Announcements

* Coding Homework 2 will be released
* Due 2/8 at 11:59pm

e Written Homework 2 will be released
* Due 2/8 at 11:59pm



- =
vV
4 " \\ 5 47N
. < fis
N = b “
4 ‘ ¢ <
f.4 \
> ‘v\
R | D> —
S e /g T
PR AN
N/ 1>
v
A /
@ 4
o)l
N

INSTITUTE &= #AlISC
UNIVERSITY OF SOUTH CAROLINA

Optimization: CSPs
Forest Agostinelli
University of South Carolina



Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization  Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks



* Review

* Arc consistency

e Selecting unassigned nodes

* Ordering assignment of values
* Local search

* Special cases



Constraint Satisfaction Problems

e X is a set of variables

* D is a set of domains, one for each variable
* Allowable values

* Cis a set of constraints that specify allowable combinations of variables
* Atuple



CSPs: Assignments and Solutions

* Consistent assighment: An assignment to variables that does not violate
constraints

* Complete assignment: Every variable is assignment a value

* Partial assighment: One that leaves some variables unassigned

 Partial solution: Partial assignment that is consistent
* Solution: A consistent and complete assignment



Backtracking Search

A

¢ & &




Backtracking Search

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK((csp, assignment) returns a solution or failure
if assignment 1s complete then return assignment
var <— SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do |
if value 1s consistent with assignment then
add {var = value} to assignment
| inferences < INFERENCE(csp, var, assi_gnment) |
if inferences # failure then
add inferences to csp
result < BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure




Inference in CSPs

* Make use of a constraint graph
e Nodes: variables

* Edges: Connects variables that
participate in a constraint

e Gives us an intuitive @

representation @"@
* Makes it easy to prune large parts @‘
of the state space ‘@



Forward Checking Limitations

* NT and SA cannot both be blue
* Forward checking does not recognize this
* Constraint propagation

WA NT Q NSW \'} SA
\it‘ T I I I I I
‘ A [isw | FEErEErE/ErE] Fm
R I | B m[Er ] ﬂ




* Review

* Arc consistency

e Selecting unassigned nodes

* Ordering assignment of values
* Local search

* Special cases



Arc-Consistency

* An arc X -> Y is consistent iff for every x in the tail there is some y in the head
which could be assigned without violating a constraint

* If not, delete that value from the tail

* Forward checking: Arc consistency only for assigned variable

SSEA SSE S SSEA S~Ea S

WA NT Q NSW Vv SA T WA Q NSW Vv SA T
|| mows mEjEpsE| E/EsE| [ — B[ e e ] E[EN ]
\_\
WA NT Q NSW Vv SA T

| e xpx . E[ErE




AC-3: Achieve Arc-Consistency

* All pairs X->Y and Y->X go on

th function AC-3( csp) returns false if an inconsistency is found and true otherwise
e gqueue s fa .
queue <— a queue of arcs, initially all the arcs in csp

* Only modify the domain of while queue is not empty do
. (Xi, X;) < PoP(queue)
the tail! if REVISE(csp, X;, X;) then
. o o if size of D; = 0 then return false
* If domain of tail is modified, for each X, in X; NEIGHBORS - {X;} do
. . add (X, X;) to queue
then put it back in the queue return e 0
dsS th € h €d d Wlth Its n elgh bO rs function REVISE( csp, X;, X;) returns true iff we revise the domain of X;
as th e {a || revised < false
for each z in D, do
° AC_3 if no value y in D; allows (z,y) to satisfy the constraint between X; and X; then
delete x from D;
e () (dnz) revised < true

return revised

e Revise
« 0(d?)



Quick Quiz

5. (10 points total, 2 pts each) Constraint Satisfaction Problems.

G (O—()—(ve
s

—

You are a map-coloring robot assigned to color this New England USA map. Adjacent regions
must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

1) MA is assigned to R, what are the domains of all the other variables after forward checking has
been performed?

2) CT has been assigned to R and Rl has been assigned to G, what are the domains of all other
variables after arc-consistency has been performed?



