
Announcements

• Coding Homework 1 will be released
• Due 1/25 at 11:59pm

• Written Homework 1 will be released
• Due 1/25 at 11:59pm



Informed Search
Forest Agostinelli

University of South Carolina



Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Heuristics
• Greedy Best-First search
• A* search
• Weighted A* search



Informed Search: Motivation

• Uniform cost search is 
guaranteed to find a shortest 
path
• However, it prioritizes all nodes 

with the same path cost equally
• We can see, intuitively, why this 

is undesirable
• How can we do better?



Heuristic

• A commonsense rule intended to increase the probability or efficiency of solving 
a problem
• Rules of thumb
• Educated guesses
• Intuition

• In this context, it should estimate how close we are to solving the problem
• Problem specific
• Reaching the shovel vs chemical synthesis vs solving the Rubik’s cube etc.



Outline

• Heuristics
• Greedy Best-First search
• A* search
• Weighted A* search



Greedy Best-First Search
• Instead of prioritizing nodes with the lowest path cost, we prioritize nodes with 

the lowest heuristic
• We will start with the Manhattan distance heuristic
• 𝑥! − 𝑥" + 𝑦! − 𝑦"
• Frequently used on grid-like problems



Greedy Best-First Search: Manhattan Distance
Not always optimal! Why?



Outline

• Heuristics
• Greedy Best-First search
• A* search
• Weighted A* search



A* Search

• Priority is equal to the sum of the path 
cost and the heuristic
• 𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛
• 𝑓 𝑛 : cost
• 𝑔 𝑛 : path cost (cost to get from 𝑛# to 𝑛)
• ℎ(𝑛): heuristic (estimated cost to get 

from 𝑛 to 𝑛$ ∈ 𝒢)



A* Search

Only do a goal test 
when when the 
node is selected for 
expansion!



A* Search Performance

• A* search is complete
• Time and memory still has exponential complexity in the worst case
• Given an informative heuristic, this can be significantly reduced

• A* search is guaranteed to find a shortest path when the heuristic function is 
admissible
• ℎ is admissible if and only if ℎ never overestimates the cost of a shortest path
• In other words, ℎ 𝑛 ≤ ℎ∗(𝑛) for all 𝑛

• Where ℎ∗(𝑛) is the cost of an optimal path from 𝑛 to the goal



A* Search: Admissibility

• Heuristics are given inside the nodes
• One is not admissible

• What is the shortest path?
• What is the path found when node S is the start node and node G is the goal 

node?

2

1 3

0

1

2

1

1

S

B C

G

CLOSED OPEN Expanded

S: 0 S: 2 S

S: 0, B: 1, C: 1 B: 2, C: 4 B

S: 0, B: 1, C: 1, G: 3 G: 3, C: 4 (G)



Admissible Heuristics: 8-puzzle

• 1.8×10% states
• Larger versions
• 24-puzzle: 7.7×10"& states
• 48-puzzle: 3.0×10'" states

• Think of some admissible heuristics

Start state Goal state



Admissible Heuristics: 8-puzzle

• Number of misplaced tiles
• 8

• Manhattan distance of all tiles to their goal
• 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

• Which is better?

Start state Goal state



Comparing Heuristics for A* Search

• If ℎ& 𝑛 ≥ ℎ'(𝑛) for all 𝑛, then ℎ& dominates ℎ'.
• If both are admissible, then ℎ& will expand no more nodes than ℎ'

Performance on the 8-puzzle where h1 is the number of tiles misplaced and h2 is the sum of Manhattan distances
d is the depth of the solution and IDS is iterative deepening search



A* Search and CLOSED/Reached

2

1

0

1

2

S

B

G

10

CLOSED OPEN Expanded



A* Search and CLOSED/Reached

2

1

0

1

2

S

B

G

10

CLOSED OPEN Expanded

S: 0 S: 2 S

S: 0, B: 1, G: 10 B: 2, G: 10 B

S: 0, B: 1, G: 3 G: 3, G: 10 (G)



A* Search and CLOSED/Reached

?

?

?

1

2

S

B

G

10

• What are some inadmissible heuristic values that 
would cause A* search to find a suboptimal path?



Solve

2

0 3

0

1

2

1

1

S

B C

G

0

2

D

CLOSED OPEN Expanded



Solve

Note how we expanded D with 
decreasing path costs!

