Announcements

* Questions about Coding Homework 07

* Coding Homework 1 will be released
* Due 1/25 at 11:59pm

e Written Homework 1 will be released
* Due 1/25 at 11:59pm

; i
vV
4 " \\ 47N
V. . < s s
~ « —Z 7“
v/‘ <
LN)’
A
), A >
VV’ |/ |
S A/ \ AN
N 1>
N/
N~ 5
A
N /

INSTITUTE @ #A11SC
UNIVERSITY OF SOUTH CAROLINA

Uninformed Search

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

 Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

* Motivation

* Preliminaries

* Breadth-first search
e Uniform cost search

* Depth-first search
e Depth-limited search
* |terative deepening search

e Bidirectional search

* Donald Knuth conjectured that, starting with the number 4, a sequence of
square root, floor, and factorial operations can create any desired positive
integer

* How can we reach 5 from 4 using only these operations?

The Class of Problems

* For a pathfinding problem, we want to find a sequence of actions that
transforms one state into a state that is a member of the set of goal states

* Find a path to a goal state
e Pathfinding problems appear in many different areas, from robotics to the
natural sciences
* Note: In general, while we may be able to pose a particular problem as a

member of a class of problems (i.e. we can pose robotic object manipulation as
a pathfinding problem). However, this does not mean pathfinding is the best

way to solve the problem.
* For example, machine learning, or some combination of the two, may perform better

Examples: Puzzles

* Puzzles often have an intuitive state
(or set of states) that is considered
the goal state T

22 12 | 4 2 5 [|

17 | 16 | 3 6 9

e Using pathfinding algorithms one can
find solutions to these puzzles T

without knowing how to solve the o1 0] 6|18
puzzle

20 | 19 | 18 | 11 7

1 2 3 4 5

* Because of this, one can view Al as
writing the algorithm to solve the
puzzle for you .

* This theme will continue throughout S et R S

this class and is one of the reasons Al is e 24 puat Light Out 7<7) Sokoban
so powerful

6 7 8 9 |10

11|12 | 13 | 14 | 15

16 | 17 | 18 | 19 | 20

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

Examples: Theorem Proving and Chemical Synthesis

* Both theorem proving and chemical

synthesis involve finding a path by reliost0=s

combining building blocks (axioms or HATCH WP TAC NAT INDUCTION 10— o TR, proven
chemical compounds) to create a e) = e 0 I v
target structure (theorem to prove or Figure 1: Formally proving Yo € N : x +0 =

chemical compound)

Building Blocks

AN <a_ Intermediate
Compounds

Target Molecule

Chen, Binghong, et al. "Retro*: learning retrosynthetic planning with neural guided A* search." ICML, 2020.

Examples: Robotics

* Many problems in robotics are pathfinding
problems.

* However, robots operate in a continuous
environment, which poses a problem for
many pathfinding algorithms

* Nonetheless, some technigues make use of
discretization to use pathfinding algorithms

Andrychowicz, Marcin, et al. "Hindsight experience replay." NeurlPS (2017).
Likhachev, Maxim, et al. "Anytime Dynamic A*: An Anytime, Replanning Algorithm." ICAPS. Vol. 5. 2005.

* Motivation

* Preliminaries

* Breadth-first search
e Uniform cost search

* Depth-first search
e Depth-limited search
* |terative deepening search

e Bidirectional search

Defining a Pathfinding Problem

e States 5
* Only keeps the details needed to solve the problem

* Actions A
* |t is not always the case that every action can be taken in every state

 Start state s,
* Goalstates G © &

* Transition model
e s' =A(s,a)
* Transition cost function c(s,a, s’)

* Find a path from state s, to a state s, € §

* A minimum cost path is also referred to as an optimal or shortest path
* There can be more than one optimal path

State Space Graph

Vertices: States

Directed Edges: Actions

Each state appears only once

Pathfinding algorithms can be seen as finding a path between nodes in a graph

[Oradea

S S
M Vaslui LC;{’ o558] ?‘DR LCfgg‘ R 8 E{‘DR
(F T T T
* o OO

Eforie

Example: Traveling in Romania

* Travel from Arad to Bucharest
e States

* Cities
e Actions

* Go to an adjacent city

e Start state
e Arad

* Goal state(s)
* Bucharest

* Transition model
* Go to selected city

* Transition cost function
* Driving time

Example: Al Farm

Move the tractor to the shovel

States
* Locations of tractor -
* 100 possible states o

Actions
* Up, down, left, right

Start state
* Tractor’s current location

Goal state(s)
* Tractor on the shovel’s location

Transition model
* Tractor moves in direction of action
e Staysin place if it hits a wall

