- =
vV
; 4 7\ [DT RS
Y < \/
P I
DA 7 |
4 ‘ A <7
S
D 'A’ﬂ; /x\
Ve /g |
S {
DY K \ AN
= M/\ N>
NZ
N4 >
INA
7 4

INSTITUTE @ #A11SC
UNIVERSITY OF SOUTH CAROLINA

Basic Computation — Part 1

Forest Agostinelli
University of South Carolina

* Review

 Variables

* Primitive types

* Class types (only brief notes)

e Constants, Math operators, |/0

Terminology: Compiled vs Interpreted Languages

* Compiled languages
* Convert code to assembly or machine code through a process called compilation
* Examples: C++, Java

* Interpreted Languages
* Call precompiled code based on the code written in the high-level language
* Examples: Python, Perl

Java Virtual Machine

e Java source code is compiled into an intermediate java bytecode

* The java bytecode will result in the same execution in the Java virtual machine (JVM)
across physical machines

* A machine-specific combination of an interpreter and a just-in-time (JIT)
compiler are used to convert the bytecode to machine code

Compiler Intermediate Java virtual Interpreter/JIT

bytecode nachine Machine code
(.CLASS)

Source code

(LJAVA)

* Review

* VVariables

* Primitive types

* Class types (only brief notes)

e Constants, Math operators, |/0

* Variables store data
* The data that they store can then be used for computation

* The Java syntax for declaring variables: <<type>> <<identifier>>
* Note: “<<here>>" means put something in place of this
* For example: int numCats;
* Only specify the type when declaring the variable

ldentifiers

* An identifier is a name, such as the name
of a variable.

 |dentifiers should be meaningful

* |Identifiers may contain ONLY
— Letters
— Digits (0 through 9)
— The underscore character (_)

— And the dollar sign symbol (S) which has a
special meaning

* |dentifiers CANNOT contain
— Spaces of any kind
— Digit as the First Character
— Dots “”
— Asterisks

“un

— Other types of special characters

* |dentifiers are Case Sensitive

— “Stuff”, “stuff”, “STUFF”, and “sTuFf” would all be
considered different identifiers

e |dentifiers CANNOT be a reserved word
— Example Reserved Words: int, public, class

ldentifiers

Naming Conventions

Class Types start with an Uppercase
character

— Example: String

Primitive Types start with a Lowercase
character

— Example: int

Variables identifiers of both start with a
Lowercase Character

Multiword identifiers are “punctuated”
using uppercase characters

Good Examples

int testol;
double largeValues;
boolean inClass;

Bad Examples
int 1Test;//Started with a digit
double big vals;//Used a space

boolean class;//Class is a reserved wonrd

Terminology: Static vs Dynamic Typing

 Static Typing: The type of a variable is known at compile time and cannot
change during runtime
* Type errors are caught at compile time
e C, C++, Java

* Dynamic Typing: The type of a variable may or may not be known at compile
time and can change during runtime
* Type errors can occur during runtime
* More flexibility
e Python, Perl, MATLAB

* Python now has type hinting, which does not have an effect on runtime, but can be used
with IDEs to prevent catch errors before runtime

Java Types

* Primitive Types
* Atomic/irreducible
* No methods
* |dentifiers contain the assigned value

* Class Types
* Are composed of other types
* Can have class methods
* |dentifiers are references to the class object

* Review

 Variables

* Primitive types

* Class types (only brief notes)

e Constants, Math operators, |/0

Primitive Types

* The name “floating-point” comes
from the fact that the decimal

SR B point can be made to “float”
byte 1 byte Stores whole numbers from -128 to 127 to different o laces in a number in
short 2 bytes Stores whole numbers from -32,768 to 32,767 SC | e nt|f| C N Otat | O N
int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647 e \What ex P lains the ran ge of the

primitive number types?

on es ores whole numbers from -9,223,372,036,854,775,) . .
o . Ss)f223,37'21,(:36,854?775,807 DSOS * Why the difference of 1 in the

_ . _ _,_ range of positive and negative
float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits num be rS?
double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits * See tWO’S comp l ement

* In what situation would using a

boolean 1 bit Stores true or false values byte be p refe ra b I e tO an | nt p)
char 2 bytes Stores a single character/letter or ASCII values

 What happens if one has a byte
that is 127 and then adds 1 to it?

