

First Order Logic

Forest Agostinelli University of South Carolina

Topics Covered in This Class

• Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog
- Part 3: Knowledge Representation and Reasoning Under Uncertainty
 - Probability
 - Bayesian networks

- Part 4: Machine Learning
 - Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
 - Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
 - Unsupervised learning
 - Clustering
 - Autoencoders

Outline

- Motivation
- Objects
- Functions
- Predicates
- Quantifiers
- Examples

Ontological Commitment

- What is being assumed about the nature of reality
- Propositional Logic
 - The world consists of facts
- First-order logic
 - The world consists of objects
 - These objects have certain relations among them that do or do not hold
 - In the simplest case, a relation amongst no objects is the same as a proposition
 - "It is raining"
 - IsRaining
 - A relation amongst a single object is a property
 - "The cat is brown"
 - Brown(Cat)
 - A relation amongst two or more objects
 - "John and Richard are brothers"
 - Brother(John, Richard)

- "The cat is brown and the sofa is brown and the cat is on the sofa"
- Propositional Logic
 - $cb \wedge sb \wedge cos$
- First-Order Logic
 - $Brown(Cat) \wedge Brown(Sofa) \wedge On(Cat, Sofa)$
- First order logic has objects and relations (predicates)
- Relations can have no arguments (propositions) be unary (properties) or n-ary (relations between objects)

- Imagine a knowledge base that describes sets
- How do we add statements describing intersection?
 - If the world has 3 sets and integers ranging from 0 to 100
- Propositional logic
 - $1 \in (s_1 \cap s_2) \leftrightarrow (1 \in s_1 \land 1 \in s_2)$
 - $1 \in (s_1 \cap s_3) \leftrightarrow (1 \in s_1 \land 1 \in s_3)$
 - $1 \in (s_2 \cap s_3) \leftrightarrow (1 \in s_2 \land 1 \in s_3)$
 - $1 \in (s_2 \cap s_1) \leftrightarrow (1 \in s_2 \land 1 \in s_1)$
 - ...
- First-order logic
 - $\forall x, s_1, s_2 x \in (s_1 \cap s_2) \leftrightarrow (x \in s_1 \land x \in s_2)$
- First-order logic uses quantifiers and variables to make statements about entire collections of objects without mentioning a particular object

- "All brown cats blend in with brown sofas"
- "There exists a cat that is not brown"
- First-Order Logic
 - $\forall x, y Brown(x) \land Cat(x) \land Brown(y) \land Sofa(y) \rightarrow Blends(x, y)$
 - $\exists x \ Cat(x) \land \neg Brown(x)$

- "All humans are mortal"
- Propositional logic
 - $h_1 \wedge m_1$
 - $h_2 \wedge m_2$
 - $h_3 \wedge m_3$
 - ...
- First Order Logic
 - $\forall x Human(x) \rightarrow Mortal(x)$

- "Every dog wags its tail"
- $\forall x Dog(x) \rightarrow Wag(x, Tail(x))$
- First-order logic uses functions that return objects

Overview

• $\forall s \ Smelly(s) \rightarrow Adjacent(Home(Wumpus), s)$

<u>Quantifier</u> Universal Existential	<u>Variable</u>	<u>Predicate</u> Expresses relations. Returns true or false	<u>Function</u> Maps a tuple of objects to an object	<u>Constant</u> Objects in the world
\forall	S	Smelly Adjacent	Home	Wumpus

First-Order Logic (First-Order Predicate Logic)