Quick Quiz

5. (10 points total, 2 pts each) Constraint Satisfaction Problems.

G (O—(u)—(me)
E o>

You are a map-coloring robot assigned to color this New England USA map. Adjacent regions
must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

5a. (2pts total, -1 each wrong answer, but not negative) FORWARD CHECKING.
Cross out all values that would be eliminated by Forward Checking, after variable MA
has just been assigned value R as shown:

MA

ME

CT
XGB

RI
X GB

R

VT
XGB

NH
XGB

RGB

5b. (2pts total, -1 each wrong answer, but not negative) ARC CONSISTENCY.
CT and Rl have been assigned values, but no constraint propagation has been done.
Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book).

CT

RI

R

G

ME

VT
RGX

RGB

MA
XX5B

NH
R Gx




Demo

* UC Berkeley CSP Demo:
https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html



https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Limitations of Arc Consistency

* K-consistency: ensure
consistency of nodes in
groups of K




* Review

* Arc consistency

* Selecting unassigned nodes

* Ordering assignment of values
* Local search

* Special cases



How to Select Unassigned Variables

function BACKTRACKING-SEARCH(csp) returns a solution or failure

return BACKTRACK(csp, { }) * Minimum remaining values

function BACKTRACK((csp, assignment) returns a solution or failure
if assignment is complete then return assignment ° Deg ree
[var + SELECT-UNASSIGNED- VARIABLE( csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
if value is consistent with assignment then
add {var = value} to assignment
inferences <— INFERENCE(csp, var, assignment)
if inferences # failure then
add inferences to csp
result <— BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure




Minimum Remaining Values (MRV) Heuristic

* A heuristic for selecting the next variable
* a.k.a. most constrained variable heuristic
* a.k.a. fail-first heuristic
* Here “heuristic” is different than what was used in pathfinding problems

* Choose the variable with the fewest legal values

* |ntuition
* To find a solution, we have to assign values to all variables

* |f there is a variable that is more likely to cause a problem, we should encounter the
problem sooner rather than later



MRV: Example

* Do forward checking after each assignment
* NT and SA are tied with two

* Pick one randomly

NT NT

WA=red

WA WA
SA NSW

NSW




MRV: Example

 SA has the smallest

NT NT

NT=green
A

WA WA
SA NSW

NSW




MRV: Example

* Q has the smallest
* Forward checking will lead us to a solution

NT

SA=blue
A

SA NSW

WA




Degree Heuristic

* Another heuristic for selecting the next variable
* a.k.a. most constraining variable heuristic

* Select the variable with the highest degree
* Count the number of unassigned neighbors

e Can be a good tie-breaker for MRV
 MRV: Which variable is the most constrained?
* Degree: Which variable will impose the most constraints on other unassigned variables?



Degree Heuristic: Example

* Degree heuristic by itself

* Edges from assigned variables are removed to show how the degree heuristic
counts the degree of a node

NT=blue NSW=blue

® o

w ®
& ®0§ @
"




Degree Heuristic: Example

* Degree heuristic as a tiebreaker for MRV

* Edges from assigned variables are removed to show how the degree heuristic
counts the degree of a node

NT SA=red NT=blue NSW=blue

B

N => o ®
oL " cﬁ, oq‘@




* Review

* Arc consistency

e Selecting unassigned nodes

* Ordering assignment of values
* Local search

* Special cases



Ordering Domain Variables

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK((csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var <— SELECT-UNASSIGNED-VARIABLE(csp, assignment) .
for each value inff|ORDER-DOMAIN-VALUES(csp, var, assignment) jdo=—— * Least constraini ng value
if value is consistent with assignment then
add {var = value} to assignment
inferences <— INFERENCE(csp, var, assignment)
if inferences # failure then
add inferences to csp
result <— BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure




Least Constraining Value

* Heuristic for selecting which variable to try next

* Choose the value that rules out the fewest number of values from neighboring
nodes

* Intuition

* We can choose any value
* We should choose the one that we think is the most promising for finding a solution

‘1.[% Allows 1 value for SA

\_L;“ _F‘H:“ —h‘l!l:“ < ‘\g% Allows D values for SA




Quick Quiz

5. (10 points total, 2 pts each) Constraint Satisfaction Problems.

