Announcements

* Coding Homework 1 will be released
* Due 1/25 at 11:59pm

e Written Homework 1 will be released
* Due 1/25 at 11:59pm

; i
vV
4 " \\ 47N
V. . < s s
~ « —Z 7“
v/‘ <
LN)’
A
), A >
VV’ |/ |
S A/ \ AN
N 1>
N/
N~ 5
A
N /

INSTITUTE @ #A11SC
UNIVERSITY OF SOUTH CAROLINA

Informed Search

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

 Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

* Heuristics

* Greedy Best-First search
* A* search

* Weighted A* search

Informed Search: Motivation

* Uniform cost search is
guaranteed to find a shortest
path

* However, it prioritizes all nodes
with the same path cost equally

* We can see, intuitively, why this
is undesirable

e How can we do better?

A commonsense rule intended to increase the probability or efficiency of solving
a problem

* Rules of thumb
* Educated guesses
* Intuition

* In this context, it should estimate how close we are to solving the problem

* Problem specific
* Reaching the shovel vs chemical synthesis vs solving the Rubik’s cube etc.

* Heuristics

e Greedy Best-First search
* A* search

* Weighted A* search

Greedy Best-First Search

* Instead of prioritizing nodes with the lowest path cost, we prioritize nodes with
the lowest heuristic
* We will start with the Manhattan distance heuristic

* |x1 — x2| + [y1 — y2l
* Frequently used on grid-like problems

Greedy Best-First Search: Manhattan Distance

Not always optimal! Why?

{2

* Heuristics

* Greedy Best-First search
e A* search

* Weighted A* search

* Priority is equal to the sum of the path
cost and the heuristic

* f(n) =g(n) + h(n)
e f(n): cost
* g(n): path cost (cost to get from n; to n)

* h(n): heuristic (estimated cost to get ;

fromn ton, € G)

A* Search

function BEST-FIRST-SEARCH(problem, f) returns a solution node or fazlure
node <— NODE(STATE=problem.INITIAL)
frontier <— a priority queue ordered by f, with node as an element
reached < a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do
node < POP(frontier) Only do a goal test
if problem.IS-GOAL(node.STATE) then return 70d¢ < ————— then_Wheln thz .
for each child in EXPAND(problem, node) do pr aenlssics)i !ECte o
$ <— child .STATE
if s is not in reached or child PATH-COST < reached|s].PATH-COST then
reached|[s] <+ child
add child to frontier
return failure

A* Search Performance

* A* search is complete

* Time and memory still has exponential complexity in the worst case
* Given an informative heuristic, this can be significantly reduced

* A* search is guaranteed to find a shortest path when the heuristic function is
admissible

* his admissible if and only if h never overestimates the cost of a shortest path

* In other words, h(n) < h*(n) foralln
* Where h*(n) is the cost of an optimal path from n to the goal

A* Search: Admissibility

* Heuristics are given inside the nodes
* One is not admissible

 What is the shortest path?
* What is the path found when node S is the start node and node G is the goal

node?
CLOSED “ Expanded
S
S:0 S: 2 S
S:0,B:1,C: 1 B:2,C:4 B
S:0,B:1,C:1,G: 3 G:3,C: 4 (G)

Admissible Heuristics: 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start state Goal state

e 1.8%10° states

* Larger versions

* 24-puzzle: 7.7x10%* states
* 48-puzzle: 3.0x10°% states

* Think of some admissible heuristics

Admissible Heuristics: 8-puzzle

7 2 4 1 2
S 6 3 4 5
8 3 1 6 7 8
Start state Goal state
* Number of misplaced tiles

3
* Manhattan distance of all tiles to their goal
*3+1+2+2+2+3+3+2=18

e Which is better?

Comparing Heuristics for A* Search

* If h,(n) = hy(n) for all n, then h, dominates h;.
* If both are admissible, then h, will expand no more nodes than h,

Performance on the 8-puzzle where hl is the number of tiles misplaced and h2 is the sum of Manhattan distances
d is the depth of the solution and IDS is iterative deepening search

d IDS A*(h1) A*(h2)
2 10 6 6

4 112 13 12

8 6384 39 25

12 364404 227 73

14 3473941 539 113
7] J— 7276 676
24 39135 1641

A* Search and CLOSED/Reached

CLOSED m Expanded

A* Search and CLOSED/Reached

CLOSED m Expanded

S:0 S: 2 S

S:0,B:1,G: 10 B: 2, G: 10 B

S:0,B:1,G:3 G:3,G:10 (G)

A* Search and CLOSED/Reached

e What are some inadmissible heuristic values that
would cause A* search to find a suboptimal path?

