Announcements

* Coding Homework 1 will be released
* Due 1/25 at 11:59pm

e Written Homework 1 will be released
* Due 1/25 at 11:59pm

i v
4 " \\ i VIS
7 < "5”:’; »,
"~ . | >
\~ |
4 ‘ ¢ <
f.4 \
K
D X >
S e |/ |
) /A/ - AN
ot/ Al
NZ
N4 >
INA
S .
(i

INSTITUTE %t #AI11SC
UNIVERSITY OF SOUTH CAROLINA

Optimization
Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

* Background

 State space search methods
 Hill climbing
* Simulated annealing
* Local beam search
e Evolutionary algorithms

* Constraint satisfaction
* Backtracking
* Forward checking

Optimization

* Find the best configuration (state) according to some objective function
* We want to either minimize cost of maximize value

* In many cases, we do not care about the path
* The state itself is the solution!

Circuit Design
State: Layout
Objective Function: Size, speed, power, etc.

Protein Structure Prediction
State: Bond angles
Objective Function: Free energy

N-Queens
State: Position on queens
Objective Function: How many queens are attacking each other

Optimization: A Visualization

* Objective function surface may be very
jagged

* How to minimize cost when we only have
local information available to us?

Optimization

* In this lecture we will focus on optimization of states that are represented by
symbols instead of numbers

* However, there are many other optimization techniques that can be employed
when the state space is represented by a mathematical expression

* We will talk about some of these techniques more when we talk about neural
networks

* Background

 State space search methods
 Hill climbing
* Simulated annealing
* Local beam search
e Evolutionary algorithms

* Constraint satisfaction
* Backtracking
* Forward checking

Local Search

* Make local changes to a state or a small set of states in hopes of optimizing an
objective function

* Do not remember paths
* Very memory efficient

* In general, not guaranteed to find the best solution in a finite amount of time

Hill Climbing

* Look at every possible action you can take
* Transition to the state with the highest value

function HILL-CLIMBING(problem) returns a state that is a local maximum
current <— problem.INITIAL
while {rue do
neighbor <— a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <— neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

Hill Climbing: N-Queens

* Objective function: number of pairs of queens attacking each other
* Number is currently 17

18 |12]| 14 (13 13 |§B]| 14
16 15 |12]| 14 |12 | 16

Hill Climbing: Molecular Optimization

* Find a molecule that has a high quantitative estimate of drug-likeness (QED)

* States
* Represent as a graph where vertices are atoms and edges are bonds

* Actions
 Add/remove atom
* Add/remove covalent bond
 Atom donates an electron (ionic bond)

NH -

L [

QED : 0.948 (CO9H10BrN203P) QED : 0.948 (CO9H10BrN203P) QED : 0.948 (CO9H10BrN203P)

Leguy, Jules, et al. "EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation." Journal of cheminformatics 12.1 (2020): 1-19.

Hill Climbing: Quick Quiz

objective function

A _— global maximum

1. You are doing hill climbing search. In
which state does the search terminate? shoulder

N

local maximum

“flat” local maximum

2. Hill climbing looks ahead beyond its
immediate neighbors (T/F)

3. Hill climbing search is always guaranteed
to find a globally optimal solution in finite cuent

time (T/F) Maximize value

» state space

function HILL-CLIMBING(problem) returns a state that is a local maximum
current < problem .INITIAL
while true do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <— neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

Hill Climbing: 1D State Space Example

* Global maximum
* The highest peak

* Local maximum ovjectivefuncion) maimum

* Higher than its neighboring states but
lower than the global maximum Shoulder\

local maximum

“flat” local maximum

* Plateau
e Aflat area
e Can be a shoulder or a flat local maximum

» state space
current

Maximize value

Hill Climbing with Random Restarts

* Hill climbing is successful for the 8-queens problem only 14% of the time (gets
stuck 86% of the time)

* If hill-climbing gets stuck at a plateau or a local maximum, or if a time limit is
reached, restart from a randomly generated state

* 8-queens needs roughly 6 restarts to solve the problem

e Can be very effective in practice
* Even for 3 million queens, it can find a solution in seconds

* Given infinite time, it will find a solution with probability 1
* It will eventually randomly generate the goal state as the initial state

Tabu Search

* Add k recently visited states to a tabu list
e Excludes these states from being visited again
* Can help escape from plateaus can local maxima

Simulated Annealing

* Accept transitioning to states with a lower value with some probability
* The probability is initially high, but becomes lower over time
e Can be used for VLSI layouts, airline scheduling, etc.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
current <— problem.INITIAL
fort=1toocodo

T < schedule(t)
if 7' = 0 then return current eAE/T Temperature T
next <— a randomly selected successor of current High Low
AFE < VALUE(current) — VALUE(next)
if AE > 0 then current < next High Medium Low
else current < next only with probability e =2£/T | AE |

Low High Medium

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “temper-
ature” T as a function of time.