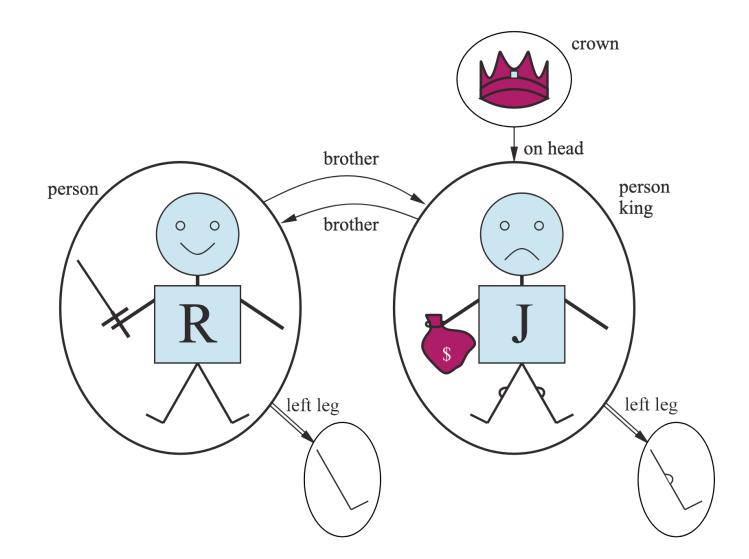
- First-order logic (FOL) allow for objects, relations (predicates) amongst objects, and quantifiers to express properties of many objects without having to explicitly enumerate all objects
 - "First-order" because quantified variables represent objects
 - "Predicate calculus" because it quantifies over predicates on objects

Second-Order Logic

- First-order logic
 - Variables represent objects
 - E.g. we an state that a relationship is transitive
 - $\forall x, y, z BrotherOf(x,y) \land BrotherOf(y,z) => BrotherOf(x,z)$
- Second-order logic
 - Variables represent predicates and functions
 - E.g. we can define transitive
 - \forall P, x, y, z Transitive(P) <=>(P(x,y) \land P(y,z) => P(x,z))
 - Second-order logic is beyond the scope of this class

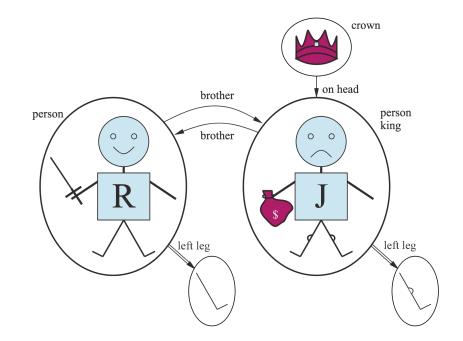
Example

- R=Richard
- J=John



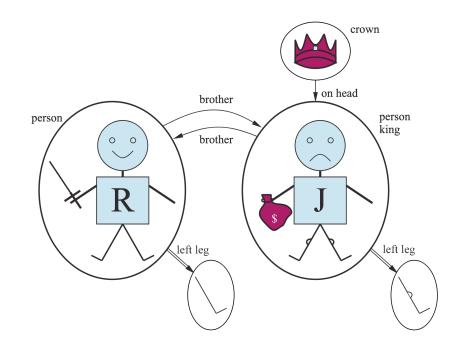
Objects

- Objects are nouns
- Objects: Richard, John, crown, Richard's left leg, John's left leg



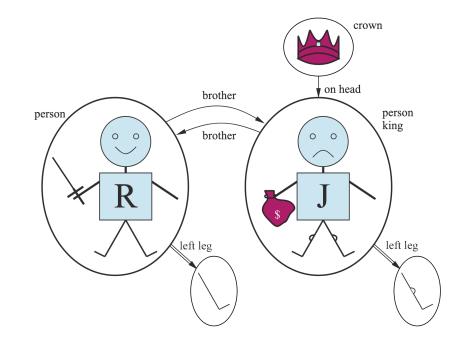
Functions

- Objects do not have to be listed explicitly
- Functions return objects
- Richard's left leg and John's left leg are not given their own name
 - LeftLeg(John)
 - LeftLeg(Crown)
- What about LeftLeg(Crown)?
 - FOL requires total functions: there must be an output for every input tuple
 - To handle this, one can map LeftLeg(Crown) to some "invisible" value (i.e. NULL)