. G O—()—("e
= (RS @

You are a map-coloring robot assigned to color this New England USA map. Adjacent regions
must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

5¢. (2pts total, -1 each wrong answer, but not negative) MINIMUM-REMAINING-
VALUES HEURISTIC. Consider the assignment below. Rl is assigned and constraint
propagation has been done. List all unassigned variables that might be selected by the
Minimum-Remaining-Values (MRV) Heuristic:

CT RI MA VT NH ME
RB G RB RGB RGB RGB

5d. (2pts total, -1 each wrong answer, but not negative) DEGREE HEURISTIC.
Consider the assignment below. (It is the same assignment as in problem 5c above.) R
is assigned and constraint propagation has been done. List all unassigned variables
that might be selected by the Degree Heuristic..

CT RI MA VT NH ME
RB G RB RB RGB RGB




Quick Quiz

5. (10 points total, 2 pts each) Constraint Satisfaction Problems.

. G O—()—("e
= (RS @

You are a map-coloring robot assigned to color this New England USA map. Adjacent regions
must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.
5c. (2pts total, -1 each wrong answer, but not negative) MINIMUM-REMAINING-

VALUES HEURISTIC. Consider the assignment below. Rl is assigned and constraint
propagation has been done. List all unassigned variables that might be selected by the

Minimum-Remaining-Values (MRV) Heuristic: CT.MA
CT RI MA VT NH ME
RB G R B RGB RGB RGB

5d. (2pts total, -1 each wrong answer, but not negative) DEGREE HEURISTIC.
Consider the assignment below. (It is the same assignment as in problem 5c above.) R

is assigned and constraint propagation has been done. List all unassigned variables
that might be selected by the Degree Heuristic.. MA, NH

CT RI MA VT NH ME
RB G RB RB RGB RGB




Backtracking Summary

function BACKTRACKING-SEARCH(csp) returns a solution or failure

return BACKTRACK(csp, { }) * Minimum remaining values

function BACKTRACK((csp, assignment) returns a solution or failure
if assignment is complete then return assignment ° Deg ree
[var + SELECT-UNASSIGNED- VARIABLE( csp, assignment)

for each value inffORDER-DOMAIN-VALUES(csp, var, assignment) {dom=—— * Least constraini ng value
if value is consistent with assignment then

add {var = value} to assignment * Forward checking
linferences <~ INFERENCE(CSP, VaT, ASSiGNIMENL) |(u—_—_— .
if inferences # failure then * K-Consistency

add inferences to csp
result <— BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure



Quick Quiz

For each of the following terms on the left, write in the letter corresponding to the best answer or the correct

definition on the right.
Minimum Remaining A | Specifies the allowable combinations of variable values
Values Heuristic
Solution to a CSP B | The values assigned to variables do not violate any constraints
Least Constraining Value C | Set of allowed values for some variable
Heuristic
Domain D | Every variable is associated with a value
Constraint E | Nodes correspond to variables, links connect variables that participate in a
constraint
Consistent Assignment F | Chooses the next variable to expand to have the fewest legal values in its domain
Complete Assignment G | Acomplete and consistent assignment
Constraint Graph H | Prefers to search next the value that rules out the fewest choices for the

neighboring variables in the constraint graph




Quick Quiz

For each of the following terms on the left, write in the letter corresponding to the best answer or the correct
definition on the right.