Probability of accepting next state

Simulated Annealing

* If you decrease T slowly enough, will find global maximum with probability 1
* Can take a very long time!

* Can work well in practice
* Was used to solve VLS| layout problems in the 1980s

Solving Sudoku with Simulated Annealing

e Takes 3 hours. How can we do this faster?

Local Beam Search

* Instead of keeping track of just one state, we keep track of k
* At each iteration, we generate all the successors of all the k states
* If any one is a goal, then return solution

* Else, select the k best and repeat

Local beam search

* Possibly better than running k independent searches
* Concentrates on promising states

* May result in all states being concentrated in the same place, resulting in
redundancies

* Ways to improve?

@ Create k random initial states

C{é é\t) \l Generate their children

Select the k best children

Q/CB é\g \'\D Repeat indefinitely...

Stochastic Local Beam Search

* Instead of choosing the top k, choose k states with probability proportional to
their value

e Can alleviate problem of all k states collapsing to the same state

Evolutionary Algorithms

* Maintain a “population” (collection of states) that produces “offspring” (new
states)

* The “fittest” states (those with the highest value) are more likely to continue to
the next generation

 Stochastic beam search can be posed as an instance of evolutionary algorithms
* Only one parent

Evolutionary Algorithms

* The manner in which you represent the state can greatly affect the outcome

24748552 | 24 31% 327@52411 32748552 —=| 32748[1]52
32752411 [23 29% 247548552 ‘< 24752411 —| 24752411
24415124 | 20 26% 327'525411 %: 32752124 ~| 32252124
32543213 | 11 14% 244155124 24415411 ~ 2441541[7]
(a) (b) (© d (e)
Initial Population Fitness Function Selection Crossover Mutation

Figure 4.5 A genetic algorithm, illustrated for digit strings representing 8-queens states. The
initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in
(c). They produce offspring in (d), which are subject to mutation in (e).

Evolutionary Algorithms: N-Queens

|

|
{

Nel N W

Evolutionary Algorithms: Car Design

e Representation of the state?
* Crossover?

* Background

 State space search methods
 Hill climbing
* Simulated annealing
* Local beam search
e Evolutionary algorithms

* Constraint satisfaction
* Backtracking
* Forward checking

Exploiting State Structure

 So far, we have thought of states as “atomic” (indivisible)
* All we could do was map a state to a cost or value
* However, there may be valuable information in the structure of the problem

* For example, given an incomplete map for the map coloring problem, how can
we prune the search space?

Constraint Satisfaction Problems (CSPs)

* On a high level, CSPs are problems
that require assignments to

variables where the assignments to
those variables are subject to some |
constraints e
* Graph coloring
° SChedUIing 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
* When to meet your friends A 3] 12| |6 al4]8]3]9]2]1]6]5]7
Bl9 3 5 1 Bl916|7]|3(4(5]8(2]1
* Classrooms c 1|8 [6]4 o[2]5]1[8]7]6[4]9]3
e Job shops D 8|1 [2]9 o|5[(4|8]1(3]|2]9]7]|6
. E|7 8 El7(2]19]5]|6|14]1|3]|8
* Airplanes F 6|71 [8]2 ANBERERRRAE
'SUdOkU G 216 915 G|3|7|1216|8[9]|5|1(4
H| 8 2 3 9 HI8[1]4]12[(5|13]7(6]|9
* N-queens | s| 11 |3 elo]5]4][1]7]3]8]2

Constraint Satisfaction Problems

e X is a set of variables

* D is a set of domains, one for each variable
* Allowable values

* Cis a set of constraints that specify allowable combinations of variables
* Atuple

CSPs: Assignments and Solutions

* Consistent assighment: An assignment to variables that does not violate
constraints

* Complete assignment: Every variable is assignment a value

* Partial assighment: One that leaves some variables unassigned

 Partial solution: Partial assignment that is consistent
* Solution: A consistent and complete assignment

Variables:

Domains:

Map Coloring Example

WA, NT, Q, NSW, V, SA, T

D = {red, green, blue}

Constraints: adjacent regions must have different colors

Implicit:

Explicit:

WA #= NT

(WA, NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Northern
Territory

Queensland
Western
Australia

South
Australia

Victoria

Tasmania

Sudoku Example

= Variables:

= Each (open) square
= Domains:

= {1,2,..,9}
= Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

N-Queens Example

e Variables:

e Domains:
e Constraints

N-Queens Example

* Formulation 1:
e Variables: Squares . .
* Domains: 0/1 indication of queen . . W
e Constraints: Which combinations are allowed and W . .

there must be N total queens LL

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi, 7, k (Xij,ij) € {(0,0),(0,1),(1,0)} ZXij = N
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} .

