
Announcements

• Questions about Coding Homework 0?
• Coding Homework 1 will be released
• Due 1/25 at 11:59pm

• Written Homework 1 will be released
• Due 1/25 at 11:59pm



Uninformed Search
Forest Agostinelli

University of South Carolina



Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Motivation
• Preliminaries
• Breadth-first search
• Uniform cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

• Bidirectional search



Motivation

• Donald Knuth conjectured that, starting with the number 4, a sequence of 
square root, floor, and factorial operations can create any desired positive 
integer
• How can we reach 5 from 4 using only these operations?



The Class of Problems
• For a pathfinding problem, we want to find a sequence of actions that 

transforms one state into a state that is a member of the set of goal states
• Find a path to a goal state

• Pathfinding problems appear in many different areas, from robotics to the 
natural sciences
• Note: In general, while we may be able to pose a particular problem as a 

member of a class of problems (i.e. we can pose robotic object manipulation as 
a pathfinding problem). However, this does not mean pathfinding is the best 
way to solve the problem.
• For example, machine learning, or some combination of the two, may perform better

𝑆! 𝑆" 𝑆#𝑎! 𝑆"𝑎" …



Examples: Puzzles
• Puzzles often have an intuitive state 

(or set of states) that is considered 
the goal state
• Using pathfinding algorithms one can 

find solutions to these puzzles 
without knowing how to solve the 
puzzle
• Because of this, one can view AI as 

writing the algorithm to solve the 
puzzle for you
• This theme will continue throughout 

this class and is one of the reasons AI is 
so powerful

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.



Examples: Theorem Proving and Chemical Synthesis

• Both theorem proving and chemical 
synthesis involve finding a path by 
combining building blocks (axioms or 
chemical compounds) to create a 
target structure (theorem to prove or 
chemical compound)

Background: Retrosynthesis Problem
Task: predict synthesis routes for 
target molecules.

Challenge: combinatorial search space. 

Sub-problems:
� One-step retrosynthesis
� Retrosynthetic planning

Target Molecule

Intermediate 
Compounds

Building Blocks

3

Chen, Binghong, et al. "Retro*: learning retrosynthetic planning with neural guided A* search." ICML, 2020.



Examples: Robotics 

• Many problems in robotics are pathfinding 
problems.
• However, robots operate in a continuous 

environment, which poses a problem for 
many pathfinding algorithms
• Nonetheless, some techniques make use of 

discretization to use pathfinding algorithms

Andrychowicz, Marcin, et al. "Hindsight experience replay." NeurIPS (2017).
Likhachev, Maxim, et al. "Anytime Dynamic A*: An Anytime, Replanning Algorithm." ICAPS. Vol. 5. 2005.



Outline

• Motivation
• Preliminaries
• Breadth-first search
• Uniform cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

• Bidirectional search



Defining a Pathfinding Problem

• States 𝒮
• Only keeps the details needed to solve the problem

• Actions 𝒜
• It is not always the case that every action can be taken in every state

• Start state 𝑠!
• Goal states 𝒢 ⊆ 𝒮
• Transition model
• 𝑠! = 𝐴(𝑠, 𝑎)

• Transition cost function 𝑐(𝑠, 𝑎, 𝑠′)
• Find a path from state 𝑠! to a state 𝑠" ∈ 𝒢
• A minimum cost path is also referred to as an optimal or shortest path
• There can be more than one optimal path



State Space Graph
• Vertices: States
• Directed Edges: Actions
• Each state appears only once
• Pathfinding algorithms can be seen as finding a path between nodes in a graph



Example: Traveling in Romania
• Travel from Arad to Bucharest
• States

• Cities
• Actions

• Go to an adjacent city
• Start state

• Arad
• Goal state(s)

• Bucharest
• Transition model

• Go to selected city
• Transition cost function

• Driving time



Example: AI Farm
• Move the tractor to the shovel
• States

• Locations of tractor
• 100 possible states

• Actions
• Up, down, left, right

• Start state
• Tractor’s current location

• Goal state(s)
• Tractor on the shovel’s location

• Transition model
• Tractor moves in direction of action
• Stays in place if it hits a wall