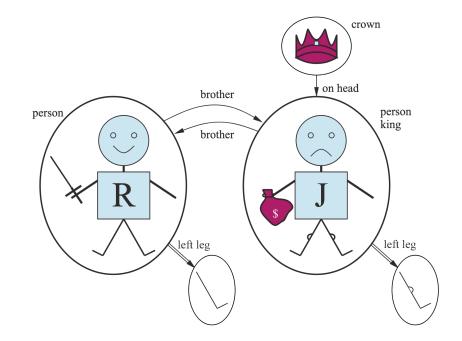
Predicates

- Predicates express relationships among objects
- Returns true or false, depending on its arguments
 - *Brother(John, Richard) <-* True
 - Brother(John, LeftLeg(Richard)) <- False
 - OnHead(Crown, John) <- True
- Predicates with one argument are referred to as properties
 - Purple(Crown)
- Predicates with zero arguments are the same as propositions from propositional logic
 - IsMonarchy
- FOL can also use equality
 - Father(John) = Henry



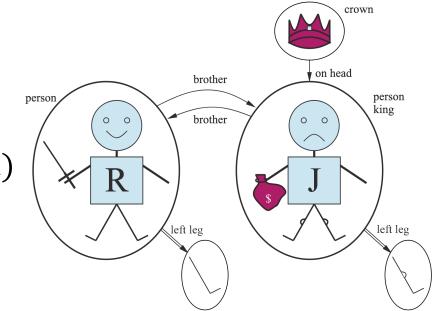
Quantifiers

- Quantifiers express properties across different objects
- Instead of enumerating all possible objects, quantifiers use variables
- Universal quantifiers ∀
 - Conjunction (AND) over all objects
- Existential quantifiers \exists
 - Disjunction (OR) over all objects
- "All kings are persons"
 - $\forall x \operatorname{King}(x) \rightarrow \operatorname{Person}(x)$
- "John has a crown on his head"
 - $\exists x Crown(x) \land OnHead(x, John)$



Hints for Quantifiers

- "All kings are persons"
 - $\forall x \operatorname{King}(x) \rightarrow \operatorname{Person}(x)$
 - This is too strong: $\forall x \ King(x) \land Person(x)$
- "John has a crown on his head"
 - $\exists x Crown(x) \land OnHead(x, John)$
 - This is too weak: $\exists x \ Crown(x) \rightarrow OnHead(x, John)$



Nested Quantifiers

The order of "unlike" quantifiers is important.

Like nested variable scopes in a programming language. Like nested ANDs and ORs in a logical sentence.

- $\forall x \exists y Loves(x,y)$
 - For everyone ("all x") there is someone ("exists y") whom they love.
 - There might be a different y for each x (y is inside the scope of x)

 $\exists y \forall x Loves(x,y)$

- There is someone ("exists y") whom everyone loves ("all x").

- Every x loves the same y (x is inside the scope of y)

<u>Clearer with parentheses:</u> $\exists y (\forall x Loves(x,y))$

```
<u>The order of "like" quantifiers does not matter.</u>

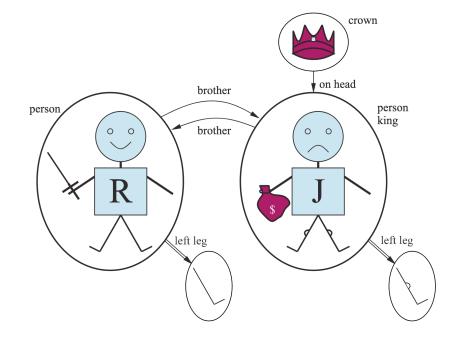
Like nested ANDs and ANDs in a logical sentence

\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)

\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)
```

Terms

- A term is a logical expression that refers to an object
 - Constant symbols
 - Functions
 - Variables