F | Minimum Remaining A | Specifies the allowable combinations of variable values
Values Heuristic
G | Solution to a CSP B | The values assigned to variables do not violate any constraints
H | Least Constraining Value C | Set of allowed values for some variable
Heuristic
C | Domain D | Every variable is associated with a value
A | Constraint E | Nodes correspond to variables, links connect variables that participate in a
constraint
B | Consistent Assignment F | Chooses the next variable to expand to have the fewest legal values in its domain
D | Complete Assighment G | Acomplete and consistent assighment
E | Constraint Graph H | Prefers to search next the value that rules out the fewest choices for the

neighboring variables in the constraint graph




* Review

* Arc consistency

e Selecting unassigned nodes

* Ordering assignment of values
* Local search

* Special cases



Local Search

* We previously talked about the benefits of CSPs over search where states were
atomic

* However, local search can still be very useful

* Local search can be very fast
* Especially in scenarios where the state space has a high density of solutions

* In an online setting (i.e. airline scheduling) if the schedule suddenly changes due
to weather, local search can help find a new schedule that is good

e Can be much better than starting from scratch



Local Search: Min Conflicts Heuristic

* Start with a complete assignment

* Repeat for N Iterations
* Choose a variable at random
* Assign it a value with the smallest number of conflicts

function MIN-CONFLICTS(csp, max _steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max _steps, the number of steps allowed before giving up

current <— an initial complete assignment for csp
for : = 1 to maz_steps do
if current 1s a solution for csp then return current
var <— a randomly chosen conflicted variable from csp.VARIABLES
value < the value v for var that minimizes CONFLICTS(csp, var, v, current)
set var = value in current
return failure



Min Conflicts: Example

1

2

2

(5 conflicts)

Lg




1

Min Conflicts: Example

2

"

(5 conflicts)

L3

(2 conflicts)

Q

Q

(0 conflicts)




* Review

* Arc consistency

e Selecting unassigned nodes

* Ordering assignment of values
* Local search

* Special cases



Hardness of CSPs

* Boolean satisfiability can be posed as a CSP and is NP-Complete

* How hard for everyday examples?
e Sudoku example

o number of constraints
~ number of variables Avg Time vs. R

4000

CP U 3000 A
time 2000 / \
==f==Avg Time
1000 K
. 4

0.00 0.10 0.20 0.30 0.40
R = [number of initially filled cells] / [total number of cells]

|
critical
ratio




Structure: Tree-Structured CSPs

* The time complexity for solving CSPs, in the worst case, is 0(d™)
* Where d is the size of the domain and n is the number of nodes

* If a constraint graph has no cycles, then the CSP can be solved in O(nd?) time.
* This can be achieved by converting the graph to a tree structure
* Tree: each node has, at most, one parent

* Start at the root and do arc consistency
* Then start at the root and make consistent assignments

(4] B @ b

O=0 (B ) (D-(B3(c) (&) (F)
G P O TX(E

(a) (b)



Structure: Cutset

 What if there are cycles?

* Choose a subset of the CSP variables such that the constraint graph becomes a
tree after removal

* This subset is called a cycle cutset

* If the cycle cutset has size ¢, then the total runtime is 0(d¢(n — ¢)d?)




4

Choose a cutset

‘!9

fi
/

Instantiate the cutset
(all possible ways)

G —
@‘@'é@

[ ]
[ J
{ Compute residual CSP J |
[ J

]

3‘:‘6
l%:

/

<_
4_

for each assignment

Solve the residual CSPs
(tree structured)




* Find the smallest cutset that makes this graph a tree




Combining Variables

* Can also convert a CSP into a tree by combining variables

Now:

@ “unary” WA-SA constraint
Change (asa)  “binary” (WA,SA) - (NT,SA)
cvariablag” (Wash) require all 3 consistent
ﬁ @ o

= color of pair @
of areas @




Summary

e CSPs: Variables, domains, constraints

» Backtracking search: depth-first search that backtracks when there is a conflict

* Select un-assigned variable
* Minimum remaining values heuristic
* Degree heuristic

* Order domain values
* Least constraining value

* Inference

* Forward checking
* Arc consistency
* K-consistency

* Local search
* In practice, min-conflicts search can help quickly modify solutions in case constraints change

 Computational complexity can be reduced given a tree structure



* Propositional Logic



