, 𝑥

• Everything is a food and there exists a person that eats that food

Quick Quiz

• “Every person eats every food”
• “All greedy kings are evil”
• “Everyone has a favorite food”
• “Every person eats some food”
• “Some person eats some food”

Quick Quiz

• “Every person eats every food”
• ∀𝑥, 𝑦 𝑃𝑒𝑟𝑠𝑜𝑛 𝑥 ∧ 𝐹𝑜𝑜𝑑 𝑦 → 𝐸𝑎𝑡𝑠(𝑥, 𝑦)

• “All greedy kings are evil”
• ∀𝑥 𝐺𝑟𝑒𝑒𝑑𝑦 𝑥 ∧ 𝐾𝑖𝑛𝑔 𝑥 → 𝐸𝑣𝑖𝑙(𝑥)

• “Everyone has a favorite food”
• ∀𝑥∃𝑦 𝑃𝑒𝑟𝑠𝑜𝑛 𝑥 → 𝐹𝑜𝑜𝑑 𝑦 ∧ 𝐹𝑎𝑣𝑜𝑟𝑖𝑡𝑒(𝑦, 𝑥)

• “Every person eats some food”
• ∀𝑥∃𝑦 𝑃𝑒𝑟𝑠𝑜𝑛 𝑥 → 𝐹𝑜𝑜𝑑 𝑦 ∧ 𝐸𝑎𝑡𝑠(𝑥, 𝑦)

• “Some person eats some food”
• ∃𝑥∃𝑦 𝑃𝑒𝑟𝑠𝑜𝑛 𝑥 ∧ 𝐹𝑜𝑜𝑑 𝑦 ∧ 𝐸𝑎𝑡𝑠(𝑥, 𝑦)

Quick Quiz

Quick Quiz

Quick Quiz

Quick Quiz

Quick Quiz

Quick Quiz

Knowledge Engineering

• In FOL, there are many ways to represent the same thing
• “Ball-5 is red”
• HasColor(Ball-5, Red)
• Red(Ball-5)
• HasProperty(Ball-5, Color, Red)
• ColorOf(Ball-5) = Red
• HasColor(Ball-5(), Red())
• Where Ball-5 and Red() are functions with no arguments that return an object

• Therefore, it is important to agree upon knowledge representation conventions
before encoding knowledge

Knowledge Engineering

• The general process of knowledge base construction
• Steps
• Identify the questions
• Assemble the relevant knowledge
• Decide on a vocabulary of predicates, functions, and constants
• Encode general knowledge about the domain
• Encode a description of the problem instance
• Pose queries to the inference procedure and get answers
• Debug and evaluate the knowledge base

Knowledge Engineering: Digital Circuit

1-in 2-in 3-in 1-out 2-out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Identify the questions

• There are many aspects of a digital circuit that an engineer may be concerned
with
• Timing, power consumption, resources, etc.

• For this example, we will focus on functionality
• Does the circuit add properly?

Assemble the Relevant Knowledge
• Understand the scope of the knowledge
• May have to work with domain experts
• Knowledge relevant to the task

• Types of gates: AND, OR, XOR
• How the gates are connected
• The input and output signal of the gates

• Knowledge irrelevant to the task
• Size, shape, color, of gates
• Path the wires take

Decide on a Vocabulary
• This vocabulary is known as the ontology

• A particular theory of the nature of being or existence
• Determines what kinds of things exists, but does not determine their specific interrelationships

• To identify a particular terminal, we use the functions 𝐼𝑛 and 𝑂𝑢𝑡
• 𝐼𝑛 2, 𝐶! , 𝑂𝑢𝑡(1, 𝑋!)

• Second input to C1, first output of X1
• To identify the gate type, we use the function 𝑇𝑦𝑝𝑒

• 𝑇𝑦𝑝𝑒 𝑋! = 𝑋𝑂𝑅
• We use the predicate 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 to represent connectivity

• 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡 1, 𝑋! , 𝐼𝑛 1, 𝑋"

Encode General Knowledge About the Domain

Encode the Specific Problem Instance

Pose Queries to the Inference Procedure

• The KB should return all possible substitutions
• This should hopefully be the same as the the truth table for a full adder

Debug the Knowledge Base
• For example, if we forget to tell the knowledge base that 0 ≠ 1, we would get

unexpected results
• Just like in programming, we will have to get creative when debugging
• For example, we can look at the output of each gate

Summary

• First-Order Logic
• Quantifiers
• Variables
• Constants
• Functions
• Predicates

• Order of unlike quantifiers matters
• Knowledge engineering

Next Time

• Inference in first-order logic

