
Basic Computation – Part 1
Forest Agostinelli

University of South Carolina

Outline

• Review
• Variables
• Primitive types
• Class types (only brief notes)
• Constants, Math operators, I/O

Terminology: Compiled vs Interpreted Languages

• Compiled languages
• Convert code to assembly or machine code through a process called compilation
• Examples: C++, Java

• Interpreted Languages
• Call precompiled code based on the code written in the high-level language
• Examples: Python, Perl

Java Virtual Machine

• Java source code is compiled into an intermediate java bytecode
• The java bytecode will result in the same execution in the Java virtual machine (JVM)

across physical machines

• A machine-specific combination of an interpreter and a just-in-time (JIT)
compiler are used to convert the bytecode to machine code

Source code
(.JAVA)

Intermediate
bytecode
(.CLASS)

Java virtual
machine Machine code

Compiler Interpreter/JIT

Outline

• Review
• Variables
• Primitive types
• Class types (only brief notes)
• Constants, Math operators, I/O

Variables

• Variables store data
• The data that they store can then be used for computation
• The Java syntax for declaring variables: <<type>> <<identifier>>
• Note: “<<here>>” means put something in place of this
• For example: int numCats;
• Only specify the type when declaring the variable

Identifiers

Identifiers

Terminology: Static vs Dynamic Typing

• Static Typing: The type of a variable is known at compile time and cannot
change during runtime
• Type errors are caught at compile time
• C, C++, Java

• Dynamic Typing: The type of a variable may or may not be known at compile
time and can change during runtime
• Type errors can occur during runtime
• More flexibility
• Python, Perl, MATLAB
• Python now has type hinting, which does not have an effect on runtime, but can be used

with IDEs to prevent catch errors before runtime

Java Types

• Primitive Types
• Atomic/irreducible
• No methods
• Identifiers contain the assigned value

• Class Types
• Are composed of other types
• Can have class methods
• Identifiers are references to the class object

Outline

• Review
• Variables
• Primitive types
• Class types (only brief notes)
• Constants, Math operators, I/O

Primitive Types
• The name “floating-point” comes

from the fact that the decimal
point can be made to “float”
to different places in a number in
scientific notation
• What explains the range of the

primitive number types?
• Why the difference of 1 in the

range of positive and negative
numbers?
• See two’s complement

• In what situation would using a
byte be preferable to an int?
• What happens if one has a byte

that is 127 and then adds 1 to it?

Wraparound

• A byte is represented by 1 byte
• 127 is 01111111
• Adding one makes it 10000000, which is -128
• Not taking this into account can cause crucial

errors in the logic of your code!

byte val = 127;
System.out.println(val);
val++;
System.out.println(val);

Output
127
-128

Variable Declaration

• One can declare variables without yet assigning them a value. They are then
assigned a default value.

Variable Assignment

Variable Declaration and Assignment

• One can combine variable declaration and assignment into one statement
• This creates more compact code, and it is good programming practice to do so

whenever possible

int i = 0;
double j = 22.3;
char o = 'h';

Variable Declaration and Assignment

int i = 0;
double j = 22.3;
char o = 'h';
i = (int)j;

Outline

• Review
• Variables
• Primitive types
• Class types (only brief notes)
• Constants, Math operators, I/O

Class Types

• The variable to which a class is assigned does not hold the value of the class, but
rather, a reference, which is the location in memory in which the object is stored
• This leads to significantly different behavior when working with class types as

opposed to primitive types

Variable Assignment: Primitive Types

int a = 1;
int b = a;

Identifier Value Byte Address

a 1 4

b 1 8

Identifier Value Byte Address

a 1 4

b 2 8
b = b + 1;

Variable Assignment: Class Types

public class IntegerMutable {
 int val;

public IntegerMutable(int val) {
 this.val = val;
}

public void add(int val_add) {
 this.val = this.val + val_add;
}

}

Variable Assignment: Class Types

IntegerMutable aClass = new IntegerMutable(1);
IntegerMutable bClass = aClass;

Identifier Value Byte Address

a 1024 4

b 1024 12

… … ...

1 1024

bClass.add(1);

Identifier Value Byte Address

a 1024 4

b 1024 12

… … ...

2 1024

Variable Assignment: Class Types

aClass = new IntegerMutable(3);

Identifier Value Byte Address

a 2048 4

b 1024 12

… … ...

2 1024

… … …

3 2048

bClass = aClass;

Identifier Value Byte Address

a 2048 4

b 2048 12

… … ...

2 1024

… … …

3 2048

• Now nothing is referring to
memory location 1024
• What happens to it?

Outline

• Review
• Variables
• Primitive types
• Class types (only brief notes)
• Constants, Math operators, I/O

Constants

Math Operators

The right-hand side is evaluated first and then
assigned to the left-hand side.

Compute and Assign Operators

Math Notes

Basic Input and Output (I/O)

Basic Input and Output (I/O)

Basic Input and Output (I/O)

Coding Example

