Announcements

- Coding Homework 1 will be released
 - Due 1/25 at 11:59pm
- Written Homework 1 will be released
 - Due 1/25 at 11:59pm

Informed Search

Forest Agostinelli University of South Carolina

Topics Covered in This Class

Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

- Heuristics
- Greedy Best-First search
- A* search
- Weighted A* search

Informed Search: Motivation

- Uniform cost search is guaranteed to find a shortest path
- However, it prioritizes all nodes with the same path cost equally
- We can see, intuitively, why this is undesirable
- How can we do better?

Heuristic

- A commonsense rule intended to increase the probability or efficiency of solving a problem
 - Rules of thumb
 - Educated guesses
 - Intuition
- In this context, it should estimate how close we are to solving the problem
- Problem specific
 - Reaching the shovel vs chemical synthesis vs solving the Rubik's cube etc.

Outline

- Heuristics
- Greedy Best-First search
- A* search
- Weighted A* search

Greedy Best-First Search

- Instead of prioritizing nodes with the lowest path cost, we prioritize nodes with the lowest heuristic
- We will start with the Manhattan distance heuristic
 - $|x_1 x_2| + |y_1 y_2|$
 - Frequently used on grid-like problems

Greedy Best-First Search: Manhattan Distance

Not always optimal! Why?

Outline

- Heuristics
- Greedy Best-First search
- A* search
- Weighted A* search

A* Search

- Priority is equal to the sum of the path cost and the heuristic
- f(n) = g(n) + h(n)
 - *f*(*n*): cost
 - g(n): path cost (cost to get from n_0 to n)
 - h(n): heuristic (estimated cost to get from n to $n_g \in \mathcal{G}$)

A* Search

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure

 $node \leftarrow \text{NODE}(\text{STATE}=problem.INITIAL})$

frontier \leftarrow a priority queue ordered by f, with *node* as an element

 $reached \leftarrow a \ lookup \ table, with \ one \ entry \ with \ key \ problem. Initial \ and \ value \ node$

while not IS-EMPTY(frontier) do

 $node \leftarrow \text{POP}(frontier)$

if problem.Is-GOAL(node.STATE) then return $node \leftarrow$

for each *child* in EXPAND(*problem*, *node*) do

Only do a goal test when when the node is selected for expansion!

 $s \gets child. \texttt{State}$

if s is not in reached or child. PATH-COST < reached[s]. PATH-COST then

 $reached[s] \leftarrow child$

add child to frontier

return failure

A* Search Performance

- A* search is complete
- Time and memory still has exponential complexity in the worst case
 - Given an informative heuristic, this can be significantly reduced
- A* search is guaranteed to find a shortest path when the heuristic function is admissible
 - *h* is admissible if and only if *h* never overestimates the cost of a shortest path
 - In other words, $h(n) \leq h^*(n)$ for all n
 - Where $h^*(n)$ is the cost of an optimal path from n to the goal

A* Search: Admissibility

- Heuristics are given inside the nodes
 - One is not admissible
- What is the shortest path?
- What is the path found when node S is the start node and node G is the goal node?

CLOSED	OPEN	Expanded
S: 0	S: 2	S
S: 0, B: 1, C: 1	B: 2, C: 4	В
S: 0, B: 1, C: 1, G: 3	G: 3, C: 4	(G)

Admissible Heuristics: 8-puzzle

Start state

Goal state

- 1.8×10^5 states
- Larger versions
 - 24-puzzle: 7.7×10²⁴ states
 - 48-puzzle: 3.0×10⁶² states
- Think of some admissible heuristics

Admissible Heuristics: 8-puzzle

Start state

Goal state

• Number of misplaced tiles

• 8

- Manhattan distance of all tiles to their goal
 - 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18
- Which is better?

Comparing Heuristics for A* Search

- If $h_2(n) \ge h_1(n)$ for all n, then h_2 dominates h_1 .
- If both are admissible, then h_2 will expand no more nodes than h_1

Performance on the 8-puzzle where h1 is the number of tiles misplaced and h2 is the sum of Manhattan distances d is the depth of the solution and IDS is iterative deepening search

d	IDS	A*(h1)	A*(h2)
2	10	6	6
4	112	13	12
8	6384	39	25
12	364404	227	73
14	3473941	539	113
20		7276	676
24		39135	1641

A* Search and CLOSED/Reached

CLOSED	OPEN	Expanded

A* Search and CLOSED/Reached

CLOSED	OPEN	Expanded
S: 0	S: 2	S
S: 0, B: 1, G: 10	B: 2, G: 10	В
S: 0, B: 1, G: 3	G: 3, G: 10	(G)

A* Search and CLOSED/Reached

• What are some inadmissible heuristic values that would cause A* search to find a suboptimal path?