• Transition cost function
• 1 for each step
• 10 for driving on a rock
• 50 for driving on a plant



Example: AI Farm
• Water all the plants
• States

• 15 plants, can be watered or not watered 2!"
• 100 possible locations for tractor
• 100 ∗ 2!" ≈ 3.27×10#

• Actions
• Up, down, left, right, water up, water down, water left, water right

• Start state
• Tractor’s current location and status of plants (watered/un-watered)

• Goal state(s)
• All plants watered (100 goal states)

• Transition model
• Tractor moves/waters in direction of action
• Stays in place if it hits a wall
• If plant was un-watered, it changes to watered

• Transition cost function
• 1 for each step
• 10 for driving on a rock
• 50 for driving on a plant



Pathfinding Algorithms

• Expand nodes according to some priority until a goal node is selected for 
expansion
• Use a priority queue to sort nodes according to priority
• This is referred to as OPEN or the “fringe”
• For some algorithms, it can be implemented as a simple FIFO or LIFO queue

• Some algorithms use a CLOSED set to remember the nodes that have been 
generated
• Sometimes referred to as “reached”
• Prevents redundant node expansions



Nodes

• Node: Bookkeeping data structure for search
• State
• Parent node
• Action

• Action that the parent took to generate this node
• Path cost

• Cost of path from the start node to current node

• There can be multiple nodes with the same state
• We will refer to a node with the start state as 𝑛! and with a goal state as 𝑛"
• A node is expanded when we use the transition function to generate all its 

children



Node Expansion

Arad

Sibiu Timisoara Zerind

• Apply every possible action to the state associated with the node
for each action 𝑎 for 𝑛. 𝑠

𝑠! = 𝐴 𝑛. 𝑠, 𝑎 // next state 
𝑔 = 𝑛. 𝑔 + 𝑐(𝑛. 𝑠, 𝑎, 𝑠′) // path cost
𝑑 = 𝑛. 𝑑 + 1 //depth
𝑛" = 𝑁𝑜𝑑𝑒(𝑠!, 𝑛, 𝑎, 𝑔, 𝑑) //new node



Search Tree
• Pathfinding algorithms can form a tree where states appear multiple times; 

representing different paths one can take to the same state
• Remember, every node except for the root node has exactly one parent

• Vertices: States
• Directed Edges: Actions

State space graph Search tree

Arad

Sibiu Timisoara Zerind

Arad OradeaLugojAradArad OradeaRim.Fagaras



How to Analyze Search Algorithms

• Completeness
• Is complete if an only if it always finds a solution (if a solution exists)

• Time complexity
• Number of nodes generated

• Space complexity
• Maximum number of nodes in memory

• Optimality
• Is optimal if and only if it always finds a least-cost solution



How to Analyze Search Algorithms

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete?

Time

Space

Optimal



Outline

• Motivation
• Preliminaries
• Breadth-first search
• Uniform cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

• Bidirectional search



Breadth-First Search
• Prioritize the shallowest nodes
• For breadth-first search, we do not have to wait until the goal node is selected for 

expansion, we can terminate when the goal state is generated

Not yet generated In OPEN Expanded
Node to be 
expanded next



Breadth First Search

Breadth-first search 
is a special case 
where we can do 
the goal test when 
nodes are generated 
instead of when 
they are selected for 
expansion



Breadth First Search: AI Farm



Solve: Breadth-First Search

• Order of expansion?
• Path found?



Solve: Breadth-First Search

• Order of expansion: S, A, B, C, (G1)
• Path found: S, C, G1



Breadth-First Search

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete? Yesa

Time O(bd)

Space O(bd)

Optimal Yesc



Outline

• Motivation
• Preliminaries
• Breadth-first search
• Uniform cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

• Bidirectional search



Uniform Cost Search (Dijkstra's algorithm)

• Prioritize nodes with the lowest path cost (ties broken arbitrarily)

1

13

2

1 1

1

13

2

1 1

1

13

2

1 1

1

13

2

1 1

1

13

2

1 1

1

13

2

1 1

Not yet generated In OPEN Expanded



Uniform Cost Search

Only do a goal test 
when when the 
node is selected for 
expansion!