* A byte is represented by 1 byte

byte val = 127; .
Si/,stem.out.println(val); *127is 01111111
A * Adding one makes it 10000000, which is -128

System.out.printin(val);
* Not taking this into account can cause crucial

errors in the logic of your code!
Output

127
-128

Variable Declaration

* One can declare variables without yet assigning them a value. They are then
assigned a default value.

Example Memory
L | e |
double j;

char o;

i 0 28

i 0.0 32

o ‘\u0000’ 40

?7?? ?7?? 42

Variable Assignment

The equals symbol “=" is the assignment
operator

Stores values found on the right hand side
(RHS) of the operator into the identifier found
on the left hand side (LHS)

Assignments are valid if the type matches are
is at least compatible

— Primitive types can be stored in other primitive
types as long the type’s byte amount is less than
or equal to value being stored

— Otherwise “type casting” is required
— Type casting does not round it cuts off everything

an

past the decimal point “
Spoken:

— “Store this value in this container”

syntax
<<identifier>> = <<value>>;
Examples
i = 0;
j = 22.3;
0O = rh);
i

(int)j;//Type cast from double to int

//Value stored in “i” is 22

Variable Declaration and Assignment

* One can combine variable declaration and assighment into one statement

* This creates more compact code, and it is good programming practice to do so
whenever possible

Memory
I I
int 1 = 0;
double j = 22.3;
i 0 28
char o = 'h';

j 223 32

Variable Declaration and Assignment

int i = 0;
double j = 22.3;
char o = 'h';

i = (int)j;

Memory
m
22 28
j 223 32

‘W’ 40

* Review

 Variables

* Primitive types

* Class types (only brief notes)

e Constants, Math operators, |/0

Class Types

* The variable to which a class is assigned does not hold the value of the class, but
rather, a reference, which is the location in memory in which the object is stored

* This leads to significantly different behavior when working with class types as
opposed to primitive types

Variable Assignment: Primitive Types

1;
a | |

a 1 4
b 1 8

b =>b+ 1; d 1 -
b 2 8

Variable Assighment: Class Types

public class IntegerMutable {
int val;

public IntegerMutable(int val) {
this.val = val;

}

public void add(int val_add) {
this.val = this.val + val _add;

}

Variable Assighment: Class Types

new IntegerMutable(1);

IntegerMutable aClass

: 4
IntegerMutable bClass = aClass; 1024
b 1024 12
1 1024

a 1024 4

bClass.add(1); b 1024 12

2 1024

Variable Assighment: Class Types

aClass = new IntegerMutable(3); | 2048 ¢
b 1024 12
2 1024
3 2048
\dentfir vl | oyte Address
a 2048 4
bClass = aClass; b 2048 12
* Now nothing is referring to - pp—

memory location 1024

* What happens to it? 3 2048

* Review

 Variables

* Primitive types

* Class types (only brief notes)

* Constants, Math operators, |/0

Constants

Establishes a value that cannot change Syntax

MUST assign a value initially

public static final <<type>> <<identifier>> = <<value>>;

Great for avoiding “magic numbers”

Good programming practice

— Make the scope public

— Make it static

— Capitalize all characters in the identifier

Examples
public static final double PI = 3.14159;
public static final int BOARD_SIZE = 10;

Math Operators

* Performs computation and then assigns the Syntax

results
* Order of Operations <<identifier>> = <<value>> <<operator>> <<value>>;
* Basic Math Operations The right-hand side is evaluated first and then