Vi, j, k (X5, Xixkj—k) € 1(0,0),(0,1),(1,0)}

N-Queens Example

* Formulation 2:

e Variables: @1
Q. Q2
e Domains: X3
(1,2,3,...N} Ox

* Constraints:

Implicit: Vi,j non-threatening(Q;, @;)

it (Q1,Q0) € {(1,3),(1,4),...)

Backtracking Search

A

¢ & &

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK((csp, assignment) returns a solution or failure
if assignment 1s complete then return assignment
var <— SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do |
if value 1s consistent with assignment then
add {var = value} to assignment
| inferences < INFERENCE(csp, var, assi_gnment) |
if inferences # failure then
add inferences to csp
result < BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure

Inference in CSPs

* Make use of a constraint graph
e Nodes: variables

* Edges: Connects variables that
participate in a constraint

e Gives us an intuitive @

representation @"@
* Makes it easy to prune large parts @‘
of the state space ‘@

Inference in CSPs: Forward Checking

* Given an assignment to a variable, what can we infer?

—CA—

L}
i

& TR

WA NT Q NSW Vv SA T
I I I iren irenirer
| PEErE[mrE[ErE] PE[EEE
1 E[e E[ErE] B[R E
I | E[. | — | L

\1

* Forward checking: Remove values from domains that violate a constraint

DWW N =

Forward Checking: N-Queens

X1 X2 X3 X4

X1
{11213I4}

X2
{ 4 1314}

+,

X3
{ I2I I4}

X4
{ 12131 }

Red = value is assigned to variable

Blue = most recent variable/value pair

H W N =

Forward Checking: N-Queens

X1
11,2,3/4}

X2
1, 34}

X1 X2 X3 X4
4+ 00 e
L
+0®
AL

X3
{III}

X4
12,7

Red = value is assigned to variable

Blue = most recent variable/value pair

Forward Checking: N-Queens

X1 X2
X1 X2 X3 X4 {1,2,3,4} {, X4}
10 0@
2| @
3 O
) ‘ X3 X4
{ .2, 4} { .23, }

Red = value is assigned to variable
X = value led to failure

Forward Checking: N-Queens

X1 X2
{1I213l4} { I/ IXI4}

X3 X4
{Izll} {1131}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

Forward Checking: N-Queens

X1 X2
X1 X2 X3 X4 {1,2,3/4} {, X4}
1+0 0 ®
2l | O+H®
3)
) +‘ ® X3 X4

{IZII} {lll}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

Forward Checking: N-Queens

X1 X2
X1 X2 X3 X4 {1,2,3,4} {, XX}
1 +‘ @0
2| @
3 O
) ‘ X3 X4
{ Izl I4} { Izl3l }

Red = value is assigned to
variable
X = value led to failure

Forward Checking: N-Queens

X1 X2
X1 X2 X3 X4 {X2,3,4} {,., 4
1 |@
200 @
3 @
! ® X3 X4
{1, ,3, } {1, ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

H W NN =

X1 X2 X3 X4

Forward Checking: N-Queens

+

C
O
+

X1 X2
{XI213I4} { I 7 14}
X3 X4
{1I A } {11 I3I }

Red = value is assigned to variable

Blue = most recent variable/value pair

X = value led to failure

Forward Checking: N-Queens

X1 X2
X1 X2 X3 X4 1X2,3,4} {,, /4
1 | @O+H®
Hooe®
3] @@
‘L +ee X3 X4

{11 I 7 } { I/ 131 }

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

Forward Checking: N-Queens

X1 X2
{XIZI3I4} { I 7 I4}

X3 X4
{1111} {II31}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

Forward Checking Limitations

* NT and SA cannot both be blue
* Forward checking does not recognize this
* Constraint propagation

WA NT Q NSW \'} SA
\it‘ T I I I I I
‘ A [isw | FEErEErE/ErE] Fm
R I | B m[Er] ﬂ

e Optimization: we want to find a state that minimizes a cost function or
maximizes a value function

* Local search methods make small changes to the state to search for an optimal
configuration, often employing randomness

* Some of these optimization problems can easily be posed as constraint
satisfaction problems, which allows us to exploit the domain-specific structure

of the problem

* Constraint propagation, selecting unassigned variables, ordering domain values