• Uniform cost search is best first search where the function 𝑓 returns the path cost



Uniform Cost Search: AI Farm



Solve: Uniform Cost Search

• Order of expansion?
• Path found?



Solve: Uniform Cost Search
• Order of expansion: S, A, B, B, D, C, (G2)
• Path found: S, A, B, C, G2

CLOSED OPEN Expanded

S: 0 S: 0 S

S: 0, A: 4, B: 10, C: 50 A: 4, B: 10, C: 50 A

S: 0, A: 4, B: 7, C: 50 B: 7, B: 10, C: 50 B

S: 0, A: 4, B: 7, C: 17, D: 13 B: 10, D: 13, C: 17, C: 50 B

S: 0, A: 4, B: 7, C: 17, D: 13 D: 13, C: 17, C: 50 D

S: 0, A: 4, B: 7, C: 17, D: 13 C: 17, C: 50 C

S: 0, A: 4, B: 7, C: 17, D: 13, G1: 23, G2: 22 G2: 22, G1: 23, C: 50 (G2)



Uniform Cost Search

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete? Yesa Yesa,b

Time O(bd) O(b1+floort(C*/ε))

Space O(bd) O(b1+floort(C*/ε))

Optimal Yesc Yes



Outline

• Motivation
• Preliminaries
• Breadth-first search
• Uniform cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

• Bidirectional search



Depth-First Search



Depth-First Search

• Depending on the order of nodes returned during expansion, we could have an 
infinite loop at A



Depth-First Search

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete? Yesa Yesa,b No

Time O(bd) O(b1+floort(C*/ε)) O(bm)

Space O(bd) O(b1+floort(C*/ε)) O(bm)

Optimal Yesc Yes No



Depth-Limited Search

Typo in the book. >
should be changed 
to ≥



Depth-limited Search

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete? Yesa Yesa,b No No

Time O(bd) O(b1+floort(C*/ε)) O(bm) O(bl)

Space O(bd) O(b1+floort(C*/ε)) O(bm) O(bl)

Optimal Yesc Yes No No



Iterative Deepening Search

• Do depth-limited starting 
with a limit of 0
• Increase limit until a 

solution or a failure is 
encountered



Iterative Deepening Search



Iterative Deepening Search



Iterative Deepening Search



Iterative Deepening Search: AI Farm



Iterative Deepening Search

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete? Yesa Yesa,b No No Yesa

Time O(bd) O(b1+floort(C*/ε)) O(bm) O(bl) O(bd)

Space O(bd) O(b1+floort(C*/ε)) O(bm) O(bl) O(bd)

Optimal Yesc Yes No No Yesc



Outline

• Motivation
• Preliminaries
• Breadth-first search
• Uniform cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

• Bidirectional search



Bidirectional Search

• Does breadth-first search in both 
directions
• Must be able to implement a reverse 

transition function
• Terminates when the OPEN queues 

(frontiers) intersect



Bidirectional Search

Criterion Breadth-First 
Search

Uniform Cost 
Search

Depth-First Depth-
Limited

Iterative 
Deepening

Bidirectional 
Search

Complete? Yesa Yesa,b No No Yesa Yesa,d

Time O(bd) O(b1+floort(C*/ε)) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+floort(C*/ε)) O(bm) O(bl) O(bd) O(bd/2)

Optimal Yesc Yes No No Yesc Yesc,d



Summary
• Breadth-first search

• Prioritizes shallowest
• FIFO queue

• Uniform-cost search
• Prioritizes the ones with the lowest path cost
• Priority queue ordered by path cost

• Depth-first search (and variants)
• Prioritizes deepest
• LIFO queue (stack)

• Bidirectional search
• Breadth-first search from the start and goal



Next Time

• While uniform cost search is guaranteed to find a shortest path, it expanded 
almost every node in the state space
• Next time, we will look at informed search strategies that estimate how close 

each node is to solving the problem to better prioritize node expansion