2

0 3

0

1

2

1

1

S

B C

G

0

2

D

CLOSED OPEN Expanded

S: 0 S: 2 S

S: 0, B: 1, C: 1 B: 1, C: 4 B

S: 0, B: 1, C: 1, D: 3 D: 3, C: 4 D

S: 0, B: 1, C: 1, D: 3, G: 5 C: 4, G: 5 C

S: 0, B: 1, C: 1, D: 2, G: 5 D: 2, G: 5 D

S: 0, B: 1, C: 1, D: 2, G: 4 G: 4, G: 5 (G)



Consistent Heuristics

• ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛! + ℎ(𝑛′)
• Obeys the triangle inequality: “The sum of the length of any two sides must be greater than or 

equal to the length of the remaining side”

• ℎ 𝐺 = 0 for all goal nodes G
• Ensures the cost 𝑓 along any partial solution is monotonically non-decreasing
• All consistent heuristics are admissible, but not all admissible heuristics are consistent

https://en.wikipedia.org/wiki/Triangle_inequality



Consistent Heuristics

• A* search with a consistent heuristic is optimally efficient
• Any algorithm with optimality guarantees using the same heuristic information must 

expand all nodes expanded by A* search that have a cost less than that of an optimal path

• With a consistent heuristic, the first time we remove a node from OPEN it will 
be an optimal path from the start state to that node



Outline

• Heuristics
• Greedy Best-First search
• A* search
• Weighted A* search



Weighted A* Search

• 𝑓 𝑥 = 𝜆(𝑔 𝑥 + ℎ(𝑥)
• 0 ≤ 𝜆 < 1

• 𝑓 𝑥 = 𝑔 𝑥 + 𝜆)ℎ(𝑥)
• 1 < 𝜆 ≤ ∞
• Bounds on suboptimal paths if ℎ is admissible

• 𝑓 𝑥 = 𝜆(𝑔 𝑥 + 𝜆)ℎ(𝑥)
• Unifies uniform cost search, greedy best-first search, and A* search

• Can	be	potentially	faster	with	less	memory	usage	while	potentially	
incurring	a	higher	path	cost
• Though	not	always	the	case



Weighted A* Search

𝑓 𝑥 = 𝜆!𝑔 𝑥 + 𝜆"ℎ(𝑥)
𝜆! = 1.0, 𝜆" = 8

𝑓 𝑥 = 𝜆!𝑔 𝑥 + 𝜆"ℎ(𝑥)
𝜆! = 1.0, 𝜆" = 16



Depression Regions

• Putting more weight on the heuristic function may lead to faster searchers, in 
practice
• However, there are some cases in which the search will take much longer
• This is due to depression regions
• Regions in which the heuristic function says you are much closer than you actually are

• The path cost portion helps deprioritize depression regions
• If the path cost is given less weight in comparison to the heuristic function, the effect 

depression regions has can be exacerbated



Depression Regions

• While using the misplaced tile heuristic function 
for the 8-puzzle results in solving the puzzle in a 
reasonable amount of time, using this same 
heuristic function for larger versions of the puzzle 
can lead to significant depression regions
• For example, when all but a few tiles are in the 

correct place, the heuristic function gives a low 
value
• However, there may actually be a significant number of 

moves left to go

• In this situation, this heuristic does not do well in 
differentiating between the alternative paths to 
the goal
• This results in something close to uniform cost search



Learning Heuristic Functions

• Currently, A* search relies on domain-specific knowledge for constructing the 
heuristic function
• However, we can use machine learning methods to learn a heuristic function 

given only a description of the problem



Summary

• We can get better performance using heuristics to estimate the cost to reach 
the goal
• A* search is guaranteed to find a shortest path if the heuristic is admissible
• We can unify four of the algorithms presented here with the cost function 
𝑓 𝑥 = 𝜆(𝑔 𝑥 + 𝜆)ℎ(𝑥)
• Uniform cost search: 𝜆$ = 1, 𝜆7 = 0
• Greedy best-first search: 𝜆$ = 0, 𝜆7 = 1
• A* search: 𝜆$ = 1, 𝜆7 = 1
• Weighted A* search: 𝜆$ = 1, 𝜆7 > 1 or 𝜆$ < 1, 𝜆7 = 1



Next Time

• Adversarial Search