First-Order Logic Grammar

Sentence	\rightarrow	$AtomicSentence \mid ComplexSentence$
AtomicSentence	\rightarrow	$Predicate \mid Predicate(Term,) \mid Term = Term$
ComplexSentence	\rightarrow	(Sentence)
		\neg Sentence
		$Sentence \land Sentence$
		$Sentence \lor Sentence$
		$Sentence \Rightarrow Sentence$
		$Sentence \Leftrightarrow Sentence$
		$Quantifier Variable, \dots Sentence$
Term	\rightarrow	$Function(Term, \ldots)$
		Constant
		Variable
Quantifier	\rightarrow	$\forall \mid \exists$
Constant	\rightarrow	$A \mid X_1 \mid John \mid \cdots$
Variable	\rightarrow	$a \mid x \mid s \mid \cdots$
Predicate	\rightarrow	$True \mid False \mid After \mid Loves \mid Raining \mid \cdots$
Function	\rightarrow	$Mother \mid LeftLeg \mid \cdots$
OPERATOR PRECEDENCE	:	$ eg,=,\wedge,\vee,\Rightarrow,\Leftrightarrow$

Conventions and Assumptions

- Each quantifier has a unique variable
 - The variable belongs to the innermost quantifier that mentions it
 - This can be confusing
 - $\forall x (Crown(x) \lor (\exists x Brother(Richard, x))) < confusing$
 - $\forall x \left(Crown(x) \lor \left(\exists z Brother(Richard, z) \right) \right)$ <- better
- Unique-names assumption
 - Every constant symbol refers to a distinct object
 - For example, John and Richard must be two different objects

De Morgan's Rule for Quantifiers

- Universal quantifiers are conjunctions (and) over the universe of objects
- Existential quantifiers are disjunctions (or) over the universe of objects

De Morgan's Law for Quantifiers

De Morgan's Rule

- $P \land Q \equiv \neg(\neg P \lor \neg Q)$ $P \lor Q \equiv \neg(\neg P \land \neg Q)$
- $\mathcal{P} \lor \mathcal{Q} \equiv \neg (\neg \mathcal{P} \land \neg \mathcal{Q})$
- $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \lor Q) \equiv \neg P \land \neg Q$

Generalized De Morgan's Rule

- $\forall x P \equiv \neg \exists x (\neg P)$
- $\exists x P \equiv \neg \forall x (\neg P)$
- $\neg \forall x P \equiv \exists x (\neg P)$

 $\neg \exists x P \equiv \forall x (\neg P)$

• "No one likes parsnips"

- $\forall x \neg Likes(x, Parsnips) \equiv \neg \exists x \ Likes(x, Parsnips)$
- "Everyone likes ice cream"
 - $\forall x \ Likes(x, IceCream) \equiv \neg \exists x \neg Likes(x, IceCream)$

Examples

- "Brothers are siblings"
 - $\forall x, y Brother(x, y) \rightarrow Sibling(x, y)$
- "The function Sibling is symmetric"
 - $\forall x, y \ Sibling(x, y) \leftrightarrow Sibling(y, x)$
- "First cousin is a child of a parent's sibling"
 - $\forall x, y \ First Cousin(x, y) \leftrightarrow \exists p, ps \ Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$
- "All humans are mortal"
 - $\forall x Human(x) \rightarrow Mortal(x)$
- "Fifi has a sister who is a cat"
 - $\exists x \, Sister(Fifi, x) \land Cat(x)$

Examples

- "For every food, there is a person who eats that food"
 Use: Food(x), Person(y), Eats(y, x)
- $\forall x \exists y Food(x) \rightarrow Person(y) \land Eats(y, x)$
- $\forall x Food(x) \rightarrow \exists y Person(y) \land Eats(y, x)$
 - Pushing in the \exists
- $\forall x \neg Food(x) \lor (\exists yPerson(y) \land Eats(y, x))$
 - Implication elimination
- Common mistakes:
 - $\forall x \exists y Food(x) \land Person(y) \rightarrow Eats(y, x)$
 - For all x, if x is a food and there exists some person y, that person eats food x
 - $\forall x \exists y Food(x) \land Person(y) \land Eats(y, x)$
 - Everything is a food and there exists a person that eats that food

- "Every person eats every food"
- "All greedy kings are evil"
- "Everyone has a favorite food"
- "Every person eats some food"
- "Some person eats some food"

