Announcements

- Coding Homework 1 will be released
 - Due 1/25 at 11:59pm
- Written Homework 1 will be released
 - Due 1/25 at 11:59pm

Optimization Forest Agostinelli

University of South Carolina

Topics Covered in This Class

• Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

• Background

- State space search methods
 - Hill climbing
 - Simulated annealing
 - Local beam search
 - Evolutionary algorithms
- Constraint satisfaction
 - Backtracking
 - Forward checking

Optimization

- Find the best configuration (state) according to some objective function
- We want to either minimize cost of maximize value
- In many cases, we do not care about the path
 - The state itself is the solution!

Protein Structure Prediction State: Bond angles Objective Function: Free energy

Circuit Design State: Layout Objective Function: Size, speed, power, etc.

N-Queens State: Position on queens Objective Function: How many queens are attacking each other

Optimization: A Visualization

- Objective function surface may be very jagged
- How to minimize cost when we only have local information available to us?

Optimization

- In this lecture we will focus on optimization of states that are represented by symbols instead of numbers
- However, there are many other optimization techniques that can be employed when the state space is represented by a mathematical expression
- We will talk about some of these techniques more when we talk about neural networks

Outline

- Background
- State space search methods
 - Hill climbing
 - Simulated annealing
 - Local beam search
 - Evolutionary algorithms
- Constraint satisfaction
 - Backtracking
 - Forward checking

Local Search

- Make local changes to a state or a small set of states in hopes of optimizing an objective function
- Do not remember paths
 - Very memory efficient
- In general, not guaranteed to find the best solution in a finite amount of time

Hill Climbing

- Look at every possible action you can take
- Transition to the state with the highest value

function HILL-CLIMBING(problem) returns a state that is a local maximum
current ← problem.INITIAL
while true do
neighbor ← a highest-valued successor state of current
if VALUE(neighbor) ≤ VALUE(current) then return current
current ← neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search technique. At each step the current node is replaced by the best neighbor.

Hill Climbing: N-Queens

- Objective function: number of pairs of queens attacking each other
- Number is currently 17

Hill Climbing: Molecular Optimization

- Find a molecule that has a high quantitative estimate of drug-likeness (QED)
- States
 - Represent as a graph where vertices are atoms and edges are bonds
- Actions
 - Add/remove atom
 - Add/remove covalent bond
 - Atom donates an electron (ionic bond)

QED : 0.948 (C9H10BrN2O3P)

QED : 0.948 (C9H10BrN2O3P)

QED : 0.948 (C9H10BrN2O3P)

Leguy, Jules, et al. "EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation." Journal of cheminformatics 12.1 (2020): 1-19.

Hill Climbing: Quick Quiz

- 1. You are doing hill climbing search. In which state does the search terminate?
- 2. Hill climbing looks ahead beyond its immediate neighbors (T/F)
- 3. Hill climbing search is always guaranteed to find a globally optimal solution in finite time (T/F)

function HILL-CLIMBING(problem) returns a state that is a local maximum
 current ← problem.INITIAL
 while true do
 neighbor ← a highest-valued successor state of current
 if VALUE(neighbor) ≤ VALUE(current) then return current
 current ← neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search technique. At each step the current node is replaced by the best neighbor.

Hill Climbing: 1D State Space Example

- Global maximum
 - The highest peak

• Local maximum

• Higher than its neighboring states but lower than the global maximum

Plateau

- A flat area
- Can be a shoulder or a flat local maximum

Maximize value

Hill Climbing with Random Restarts

- Hill climbing is successful for the 8-queens problem only 14% of the time (gets stuck 86% of the time)
- If hill-climbing gets stuck at a plateau or a local maximum, or if a time limit is reached, restart from a randomly generated state
- 8-queens needs roughly 6 restarts to solve the problem
- Can be very effective in practice
 - Even for 3 million queens, it can find a solution in seconds
- Given infinite time, it will find a solution with probability 1
 - It will eventually randomly generate the goal state as the initial state

Tabu Search

- Add k recently visited states to a tabu list
- Excludes these states from being visited again
- Can help escape from plateaus can local maxima

Simulated Annealing

- Accept transitioning to states with a lower value with some probability
- The probability is initially high, but becomes lower over time
- Can be used for VLSI layouts, airline scheduling, etc.

function SIMULATED-ANNEALING(*problem*, *schedule*) **returns** a solution state $current \leftarrow problem$.INITIAL **for** t = 1 **to** ∞ **do** $T \leftarrow schedule(t)$ **if** T = 0 **then return** current $next \leftarrow$ a randomly selected successor of current $\Delta E \leftarrow VALUE(current) - VALUE(next)$ **if** $\Delta E > 0$ **then** $current \leftarrow next$ **else** $current \leftarrow next$ only with probability $e^{-\Delta E/T}$

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where some downhill moves are allowed. The *schedule* input determines the value of the "temperature" T as a function of time.

e A	е / т	Temperature T			
		High Low			
ΔE	High	Medium	Low		
	Low	High	Medium		

Probability of accepting next state

Simulated Annealing

- If you decrease T slowly enough, will find global maximum with probability 1
 - Can take a very long time!
- Can work well in practice
 - Was used to solve VLSI layout problems in the 1980s

Solving Sudoku with Simulated Annealing

• Takes 3 hours. How can we do this faster?