Transition cost function
e 1 for each step
e 10 for driving on a rock
e 50 for driving on a plant

Example: Al Farm

* Water all the plants

* States
* 15 plants, can be watered or not watered 21°
* 100 possible locations for tractor

e 100 % 21> = 3.27%x10°

* Actions
* Up, down, left, right, water up, water down, water left, water right

* Start state
* Tractor’s current location and status of plants (watered/un-watered)

* Goal state(s)
» All plants watered (100 goal states)

e Transition model
* Tractor moves/waters in direction of action
e Stays in place if it hits a wall
* If plant was un-watered, it changes to watered

* Transition cost function
e 1 for each step
e 10 for driving on a rock
e 50 for driving on a plant

Pathfinding Algorithms

* Expand nodes according to some priority until a goal node is selected for
expansion

e Use a priority gueue to sort nodes according to priority
* This is referred to as OPEN or the “fringe”
* For some algorithms, it can be implemented as a simple FIFO or LIFO queue

* Some algorithms use a CLOSED set to remember the nodes that have been
generated
* Sometimes referred to as “reached”
* Prevents redundant node expansions

Nodes

* Node: Bookkeeping data structure for search
* State
* Parent node

* Action
* Action that the parent took to generate this node

e Path cost
* Cost of path from the start node to current node

* There can be multiple nodes with the same state
* We will refer to a node with the start state as n, and with a goal state as n,

* A node is expanded when we use the transition function to generate all its
children

Node Expansion

* Apply every possible action to the state associated with the node

for each action a forn.s
s' = A(n.s,a) // next state
g=n.g+c(n.s,a,s") // path cost
d =n.d+1 //depth
n. = Node(s',n,a,g,d) //new node

&

R
N - BE

Search Tree

e Pathfinding algorithms can form a tree where states appear multiple times;
representing different paths one can take to the same state

« Remember, every node except for the root node has exactly one parent
* Vertices: States
* Directed Edges: Actions

[JHirsova

|]
Eforie

State space graph Search tree

How to Analyze Search Algorithms

 Completeness
* Is complete if an only if it always finds a solution (if a solution exists)
* Time complexity
* Number of nodes generated
* Space complexity
* Maximum number of nodes in memory
* Optimality
* |s optimal if and only if it always finds a least-cost solution

How to Analyze Search Algorithms

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete?

Time

Space

Optimal

* Motivation

* Preliminaries

* Breadth-first search
e Uniform cost search

* Depth-first search
e Depth-limited search
* |terative deepening search

e Bidirectional search

Breadth-First Search

* Prioritize the shallowest nodes

* For breadth-first search, we do not have to wait until the goal node is selected for
expansion, we can terminate when the goal state is generated

Node to be \ . Q b
expanded next __+ Not yet generate n

Breadth First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <— NODE(problem .INITIAL)
if problem.IS-GOAL(node.STATE) then return node
frontier <— a FIFO queue, with node as an element
reached <— { problem.INITIAL }
while not IS-EMPTY(frontier) do

node < POP(frontzer) Breadth-first search

for each child in EXPAND(problem, node) do is a special case
s < child.STATE where we can do
if problem.IS-GOAL(S) then return chill G ——————————————— the goal test when
" ; : nodes are generated
if s 1s not in reached then instead of when
add s to reached they are selected for
add child to frontier expansion

return failure

Breadth First Search: Al Farm

£S5

Solve: Breadth-First Search

* Order of expansion?
e Path found?

Solve: Breadth-First Search

o - -~

* Order of expansion: S, A, B, C, (G1)
e Path found: S, C, G1

Breadth-First Search

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete? Yes?
Time O(bd)
Space O(bd)
Optimal Yes¢

Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

* Motivation

* Preliminaries

* Breadth-first search
e Uniform cost search

* Depth-first search
e Depth-limited search
* |terative deepening search

e Bidirectional search

Uniform Cost Search (Dijkstra's algorithm)

* Prioritize nodes with the lowest path cost (ties broken arbitrarily)

O Not yet generated

Uniform Cost Search

* Uniform cost search is best first search where the function f returns the path cost

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node <— NODE(STATE=problem.INITIAL)
frontier <— a priority queue ordered by f, with node as an element
reached < a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do
node < POP(frontier) Only do a goal test
if problem .IS-GOAL(node.STATE) then return 70d¢ ¢ — :’:j: i?:eﬁzcttzz o
for each child in EXPAND(problem, node) do expansion!
s <— child.STATE
if s is not in reached or child PATH-COST < reached|s].PATH-COST then
reached|[s] + child
add child to frontier
return failure

Uniform Cost Search: Al Farm

Solve: Uniform Cost Search

* Order of expansion?
e Path found?