- "Every person eats every food"
 - $\forall x, y Person(x) \land Food(y) \rightarrow Eats(x, y)$
- "All greedy kings are evil"
 - $\forall x \ Greedy(x) \land King(x) \rightarrow Evil(x)$
- "Everyone has a favorite food"
 - $\forall x \exists y Person(x) \rightarrow Food(y) \land Favorite(y, x)$
- "Every person eats some food"
 - $\forall x \exists y Person(x) \rightarrow Food(y) \land Eats(x, y)$
- "Some person eats some food"
 - $\exists x \exists y Person(x) \land Food(y) \land Eats(x, y)$

1. (5 pts each, 30 pts total) Fill in each blank below with Y (= Yes) or N (= No) depending on whether or not the first order predicate logic sentence correctly expresses the English sentence.

- a. _____ "All cats are mammals." $\forall x \operatorname{Cat}(x) \& \operatorname{Mammal}(x)$
- b. _____ "Spot has a sister who is a cat." $\exists x \operatorname{Sister}(x, \operatorname{Spot}) \& \operatorname{Cat}(x)$
- c. _____ "For every person, there is someone whom that person likes." $\exists x \forall y \text{ Likes}(x, y)$
- d. _____ "There is someone who is liked by everyone." $\forall x \exists y \text{ Likes}(x, y)$
- e. _____ "Everyone likes ice cream." $\neg \exists x \neg \text{Likes}(x, \text{IceCream})$
- f. _____ "All men are mortal." $\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$

1. (5 pts each, 30 pts total) Fill in each blank below with Y (= Yes) or N (= No) depending on whether or not the first order predicate logic sentence correctly expresses the English sentence.

a. N "All cats are mammals." $\forall x \operatorname{Cat}(x) \& \operatorname{Mammal}(x)$

 $\forall x \operatorname{Cat}(x) \& \operatorname{Mammal}(x) \text{ means "Everything is a cat and also is a mammal."}$ $\forall x \operatorname{Cat}(x) \Rightarrow \operatorname{Mammal}(x) \text{ means "All cats are mammals."}$

Remember that implication is the natural connective to use with \forall *.*

b. Y "Spot has a sister who is a cat." $\exists x \text{ Sister}(x, \text{ Spot}) \& \text{Cat}(x)$

Remember that conjunction is the natural connective to use with \exists .

c. N "For every person, there is someone whom that person likes." $\exists x \forall y \text{ Likes}(x, y)$

 $\exists x \forall y \text{ Likes}(x, y) \text{ means "There is someone who likes everyone."}$ $\forall x \exists y \text{ Likes}(x, y) \text{ means "For every person, there is someone that that person likes."}$

Remember that the second quantifier is inside the scope of the first quantifier.

d. <u>N</u> "There is someone who is liked by everyone." $\forall x \exists y \text{ Likes}(x, y)$ $\forall x \exists y \text{ Likes}(x, y)$ means "For every person, there is someone that that person likes." $\exists x \forall y \text{ Likes}(y, x)$ means "There is someone who is liked by everyone."

- e. Y "Everyone likes ice cream." $\neg \exists x \neg \text{Likes}(x, \text{IceCream})$
- f. Y "All men are mortal." $\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$

2. (5 pts each, 40 pts total) Let PKF(x, y) mean "Person x Knows Fact y". For purposes of this question only, you may assume that the first argument is a person and the second is a fact. For each English sentence below, write the first order predicate logic sentence that best expresses it. Use "¬" to mean "not." The first one is done for you as an example.

a. Every person knows every fact. $\forall x \forall y PKF(x, y)$.

b. Every person knows at least one fact. _____.

c. There is a person who knows at least one fact. ______.

d. There is a person who knows every fact. ______.

e. No person knows every fact. ______.

f. There is a person who knows no fact. ______.

g. No person knows any fact. _____.

h. There is a fact that is known by every person. ______.

i. There is a fact that no person knows. ______.

