
Announcements

• Coding Homework 1 will be released
• Due 1/25 at 11:59pm

• Written Homework 1 will be released
• Due 1/25 at 11:59pm

Adversarial Search
Forest Agostinelli

University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Outline

• Background
• Minimax search
• Cutting off search
• Alpha-beta pruning
• Alpha-Go

Types of Games

• Number of players: One, two, more
• Information: Perfect/imperfect
• Cooperative/Adversarial

• We will focus on two-player, turn-taking, perfect information, zero-sum
(constant-sum) games
• Tic-tac-toe
• Connect four
• Checkers
• Chess
• Go

Zero-Sum Games

• Checkers: 1950: First computer player. 1994: First computer champion: Chinook
ended 40-year-reign of human champion Marion Tinsley. 2007: Checkers solved!
We know the game will always end in a draw if neither player makes a mistake.
• Chess: 1997: Deep Blue defeats human champion Gary Kasparov in a six-game

match. Deep Blue examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods for extending some lines of
search up to 40 ply. We currently have the world’s greatest chess player on our
phones.
• Go: The best Go players have only recently been defeated by computers (2016).

In Go, b > 300. Classic programs use pattern knowledge bases, but big recent
advances use Monte Carlo (randomized) expansion methods and deep neural
networks

Game Playing: Deterministic Case
• Two-player, turn-taking, perfect information, zero-sum (constant-sum) games

• Max (you): want to maximize your utility
• Min (opponent): wants to minimize your utility

• TO-MOVE(s)
• Whose turn it is

• ACTIONS(s)
• The set of legal actions in state s

• RESULT(s, a)
• The transition model which defines the state resulting from taking action a in state s

• IS-TERMINAL(s)
• Returns true when the game is over and false otherwise

• UTILITY(s, p)
• A utility function which defines the final numeric payoff to player p at the terminal state s
• 1 (win), 0 (lose), or 0.5 (draw) -or-
• 1 (win), -1 (lose), or 0 (draw)

Game Tree

• As in previous lectures, games form a state space tree where the nodes are
states and the edges are actions
• When searching for the best move, this forms a type of search tree that we call

a game tree
• A ply is a move by one player
• Each level in the game tree is a ply

Game Tree

• Tic-tac-toe

Outline

• Background
• Minimax search
• Cutting off search
• Alpha-beta pruning
• Alpha-Go

Which Action Should Max Choose?

• Two ply example

Minimax Search: Example

Minimax Search

Quick Quiz

• Perform minimax search

(Max)

(Min)

(Max)

3695 74986 7 3118 7 7 9 34 2

Quick Quiz

• Perform minimax search

(Max)

(Min)

(Max) 7

3695 7

7

7 9

4986 7

4

7 9

3118 7

3

8 3 9

7 9 3

4

4 2

Quick Quiz

Quick Quiz

Minimax Search Properties
• Performs a depth-first search of the game tree
• Say 𝑚 is the maximum depth in the game tree
• Space complexity: 𝑂(𝑏𝑚)
• Time complexity: 𝑂(𝑏!)
• Tic-tac-toe

• 𝑏 ≈ 5, 9 ply game
• 5! = 1,953,125 <- Easy!

• Checkers
• ≈ 10"# positions
• Dozens of computers have been working since 1989 to find a brute force solution
• Checkers finally solved in 2007 (DOI: 10.1126/science.1144079)

• Chess
• 𝑏 ≈ 35, Typical game is 100 ply
• 35$## ≈ 10$%& <- Not feasible!

Minimax Search Properties

• Minimax search assumes the opponent will play optimally
• That is, that your opponent will always pick the action that will minimize your utility

• If you suspect your opponent has a weakness, minimax will not exploit it

Outline

• Background
• Minimax search
• Cutting off search
• Alpha-beta pruning
• Alpha-Go

Cutting off Search

• At non-terminal nodes, we can use an evaluation/heuristic function to
determine how good a state is
• Terminal nodes: utility function
• Non-terminal nodes: evaluation function

• Evaluation function should be fast to compute
• Does not have to be perfect
• Should be scaled correctly
• If evaluation function is better than utility for winning or worse than the utility for losing,

this can lead to undesirable behavior

Evaluation Function for Tic-Tac-Toe

• Ideas for Tic-Tac-Toe?