Solve

Solve

Note how we expanded D with
decreasing path costs!

S S:0 S: 2 S
$:0,B:1,C: 1 B:1,C: 4 B
$:0,B:1,C:1,D:3 D:3,C: 4 D
B C
$:0,B:1,C:1,D:3,G:5 C:4,G:5 C
$:0,B:1,C:1,D:2,G:5 D:2,G:5 D

S:0,B:1,C:1,D:2,G: 4 G:4,G:5 (G)

Consistent Heuristics

* h(n) <c(n,a,n") + h(n")

e Obeys the triangle inequality: “The sum of the length of any two sides must be greater than or
equal to the length of the remaining side”

* h(G) = 0 for all goal nodes G
* Ensures the cost f along any partial solution is monotonically non-decreasing
* All consistent heuristics are admissible, but not all admissible heuristics are consistent

Figure 3.19 Triangle inequality: If the heuristic A is consistent, then the single number h(n)
will be less than the sum of the cost ¢(n, a,a’) of the action from n to n’ plus the heuristic
estimate h(n’).

https://en.wikipedia.org/wiki/Triangle_inequality

Consistent Heuristics

* A* search with a consistent heuristic is optimally efficient
* Any algorithm with optimality guarantees using the same heuristic information must
expand all nodes expanded by A* search that have a cost less than that of an optimal path

* With a consistent heuristic, the first time we remove a node from OPEN it will
be an optimal path from the start state to that node

Figure 3.19 Triangle inequality: If the heuristic / is consistent, then the single number h(n)
will be less than the sum of the cost c¢(n, a,a’) of the action from n to n” plus the heuristic
estimate h(n').

* Heuristics

* Greedy Best-First search
* A* search

* Weighted A* search

Weighted A* Search

* f(x) = 239(x) + h(x)
c0<1A<1

* f(x) = g(x) + A,h(x)
e l1<A<f
* Bounds on suboptimal paths if h is admissible

* fx) = 459 (x) + Aph(x)

* Unifies uniform cost search, greedy best-first search, and A* search

* Can be potentially faster with less memory usage while potentially
incurring a higher path cost

* Though not always the case

Weighted A* Search

a5 as
avas

gpgb?H

&5 &S

f(x) =259 (x) + Aph(x) f(x) = 259(x) + Aph(x)
Ag = 1.0,2, =8 Ag = 1.0,2, = 16

Depression Regions

* Putting more weight on the heuristic function may lead to faster searchers, in
practice

* However, there are some cases in which the search will take much longer

* This is due to depression regions
* Regions in which the heuristic function says you are much closer than you actually are

* The path cost portion helps deprioritize depression regions

* If the path cost is given less weight in comparison to the heuristic function, the effect
depression regions has can be exacerbated

Depression Regions

* While using the misplaced tile heuristic function
for the 8-puzzle results in solving the puzzle in a
reasonable amount of time, using this same
heuristic function for larger versions of the puzzle
can lead to significant depression regions

* For example, when all but a few tiles are in the
correct place, the heuristic function gives a low
value

 However, there may actually be a significant number of
moves left to go

* In this situation, this heuristic does not do well in
differentiating between the alternative paths to
the goal

* This results in something close to uniform cost search

Learning Heuristic Functions

e Currently, A* search relies on domain-specific knowledge for constructing the
heuristic function

 However, we can use machine learning methods to learn a heuristic function
given only a description of the problem

* We can get better performance using heuristics to estimate the cost to reach
the goal

* A* search is guaranteed to find a shortest path if the heuristic is admissible

* We can unify four of the algorithms presented here with the cost function
f() = 299(0) + Aph(x)
* Uniform cost search: 4, = 1,4, =0
* Greedy best-first search: 1, = 0,4, =1
* A*search: 4, = 1,4, =1
* Weighted A* search: 4, = 1,4, > 1ord; <1, 4, =1

e Adversarial Search