2. (5 pts each, 40 pts total) Let PKF(x, y) mean "Person x Knows Fact y". For purposes of this question only, you may assume that the first argument is a person and the second is a fact. For each English sentence below, write the first order predicate logic sentence that best expresses it. Use "¬" to mean "not." The first one is done for you as an example.

a. Every person knows every fact. $\forall x \forall y PKF(x, y)$.

b. Every person knows at least one fact. $\forall x \exists y \ PKF(x, y)$

c. There is a person who knows at least one fact. $\exists x \exists y PKF(x, y)$

d. There is a person who knows every fact. $\exists x \forall y PKF(x, y)$

e. No person knows every fact. $\forall x \exists y \neg PKF(x, y)$.

alternatively $\forall x \neg \forall y PKF(x, y)$ or $\neg \exists x \forall y PKF(x, y)$.

f. There is a person who knows no fact. $\exists x \forall y \neg PKF(x, y)$.

alternatively $\exists x \neg \exists y PKF(x, y)$ or $\neg \forall x \exists y PKF(x, y)$.

g. No person knows any fact. $\forall x \forall y \neg PKF(x, y)$

alternatively $\forall x \neg \exists y PKF(x, y)$ or $\neg \exists x \exists y PKF(x, y)$.

h. There is a fact that is known by every person. $\exists y \forall x PKF(x, y)$

i. There is a fact that no person knows. $\exists y \forall x \neg PKF(x, y)$

alternatively $\exists y \neg \exists x PKF(x, y)$ or $\neg \forall y \exists x PKF(x, y)$.

Knowledge Engineering

- In FOL, there are many ways to represent the same thing
- "Ball-5 is red"
- HasColor(Ball-5, Red)
- Red(Ball-5)
- HasProperty(Ball-5, Color, Red)
- ColorOf(Ball-5) = Red
- HasColor(Ball-5(), Red())
 - Where Ball-5 and Red() are functions with no arguments that return an object
- Therefore, it is important to agree upon knowledge representation conventions before encoding knowledge

Knowledge Engineering

- The general process of knowledge base construction
- Steps
 - Identify the questions
 - Assemble the relevant knowledge
 - Decide on a vocabulary of predicates, functions, and constants
 - Encode general knowledge about the domain
 - Encode a description of the problem instance
 - Pose queries to the inference procedure and get answers
 - Debug and evaluate the knowledge base

Knowledge Engineering: Digital Circuit

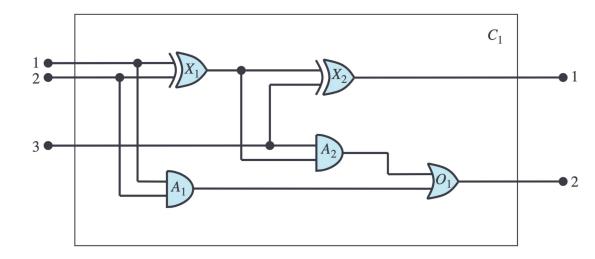


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

1-in	2-in	3-in	1-out	2-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Identify the questions

- There are many aspects of a digital circuit that an engineer may be concerned with
 - Timing, power consumption, resources, etc.
- For this example, we will focus on functionality
 - Does the circuit add properly?

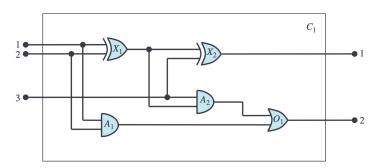


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Assemble the Relevant Knowledge

- Understand the scope of the knowledge
- May have to work with domain experts
- Knowledge relevant to the task
 - Types of gates: AND, OR, XOR
 - How the gates are connected
 - The input and output signal of the gates
- Knowledge irrelevant to the task
 - Size, shape, color, of gates
 - Path the wires take

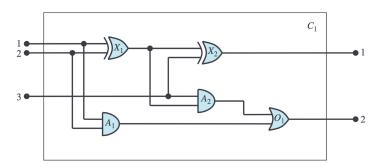


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Decide on a Vocabulary

- This vocabulary is known as the ontology
 - A particular theory of the nature of being or existence
 - Determines what kinds of things exists, but does not determine their specific interrelationships
- To identify a particular terminal, we use the functions In and Out
 - $In(2, C_1), Out(1, X_1)$
 - Second input to C1, first output of X1
- To identify the gate type, we use the function *Type*
 - $Type(X_1) = XOR$
- We use the predicate *Connected* to represent connectivity
 - Connected $(Out(1, X_1), In(1, X_2))$