Evaluation Function for Tic-Tac-Toe

• Count the number of possible win lines

Two-ply Minimax

• We do not reach a terminal state, but we can still choose an action

Two-ply Minimax

• Max’s second move

Two-ply Minimax

• Max’s third move

Evaluation Functions for Chess

• One possibility is a linear sum of features

Deep Blue
• Deep Blue's evaluation function was initially written in a generalized form, with many

to-be-determined parameters (e.g., how important is a safe king position compared to
a space advantage in the center, etc.). Values for these parameters were determined
by analyzing thousands of master games. The evaluation function was then split into
8,000 parts, many of them designed for special positions. The opening book
encapsulated more than 4,000 positions and 700,000 grandmaster games, while the
endgame database contained many six-piece endgames and all five and fewer piece
endgames. An additional database named the “extended book” summarizes entire
games played by Grandmasters. The system combines its searching ability of 200
million chess positions per second with summary information in the extended book to
select opening moves.
• Before the second match, the program's rules were fine-tuned by grandmaster Joel

Benjamin. The opening library was provided by grandmasters Miguel Illescas, John
Fedorowicz, and Nick de Firmian. When Kasparov requested that he be allowed to
study other games that Deep Blue had played so as to better understand his
opponent, IBM refused, leading Kasparov to study many popular PC chess games to
familiarize himself with computer gameplay.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

https://en.wikipedia.org/wiki/Evaluation_function
https://en.wikipedia.org/wiki/Grandmaster_(chess)
https://en.wikipedia.org/wiki/Joel_Benjamin
https://en.wikipedia.org/wiki/Joel_Benjamin
https://en.wikipedia.org/wiki/Miguel_Illescas
https://en.wikipedia.org/wiki/John_Fedorowicz
https://en.wikipedia.org/wiki/John_Fedorowicz
https://en.wikipedia.org/wiki/Nick_de_Firmian

Connect Four Demonstration

When to Cut Off Search

• We can choose a particular maximum depth d
• What if you have to move before the search completes?
• Iterative deepening search
• When asked to move, return the action chosen at the depth of the deepest completed

search

When to Cut Off Search
• Large fluctuations in the evaluation function

can be a clue that search should continue
down the current path
• Wait for quiescence
• When there is no pending move that would wildly

change the evaluation function

• If searching past the predefined cutoff, this
extra quiescence search is sometimes
restricted to only certain moves that could
drastically change the outcome of the game

A major change in the
evaluation function could
happen in the next move.

Horizon Effect

• Sometimes, there is a major even
that exists just beyond the “horizon”
• The evaluation function does not yet

recognize that this will happen

• Allow for singular extensions: moves
that look clearly better than all
other moves
• Moving the white rook to a1 to

capture the bishop on a2

Chess vs Go
• Number of legal moves per position
• Chess: ≈ 35
• Go: ≈ 250

• Number of moves per game
• Chess: ≈ 80
• Go: ≈ 150

• Number of legal configurations
• Chess: ≈ 10!"#
• Go: ≈ 10!$#

• Empirically, it has been more difficult to evaluate a position in Go

Outline

• Background
• Minimax search
• Cutting off search
• Alpha-beta pruning
• Alpha-Go

Identifying Fruitless Paths
• Can we determine, before search has ended, what actions a player should never

even consider?

Alpha-Beta Pruning: Implementation

• At any node in a tree, if a player has a better choice at some point previously in
the game, then that node will not be reached
• We can prune nodes by keeping track of values 𝛼 and 𝛽
• 𝛼 Value of the highest utility choice that we have found so far at any choice

point for MAX
• We can get a utility of at least 𝛼

• 𝛽 Value of the highest utility choice that we have found so far at any choice
point for MIN
• We can get a utility of at most 𝛽

• We prune when 𝛼 ≥ 𝛽
• When we can get, at least, 𝛼 but the current path will give us, at most, 𝛽

Alpha-Beta Pruning: Example
• max(min 3,12,8 ,min 2, 𝑥, 𝑦 ,min 14,5,2)
• = max(3,min 2, 𝑥, 𝑦 , 2)
• = 3
• It does not matter what 𝑥 and 𝑦 are because

upper bound of middle min is 2.
• Move ordering matters

• What if 2 was first on branch D?