Solve: Uniform Cost Search

S * Order of expansion: S, A, B, B, D, C, (G2)
o X e Path found: S, A, B, C, G2

10

' ? C s
Q G1 G2
CLOSED PN | Expanded

S:0 S:0 S
S:0,A:4,B:10,C: 50 A: 4,B: 10, C: 50 A
S:0,A:4,B:7,C:50 B: 7, B: 10, C: 50 B
S:0,A:4,B:7,C:17,D: 13 B: 10, D:13,C: 17, C: 50 B
S:0,A:4,B:7,C:17,D: 13 D: 13,C:17,C: 50 D
S:0,A:4,B:7,C:17,D: 13 C.17,C:50 C

S:0,A:4,B:7,C:17,D: 13, G1: 23, G2: 22 G2:22,G1:23,C: 50 (G2)

Uniform Cost Search

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete? Yes? Yesab

Time O(bd) O(b1+floort(C*/e))
Space O(bd) O(b1+floort(C*/e))
Optimal Yes© Yes

Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

* Motivation

* Preliminaries

* Breadth-first search
e Uniform cost search

* Depth-first search
e Depth-limited search
* |terative deepening search

e Bidirectional search

P () J K L M N O

@ J K L M N O

Depth-First Search

* Depending on the order of nodes returned during expansion, we could have an
infinite loop at A

Depth-First Search

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete? Yes? Yes2b

Time O(bd) O(b1#floort(C*/e)) O(b™)
Space O(bY) O(b#floort(C*/e)) O(bm)
Optimal Yes© Yes No

Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

Depth-Limited Search

function DEPTH-LIMITED-SEARCH(problem, £) returns a node or failure or cutoff
frontier < a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result < failure
while not IS-EMPTY(frontier) do
node <— POP(frontier)

if problem.IS-GOAL(node.STATE) then return node Typo in the book. >
if DEPTH(node) > ¢ then should be changed
to =

result <— cutoff
else if not IS-CYCLE(node) do
for each child in EXPAND(problem, node) do
add child to frontier
return result

Depth-limited Search

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete? Yes? Yesab

Time O(bd) O(b1#floort(C*/e)) O(b™) O(b')
Space O(bY) O(b#floort(C*/e)) O(bm) O(bl)
Optimal Yes© Yes No No

Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

* Do depth-limited starting
with a limit of O

* Increase limit until a
solution or a failure is
encountered

limit: 0

>@®

limit: 1

>®

>®

limit: 2 >®

limit: 3

Iterative Deepening Search: Al Farm

Iterative Deepening Search

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete? Yes? Yesab Yes?
Time O(bd) O(b1*fleort(C*/e)) O(bm) O(b') O(bd)
Space O(bY) O(b#floort(C*/e)) O(bm) O(bl) O(bd)
Optimal Yes© Yes No No Yes¢

Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

* Motivation

* Preliminaries

* Breadth-first search
e Uniform cost search

* Depth-first search
e Depth-limited search
* |terative deepening search

e Bidirectional search

Bidirectional Search

* Does breadth-first search in both | —
directions =11
* Must be able to implement a reverse = _| |0 =
transition function I =-N-= E
= =
* Terminates when the OPEN queues . ¢ ¥ G - %4 = S
. . \ e
(frontiers) intersect T |
Eas me
A_i: 4+ #‘i Y+

Bidirectional
search frontiers
at termination

Fig. 2.10 Bidirectional and unidirectional breadth-first searches.

Bidirectional Search

Criterion Breadth-First | Uniform Cost Depth- Iterative Bidirectional
Search Search Limited Deepening Search

Complete? Yes? Yesab Yes? Yesad
Time O(bd) O(b1*fleort(C*/e)) O(bm) O(b') O(bd) O(b9/2)
Space O(bY) O(b#floort(C*/e)) O(bm) O(bl) O(bd) O(b9/2)
Optimal Yes¢ Yes No No Yes¢ Yescd

Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

Summary

e Breadth-first search
e Prioritizes shallowest
* FIFO queue

 Uniform-cost search
* Prioritizes the ones with the lowest path cost
* Priority queue ordered by path cost

* Depth-first search (and variants)
* Prioritizes deepest
e LIFO queue (stack)

 Bidirectional search
* Breadth-first search from the start and goal

* While uniform cost search is guaranteed to find a shortest path, it expanded
almost every node in the state space

* Next time, we will look at informed search strategies that estimate how close
each node is to solving the problem to better prioritize node expansion