— Addition “+” assigned to the left-hand side.

o n

— Subtraction

— Multiplication “*” Examples
— Division “/” //Variables

* Mod Operator “on” int value = 64 % i + 32;
— Returns the remainder after division //Constants

—Ex:15%2=1 public static final double PI = 3.14159;
public static final double PI_SQ = PI*PI;

Compute and Assigh Operators

* Compute and Assign (C&A) Operators

— Shorthand for applying some operator and value to a
variable

— Same as:
* <<identifier>> = <<identifier>> <<operator>> <<value>>;
e Ex:i=i+1;i+=1; i++; //Same statements
* Common Versions
— “+=" —add and assign

— “-=" — subtract and assign
“*=" — multiply and assign
— “/=" —divide and assign
— “%="—mod and assign
* Special versions

o

— “++” —Increase by 1
* Sameas “+=1"

— “-” —Decrease by 1
e Same as “-=1"

Syntax

<<identifier>> <<C&A operator>> <<valued>>;

Examples
i += 128; //If i = 32 now it 1is 160
j %= 2; //If j = 28.0 now it is 0.0

Math Notes

* eNotation * Integers are ALWAYS Integers
— Allows number to be written in scientific — Anything past the decimal point is cut off
notation — Also can be considered “rounding down” or “taking
— Example: 865000000.0 can be written as the floor”
8.65e8 — Example: 1/3=0
* Imprecision with Floating-Point Numbers — Logic Error

— Floating point numbers are approximations as
they are finite

— Example: 1.0/3.0 is slightly less than 1/3 ergo
1.0/3.0+1.0/3.0+1.0/3.0<1.0

— Logic Errors

Basic Input and Output (I/O)

* For now, input and output is done in the Syntax
Console

Command Line Interface System.out.println(<<value>>);
Console Outputs (Writes)

— Left to Right
— Up to Down

Examples

Console Inputs (Reads)
— Left to Right
— Up to Down

int 1 = 22;
System.out.println(i);

Basic Input and Output (I/O)

e System.out.println(<<argument>>); Syntax
— Statement used to output the argument and
adds a new line after System.out.println(<<argument>>);

i System.out.print t>>);
o System.out.prlnt(<<argument>>); ystem.out.print(<<argument>>)

— Statement used to output the argument but
stays on the same line

e “Prints” to the standard system output (the Examples
console) int i = 22;

System.out.println(i);

Basic Input and Output (I/O)

Use Scanner to read from Console

Must import type Scanner from “java.util”
package

— import java.util.Scanner;

Create an instance of type Scanner that
“scans” the standard system input

— Scanner keyboard = new Scanner(System.in);

Useful methods
— next()

— nextLine()

— nextint()

— nextDouble()

Also can be used to “scan” Strings, files,
network traffic, etc.

Examples
Scanner keyboard = new Scanner(System.in);
String name = keyboard.nextLine();
int i = keyboard.nextInt();
keyboard.nextLine();//Useful “fix-up”
double j = keyboard.nextDouble();
keyboard.nextLine();//Useful “fix-up”
System.out.println(name+ “ “ + i + “ “ + j);

Console
J]
64

3.14
JJ 64 3.14

Coding Example

InchesToFeet.java

/*
* Written by JJ Shepherd
*/
import java.util.Scanner;
public class InchesToFeet {

public static final double INCHES2FEET = 12.0;
//Entry point
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
System.out.println("Greetings! Give a height in feet, and I will give the number of
inches, and feet + inches");
double feet;
feet = keyboard.nextDouble();
keyboard.nextLine();

double inches = feet*INCHES2FEET;
int iFeet = (int)(inches/INCHES2FEET);
int rmInches = (int)(inches%INCHES2FEET);

System.out.println("In "+feet+"ft there are "+inches+"in. or "+iFeet+"ft. and
"+rmInches+"in.");

}