Alpha-Beta Pruning

Note: this node could
be lower than 6!

Alpha-Beta Pruning Calculator

• https://pascscha.ch/info2/abTreePractice/

https://pascscha.ch/info2/abTreePractice/

Alpha-Beta Pruning Properties

• Has no effect on minimax value computed for the root
• Ordering improves effectiveness
• Try promising moves first (will result in higher 𝛼)

• With “perfect ordering”
• Time requirements: 𝑂(𝑏

!
")

• Effectively makes the branching size 𝑏
• Chess is still not feasible

• 35!"" ≈ 10!#$ without alpha-beta pruning
• 6!"" ≈ 10%%

• However, modern day chess solvers on your phone use a combination of alpha-beta
pruning and heuristics
• See Stockfish
• Can play better than any human player

https://en.wikipedia.org/wiki/Stockfish_(chess)

Outline

• Background
• Minimax search
• Cutting off search
• Alpha-beta pruning
• Alpha-Go

Search Strategies

• Type A
• Wide but shallow
• Consider all possible moves up to a certain depth, then use the evaluation function to

estimate the utility of the states at that depth
• Minimax search
• Alpha-beta pruning

• Type B
• Deep but narrow
• Ignore moves that look bad and explore promising moves
• Quiescence search
• Singular extensions
• Monte Carlo tree search

Monte Carlo Tree Search

• Selection
• Select a leaf node

• Expansion
• Generate a new node child node

from the selected node

• Simulation
• Play a game from the generated

child node where moves thought to
be good are selected with higher
probability than bad moves

• Backup
• Update all ancestor nodes based on

the result of the game

Go

• Typically played on a 19x19 board
• Smaller board sizes are also used

• Can put stones on cross sections of
the grid
• Goal is to surround more territory

than your opponent

AlphaGo

• Uses neural networks to represent a simulation policy and a heuristic (value)
function
• These neural networks are trained from expert games and then through self-

play

AlphaGo: Value and Policy Networks

• Deep convolutional neural network
• 13 convolutional layers

𝑠

𝑝(𝑎|𝑠, 𝜽)

𝑠

V(𝑠, 𝒘)

AlphaGo: Learning

• Learns a policy function through supervised learning of 30 million expert games
• Achieved 55.7% accuracy
• The current state-of-the-art at the time achieved 44.4% accuracy
• The large DNN architecture significantly contributes to this success

• Refines the policy function through self-play
• Plays games against itself
• Trains the policy function to increase the probability of actions of wining games and

decrease the probability of actions of losing games
• Trains the value function to predict the outcome of the games

AlphaGo: Results

• Uses a distributed version of MCTS

AlphaGo: Results

• Defeated European Go champion Fan Hui 5-0
• Defeated 18-time world champion Lee Sedol 4-1
• Move 37
• Policy network assigned low probability to move 37
• Using MCTS, AlphaGo decided that move 37 was

actually a good move

AlphaGo Zero: Learning

• The network being trained is played
against the current best network
• Start with a randomly initialized network as

the best network

• When the network being trained has a
win rate of over 55%, it is then set to be
the best network
• Learns the heuristic function from

scratch!

AlphaGo Zero: MCTS

• Only the value network is used to estimate the return
• No need to do a rollout, just back up what the value from the value function

AlphaGo Zero: Results

• Plays better than any of the previous computer Go players
• Though it plays better than the network learned through supervised learning, it

has worse prediction accuracy on the supervised learning dataset
• Indicates that it has learned a different strategy than that of human experts

AlphaZero

• Generalized AlphaGo Zero to play Go, Chess, and Shogi
• Plays better than the best computer programs for these games

Summary

• Minimax search
• Plays optimally against adversary who is also playing optimally
• Time complexity is exponential in the depth of the game tree

• Cutting off search
• We can estimate the utility of a position using a heuristic function
• We can then use this heuristic function to cut off search early

• Alpha-beta pruning
• We can get a utility of at least 𝛼
• We can get a utility of at most 𝛽
• Prune when 𝛼 ≥ 𝛽

Next Time

• Optimization

