i v
y /, R
Py W LS AN
"~ - V1N
N @ p:
K—7 | &
A LYY
g Ve |/ i
7 v
PR AN
\ D>
Az /
N N

INSTITUTE s Al1SC
UNIVERSITY OF SOUTH CAROLINA

Machine Learning: Unsupervised Learning

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

* Clustering

* Dimensionality reduction
* PCA
* Autoencoders

* Generative models

Clustering

* Grouping objects into clusters where objects in a cluster
are more similar than compared to those in other
clusters

* Natural sciences
* High-energy physics
* Biology
e Chemistry

* Medicine
e Patients
* Diseases

* Reinforcement learning
* Cluster similar states for hierarchy
* Cluster similar actions to create meta-actions

K-means Clustering

* Suppose we have n data points
* We would like to partition them into K clusters
* Each cluster C;, has a mean (centroid) u,

* Each data point can only be associated with
one cluster

* Our objective is to minimize the sum of squares
within each cluster

: K
* argming Y =1 erck”x — pell?

K-means Clustering: Algorithm

* Randomly initialize K centroids
* While True

* Assign each data point to the nearest centroid (Euclidean distance)
* Update the K centroids by averaging all points assigned to them

* |f the location of the centroids do not change
* Break

K-means Clustering: Example

* Is this clustering good?
* What can we do to improve it?

K-means: Convergence

* K-means is not guaranteed to converge to the optimal clusters
» argming Y=g Yyec, Ix — pill?

* |nitialization
* We can get better results with better initialization
* Take into account the range of the data

* We can partition the data into sections
* Many other initialization methods

* Multiple restarts
* Many K-means initialization methods have randomization

* Therefore, we can run K-means multiple times and select the best clusters according to
our optimization criteria

K-means: Random Restarts

e After multiple tries, we may end up with an acceptable solution

Selecting the Best K

* We may not know K beforehand
* We can measure the best sum of squares we obtain for each K

* argming Y= Dxec, 1% — pill’
* Larger K allows for the possibility of finding a lower sum of squares
* However, there is a point in which the sum of squares does not decrease as fast
* We can use this heuristic to find a good K

Curse of Dimensionality

* The phrase was coined by Richard Bellman in reference to solving problems with
dynamic programming

* However, this is relevant to many other cases
* In high-dimensions, data has many possibly surprising properties

* In particular, data points tend to be sparse when the dimensionality is increased
* Euclidean distance becomes less meaningful
* This makes partitioning data into meaningful clusters difficult or impossible

Curse of Dimensionality: Examples

* Suppose we have a, relatively small, 28 x 28 images
* There are 28%x28 = 784 —dimensional data points
* Running K-means on this data will most likely result in meaningless clusters

* Clustering

* Dimensionality reduction
* PCA
 Autoencoders

* Generative models

Principal Component Analysis (PCA)

* Suppose we have n data points, each with dimensionality d
e Each data point x@W e R4

* We would like to find principal components with which to linearly project this
data into a new orthogonal coordinate system of lower dimensionality that
preserves as much variance as possible

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

Linear Projection and Variance

e Given the following data
points (x), projecting x
them on to the first line .
results in higher variance \
than the second line

* PCA seeks to find the line
with maximum variance

PCA Visualization

* ul and u2 are the two principal
components

* They are orthogonal to one another

Linear Projection and Variance

* Assuming the principal components are unit vectors, the length of a projection
: . DT
of x on to a principal component u is x(V" u

* The first principal component, u; € R%, should maximize the variance of
projected data

. : 1] 2 :
* Empirical variance: ~ }Ll(x(‘) — m) , Where m is the mean.

 We normalize our data beforehand so that it has a mean of zero and a standard
deviation of 1

2
1 AT
* Therefore u; should maximize — >/, (x(‘) ul)

* subject to||u4|l, =1

Linear Projection and Variance

.12?=1(x<i>Tu1)2:% n o Tx@y®Ty

g (_ s OOy

T, . . . L
* We seethat 2 = (—Z" x Dy D) is the empirical covariance matrix given that
our data has mean zero

« How can we choose a u; that maximizes the expression ul Xu, subject to
[lugll, =172

Linear Projection and Variance

* Eigenvectors of a linear transformation are non-zero vectors that do not change
direction when the linear transformation is applied and change, at most, by
some scalar factor known as its corresponding eigenvalue