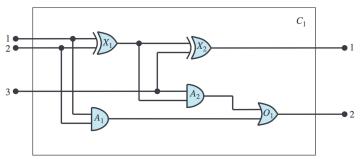


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Encode General Knowledge About the Domain

```
\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2)
```

```
\forallt Signal(t) = 1 \vee Signal(t) = 0
```

1≠0

 $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1)$ $\forall g \text{ Type}(g) = OR \Rightarrow \text{Signal}(Out(1,g)) = 1 \Leftrightarrow \exists n \text{ Signal}(\ln(n,g)) = 1$ $\forall g \text{ Type}(g) = \text{AND} \Rightarrow \text{Signal}(Out(1,g)) = 0 \Leftrightarrow \exists n \text{ Signal}(\ln(n,g)) = 0$

 $\forall g Type(g) = XOR \Longrightarrow Signal(Out(1,g)) = 1 \Leftrightarrow Signal(In(1,g)) \neq Signal(In(2,g))$

 $\forall g Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g))$

Encode the Specific Problem Instance

Type $(X_1) = XOR$ Type $(A_1) = AND$ Type $(O_1) = OR$

Type
$$(X_2)$$
 = XOR
Type (A_2) = AND

Connected(Out($1,X_1$),In($1,X_2$)) Connected(Out($1,X_1$),In($2,A_2$)) Connected(Out($1,A_2$),In($1,O_1$)) Connected(Out($1,A_1$),In($2,O_1$)) Connected(Out($1,X_2$),Out($1,C_1$)) Connected(Out($1,O_1$),Out($2,C_1$)) Connected($ln(1,C_1),ln(1,X_1)$) Connected($ln(1,C_1),ln(1,A_1)$) Connected($ln(2,C_1),ln(2,X_1)$) Connected($ln(2,C_1),ln(2,A_1)$) Connected($ln(3,C_1),ln(2,X_2)$) Connected($ln(3,C_1),ln(1,A_2)$)

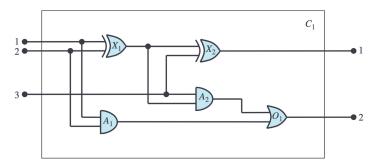


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Pose Queries to the Inference Procedure

 $\begin{array}{l} \exists i_1, i_2, i_3, o_1, o_2 \hspace{0.1cm} Signal(In(1, C_1)) = i_1 \wedge Signal(In(2, C_1)) = i_2 \wedge Signal(In(3, C_1)) = i_3 \\ \wedge \hspace{0.1cm} Signal(Out(1, C_1)) = o_1 \wedge Signal(Out(2, C_1)) = o_2 \end{array} \end{array}$

- The KB should return all possible substitutions
- This should hopefully be the same as the the truth table for a full adder

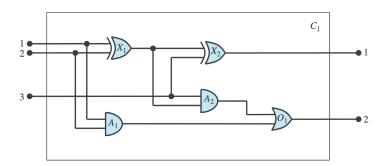


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Debug the Knowledge Base

- For example, if we forget to tell the knowledge base that 0 ≠ 1, we would get unexpected results
- Just like in programming, we will have to get creative when debugging
 - For example, we can look at the output of each gate

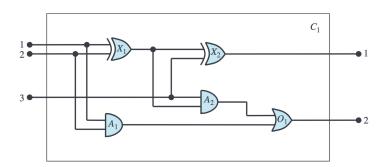


Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Summary

- First-Order Logic
 - Quantifiers
 - Variables
 - Constants
 - Functions
 - Predicates
- Order of unlike quantifiers matters
- Knowledge engineering

Next Time

• Inference in first-order logic