Local Beam Search

- Instead of keeping track of just one state, we keep track of k
- At each iteration, we generate all the successors of all the k states
- If any one is a goal, then return solution
- Else, select the k best and repeat

Local beam search

- Possibly better than running k independent searches
 - Concentrates on promising states
- May result in all states being concentrated in the same place, resulting in redundancies
- Ways to improve?

Stochastic Local Beam Search

- Instead of choosing the top k, choose k states with probability proportional to their value
- Can alleviate problem of all k states collapsing to the same state

Evolutionary Algorithms

- Maintain a "population" (collection of states) that produces "offspring" (new states)
- The "fittest" states (those with the highest value) are more likely to continue to the next generation
- Stochastic beam search can be posed as an instance of evolutionary algorithms
 - Only one parent

Evolutionary Algorithms

• The manner in which you represent the state can greatly affect the outcome

Figure 4.5 A genetic algorithm, illustrated for digit strings representing 8-queens states. The initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in (c). They produce offspring in (d), which are subject to mutation in (e).

Evolutionary Algorithms: N-Queens

Evolutionary Algorithms: Car Design

- Representation of the state?
- Crossover?

Outline

- Background
- State space search methods
 - Hill climbing
 - Simulated annealing
 - Local beam search
 - Evolutionary algorithms
- Constraint satisfaction
 - Backtracking
 - Forward checking

Exploiting State Structure

- So far, we have thought of states as "atomic" (indivisible)
- All we could do was map a state to a cost or value
- However, there may be valuable information in the structure of the problem
- For example, given an incomplete map for the map coloring problem, how can we prune the search space?

Constraint Satisfaction Problems (CSPs)

- On a high level, CSPs are problems that require assignments to variables where the assignments to those variables are subject to some constraints
 - Graph coloring
 - Scheduling
 - When to meet your friends
 - Classrooms
 - Job shops
 - Airplanes
 - Sudoku
 - N-queens

	1	2	3	4	5	6	7	8	9	
А			3		2		6			
В	9			3		5			1	
С			1	8		6	4			
D			8	1		2	9			
Е	7								8	
F			6	7		8	2			
G			2	6		9	5			
н	8			2		3			9	
Т			5		1		3			

	1	2	3	4	5	6	7	8	9
А	4	8	3	9	2	1	6	5	7
в	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
Т	6	9	5	4	1	7	3	8	2

Constraint Satisfaction Problems

- ${\mathcal X}$ is a set of variables
- ${\mathcal D}$ is a set of domains, one for each variable
 - Allowable values
- $\mathcal C$ is a set of constraints that specify allowable combinations of variables
 - A tuple

CSPs: Assignments and Solutions

- Consistent assignment: An assignment to variables that does not violate constraints
- Complete assignment: Every variable is assignment a value
- Partial assignment: One that leaves some variables unassigned
- Partial solution: Partial assignment that is consistent
- Solution: A consistent and complete assignment

Map Coloring Example

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

• Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Sudoku Example

- Variables:
 - Each (open) square
- Domains:
 - **1**,2,...,9

constraints)

Constraints:

9-way alldiff for each column9-way alldiff for each row9-way alldiff for each region(or can have a bunch of pairwise inequality

N-Queens Example

- Variables:
- Domains:
- Constraints

N-Queens Example

- Formulation 1:
 - Variables: Squares
 - Domains: 0/1 indication of queen
 - Constraints: Which combinations are allowed and there must be N total queens

 $\begin{aligned} \forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$

$$\sum_{i,j} X_{ij} = N$$

N-Queens Example

- Formulation 2:
 - Variables:
 - Domains:

 $\{1, 2, 3, \dots N\}$

 Q_k

• Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explicit:
$$(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$$

• • •
Backtracking Search

Backtracking Search

```
function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })
```

function BACKTRACK(*csp*, *assignment*) **returns** a solution or *failure*

if assignment is complete then return assignment

 $var \leftarrow Select-Unassigned-Variable(csp, assignment)$

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do

if value is consistent with assignment then

add $\{var = value\}$ to assignment

 $inferences \leftarrow INFERENCE(csp, var, assignment)$

```
if inferences \neq failure then
```

add inferences to csp

```
result \leftarrow BACKTRACK(csp, assignment)
```

if $result \neq failure$ then return result

remove inferences from csp

```
remove {var = value} from assignment
```

```
return failure
```

Inference in CSPs

- Make use of a constraint graph
 - Nodes: variables
 - Edges: Connects variables that participate in a constraint
- Gives us an intuitive representation
- Makes it easy to prune large parts of the state space

Inference in CSPs: Forward Checking

- Given an assignment to a variable, what can we infer?
- Forward checking: Remove values from domains that violate a constraint

Red = value is assigned to variable Blue = most recent variable/value pair

Red = value is assigned to variable Blue = most recent variable/value pair

Red = value is assigned to variable X = value led to failure

1

2

3

4

Red = value is assigned to variable

X = value led to failure

1

2

3

4

2

3

4

Forward Checking Limitations

- NT and SA cannot both be blue
- Forward checking does not recognize this
- Constraint propagation

Summary

- Optimization: we want to find a state that minimizes a cost function or maximizes a value function
- Local search methods make small changes to the state to search for an optimal configuration, often employing randomness
- Some of these optimization problems can easily be posed as constraint satisfaction problems, which allows us to exploit the domain-specific structure of the problem

Next Time

• Constraint propagation, selecting unassigned variables, ordering domain values