
Announcements

• Coding Homework 1 will be released
• Due 1/25 at 11:59pm

• Written Homework 1 will be released
• Due 1/25 at 11:59pm



Optimization
Forest Agostinelli

University of South Carolina



Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Background
• State space search methods
• Hill climbing
• Simulated annealing
• Local beam search
• Evolutionary algorithms

• Constraint satisfaction
• Backtracking
• Forward checking



Optimization

• Find the best configuration (state) according to some objective function
• We want to either minimize cost of maximize value
• In many cases, we do not care about the path
• The state itself is the solution!

Circuit Design
State: Layout

Objective Function: Size, speed, power, etc.

Protein Structure Prediction
State: Bond angles

Objective Function: Free energy

N-Queens
State: Position on queens

Objective Function: How many queens are attacking each other



Optimization: A Visualization

• Objective function surface may be very 
jagged
• How to minimize cost when we only have 

local information available to us?



Optimization

• In this lecture we will focus on optimization of states that are represented by 
symbols instead of numbers
• However, there are many other optimization techniques that can be employed 

when the state space is represented by a mathematical expression
• We will talk about some of these techniques more when we talk about neural 

networks



Outline

• Background
• State space search methods
• Hill climbing
• Simulated annealing
• Local beam search
• Evolutionary algorithms

• Constraint satisfaction
• Backtracking
• Forward checking



Local Search

• Make local changes to a state or a small set of states in hopes of optimizing an 
objective function
• Do not remember paths
• Very memory efficient

• In general, not guaranteed to find the best solution in a finite amount of time



Hill Climbing

• Look at every possible action you can take
• Transition to the state with the highest value



Hill Climbing: N-Queens

• Objective function: number of pairs of queens attacking each other
• Number is currently 17



Hill Climbing: Molecular Optimization

• Find a molecule that has a high quantitative estimate of drug-likeness (QED)
• States
• Represent as a graph where vertices are atoms and edges are bonds

• Actions
• Add/remove atom
• Add/remove covalent bond
• Atom donates an electron (ionic bond)

Leguy, Jules, et al. "EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation." Journal of cheminformatics 12.1 (2020): 1-19.



Hill Climbing: Quick Quiz

1. You are doing hill climbing search. In 
which state does the search terminate?

2. Hill climbing looks ahead beyond its 
immediate neighbors (T/F)

3. Hill climbing search is always guaranteed 
to find a globally optimal solution in finite 
time (T/F) Maximize value



Hill Climbing: 1D State Space Example

• Global maximum
• The highest peak

• Local maximum
• Higher than its neighboring states but 

lower than the global maximum

• Plateau
• A flat area
• Can be a shoulder or a flat local maximum

Maximize value



Hill Climbing with Random Restarts

• Hill climbing is successful for the 8-queens problem only 14% of the time (gets 
stuck 86% of the time)
• If hill-climbing gets stuck at a plateau or a local maximum, or if a time limit is 

reached, restart from a randomly generated state
• 8-queens needs roughly 6 restarts to solve the problem
• Can be very effective in practice
• Even for 3 million queens, it can find a solution in seconds

• Given infinite time, it will find a solution with probability 1
• It will eventually randomly generate the goal state as the initial state



Tabu Search

• Add k recently visited states to a tabu list
• Excludes these states from being visited again
• Can help escape from plateaus can local maxima



Simulated Annealing

• Accept transitioning to states with a lower value with some probability
• The probability is initially high, but becomes lower over time
• Can be used for VLSI layouts, airline scheduling, etc.

Probability of accepting next state



Simulated Annealing

• If you decrease T slowly enough, will find global maximum with probability 1
• Can take a very long time!

• Can work well in practice
• Was used to solve VLSI layout problems in the 1980s



Solving Sudoku with Simulated Annealing

• Takes 3 hours. How can we do this faster?



Local Beam Search

• Instead of keeping track of just one state, we keep track of k
• At each iteration, we generate all the successors of all the k states
• If any one is a goal, then return solution
• Else, select the k best and repeat



Local beam search
• Possibly better than running k independent searches
• Concentrates on promising states

• May result in all states being concentrated in the same place, resulting in 
redundancies
• Ways to improve?



Stochastic Local Beam Search

• Instead of choosing the top k, choose k states with probability proportional to 
their value
• Can alleviate problem of all k states collapsing to the same state



Evolutionary Algorithms

• Maintain a “population” (collection of states) that produces “offspring” (new 
states)
• The “fittest” states (those with the highest value) are more likely to continue to 

the next generation
• Stochastic beam search can be posed as an instance of evolutionary algorithms
• Only one parent



Evolutionary Algorithms

• The manner in which you represent the state can greatly affect the outcome



Evolutionary Algorithms: N-Queens



Evolutionary Algorithms: Car Design

• Representation of the state?
• Crossover?



Outline

• Background
• State space search methods
• Hill climbing
• Simulated annealing
• Local beam search
• Evolutionary algorithms

• Constraint satisfaction
• Backtracking
• Forward checking



Exploiting State Structure

• So far, we have thought of states as “atomic” (indivisible)
• All we could do was map a state to a cost or value
• However, there may be valuable information in the structure of the problem
• For example, given an incomplete map for the map coloring problem, how can 

we prune the search space?



Constraint Satisfaction Problems (CSPs)

• On a high level, CSPs are problems 
that require assignments to 
variables where the assignments to 
those variables are subject to some 
constraints
• Graph coloring
• Scheduling

• When to meet your friends
• Classrooms
• Job shops
• Airplanes

• Sudoku
• N-queens



Constraint Satisfaction Problems

• 𝒳 is a set of variables
• 𝒟 is a set of domains, one for each variable
• Allowable values

• 𝒞 is a set of constraints that specify allowable combinations of variables
• A tuple



CSPs: Assignments and Solutions

• Consistent assignment: An assignment to variables that does not violate 
constraints
• Complete assignment: Every variable is assignment a value
• Partial assignment: One that leaves some variables unassigned
• Partial solution: Partial assignment that is consistent
• Solution: A consistent and complete assignment



Map Coloring Example

• Variables:

• Domains:

• Constraints: adjacent regions must have different colors

• Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:



Sudoku Example

§ Variables:
§ Each (open) square

§ Domains:
§ {1,2,…,9}

§ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)



N-Queens Example

• Variables:
• Domains:
• Constraints



N-Queens Example

• Formulation 1:
• Variables: Squares
• Domains: 0/1 indication of queen
• Constraints: Which combinations are allowed and 

there must be N total queens



N-Queens Example

• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:



Backtracking Search



Backtracking Search



Inference in CSPs

• Make use of a constraint graph
• Nodes: variables
• Edges: Connects variables that 

participate in a constraint

• Gives us an intuitive 
representation
• Makes it easy to prune large parts 

of the state space



Inference in CSPs: Forward Checking

• Given an assignment to a variable, what can we infer?
• Forward checking: Remove values from domains that violate a constraint



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking: N-Queens



Forward Checking Limitations

• NT and SA cannot both be blue
• Forward checking does not recognize this
• Constraint propagation

WA SA

NT Q

NSW

V



Summary

• Optimization: we want to find a state that minimizes a cost function or 
maximizes a value function
• Local search methods make small changes to the state to search for an optimal 

configuration, often employing randomness
• Some of these optimization problems can easily be posed as constraint 

satisfaction problems, which allows us to exploit the domain-specific structure 
of the problem



Next Time

• Constraint propagation, selecting unassigned variables, ordering domain values