* Therefore, if u4 is an eigenvector of X' with corresponding eigenvalue
e AXuq = Auy

* Therefore, because the angle between a vector with itself is O
* u{/hil = Aluqll2]luqll2

* Therefore, maximizing this expression amounts to setting 1, to the eigenvector
of the covariance matrix with the largest corresponding eigenvalue

* In general, to obtain k principal components where k < d, we can find the top k
eigenvectors of the covariance matrix

* Clustering

* Dimensionality reduction
* PCA
 Autoencoders

* Generative models

Autoencoders

* Neural networks that are trained without labels T

: Decoder
* The input is passed through an encoder .g
* The dimensionality of the output of the encoder is - ful
usually much less than the dimensionality of the input | P |
* Called code layer or bottleneck layer | 1000]
* The output of the encoder is then passed to the o=
decoder which is trained to mimic the input S 30l codetayer
. o . S0] |
* This is known as minimizing the reconstruction . fw, |
: 1000
error Fu,
; | 2000 |
[w,
L
. Encoder
Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the Unrolling

dimensionality of data with neural networks." science
313.5786 (2006): 504-507.

Autoencoders: Reconstruction Results

* The reconstructions of autoencoders are generally not exactly the same as the
input

* However, they tend to capture the salient features

Autoencoders: Dimensionality Reduction on Digits

e A-PCA
B - Autoencoder

* By visual inspection we see that the data is grouped into clusters based on the
type of digit

CoNOOBEBWN-—-O

* Clustering

* Dimensionality reduction
* PCA
* Autoencoders

e Generative models

Generative Models

* By observing real-world data, we can learn to generate (imagine) new data that
we have never seen before

e Simple case: if we assume the data has a Gaussian distribution, we can fit a
Gaussian distribution to the data
* There are known ways to sample from a Gaussian distribution

Variational Autoencoders

* The bottleneck layer of an autoencoder can be designed to follow a Gaussian
distribution

* After training, we only have to sample from this Gaussian distribution and feed
this sample to the decoder to generate data

neural network

neural network
decoder

encoder

https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73

Vg
-
Q
e
O
O
-
()
O
)
>
<
(O
-
O
i
(O
&
>

* We can modify a single datapoint by moving its latent code in a certain direction

DA SNANNNANANNNNSNNSNNNNNSN
QAR EHELLLLLLWNYNNNN~
QUAVINNININLEELELLLVLVYYYNN~
QAVVUININLn iy ot ©OLVYW W -~~~
QAVVHHINNKGEWBVIVIY W - - —
QOAOAQOOVOHINININMHEBPBDIIVI Y W - - —
QAQOQOIMIMMMMN oY MOIOID D @ - - —
QOOQOMMNMMMMN WO DD D " e o —
OODMME MM NN W WD DD - e —
QODOME MMM MDD WD D e e —
QOOMOMMOMMM MO0 W® e on o o -
QONMMM M "0 0000 o oo —
DAl iI 8% 0207000000 0 om0~ 0~ P~ =
NI e L Ea N ol ol ol e e
RN N N Nl a al ol ol ol S S
i ogororrororrraaanan~
SdadadadadogororrrrdrdTIIINN
SddaddgrorrrrrrFdTITITIXINN
SdddgorTrrrrrr>rrrr2r22N
S I g gl e il ool ool ol ol ol ol S N N NI LN

old]
=
©
o)
O
c
¢
o
+—
>S5
<
00
=
E
x
©
©
C
@
o
X
=
]
©
2
o
al
£
old]
=
b4

variational bayes." arXiv preprint arXiv:1312.6114 (2013).

bos

EEEEE
& g’

..”w"*

-
-
Nortes

-
=
ﬂﬂ
o

Generative Adversarial Networks

* We can generate data by trying to fool a discriminator

generator
[data sample} {discriminator }—[generator }
sample
data
sample?
[yes / no}

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In NIPS (pp. 2672-2680).
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

Generative Adversarial Networks

* Unpaired domain transfer

7phra —\ hnrqp

horse —> zebra

J-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

Normalizing Flows

* Using invertible neural networks one can directly do maximum likelihood during training

e Data can then be generative by sampling from a Gaussian and inverting passing it through in
reverse

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039.