Solve

В

Solve

Note how we expanded D with decreasing path costs!

CLOSED	OPEN	Expanded
S: 0	S: 2	S
S: 0, B: 1, C: 1	B: 1, C: 4	В
S: 0, B: 1, C: 1, D: 3	D: 3, C: 4	D
S: 0, B: 1, C: 1, D: 3, G: 5	C: 4, G: 5	С
S: 0, B: 1, C: 1, D: 2, G: 5	D: 2, G: 5	D
S: 0, B: 1, C: 1, D: 2, G: 4	G: 4, G: 5	(G)

В

Consistent Heuristics

- $h(n) \leq c(n, a, n') + h(n')$
 - Obeys the triangle inequality: "The sum of the length of any two sides must be greater than or equal to the length of the remaining side"
- h(G) = 0 for all goal nodes G
- Ensures the cost f along any partial solution is monotonically non-decreasing
- All consistent heuristics are admissible, but not all admissible heuristics are consistent

Figure 3.19 Triangle inequality: If the heuristic h is **consistent**, then the single number h(n) will be less than the sum of the cost c(n, a, a') of the action from n to n' plus the heuristic estimate h(n').

https://en.wikipedia.org/wiki/Triangle_inequality

Consistent Heuristics

- A* search with a consistent heuristic is optimally efficient
 - Any algorithm with optimality guarantees using the same heuristic information must expand all nodes expanded by A* search that have a cost less than that of an optimal path
- With a consistent heuristic, the first time we remove a node from OPEN it will be an optimal path from the start state to that node

Figure 3.19 Triangle inequality: If the heuristic h is **consistent**, then the single number h(n) will be less than the sum of the cost c(n, a, a') of the action from n to n' plus the heuristic estimate h(n').

Outline

- Heuristics
- Greedy Best-First search
- A* search
- Weighted A* search

Weighted A* Search

- $f(x) = \lambda_g g(x) + h(x)$ • $0 \le \lambda < 1$
- $f(x) = g(x) + \lambda_h h(x)$
 - $1 < \lambda \leq \infty$
 - Bounds on suboptimal paths if h is admissible
- $f(x) = \lambda_g g(x) + \lambda_h h(x)$
 - Unifies uniform cost search, greedy best-first search, and A* search
- Can be potentially faster with less memory usage while potentially incurring a higher path cost
 - Though not always the case

Weighted A* Search

$$f(x) = \lambda_g g(x) + \lambda_h h(x)$$
$$\lambda_g = 1.0, \lambda_h = 8$$

 $f(x) = \lambda_g g(x) + \lambda_h h(x)$ $\lambda_g = 1.0, \lambda_h = 16$

Depression Regions

- Putting more weight on the heuristic function may lead to faster searchers, in practice
- However, there are some cases in which the search will take much longer
- This is due to depression regions
 - Regions in which the heuristic function says you are much closer than you actually are
- The path cost portion helps deprioritize depression regions
 - If the path cost is given less weight in comparison to the heuristic function, the effect depression regions has can be exacerbated

Depression Regions

- While using the misplaced tile heuristic function for the 8-puzzle results in solving the puzzle in a reasonable amount of time, using this same heuristic function for larger versions of the puzzle can lead to significant depression regions
- For example, when all but a few tiles are in the correct place, the heuristic function gives a low value
 - However, there may actually be a significant number of moves left to go
- In this situation, this heuristic does not do well in differentiating between the alternative paths to the goal
 - This results in something close to uniform cost search

Learning Heuristic Functions

- Currently, A* search relies on domain-specific knowledge for constructing the heuristic function
- However, we can use machine learning methods to learn a heuristic function given only a description of the problem

Summary

- We can get better performance using heuristics to estimate the cost to reach the goal
- A* search is guaranteed to find a shortest path if the heuristic is admissible
- We can unify four of the algorithms presented here with the cost function $f(x) = \lambda_g g(x) + \lambda_h h(x)$
 - Uniform cost search: $\lambda_g = 1$, $\lambda_h = 0$
 - Greedy best-first search: $\lambda_g=0$, $\lambda_h=1$
 - A* search: $\lambda_g = 1$, $\lambda_h = 1$
 - Weighted A* search: $\lambda_g=1, \lambda_h>1$ or $\lambda_g<1, \lambda_h=1$

Next Time

• Adversarial Search