
Machine Learning: Unsupervised Learning
Forest Agostinelli

University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Outline

• Clustering
• Dimensionality reduction
• PCA
• Autoencoders

• Generative models

Clustering

• Grouping objects into clusters where objects in a cluster
are more similar than compared to those in other
clusters
• Natural sciences
• High-energy physics
• Biology
• Chemistry

• Medicine
• Patients
• Diseases

• Reinforcement learning
• Cluster similar states for hierarchy
• Cluster similar actions to create meta-actions

K-means Clustering

• Suppose we have n data points
• We would like to partition them into K clusters
• Each cluster 𝐶! has a mean (centroid) 𝝁!
• Each data point can only be associated with

one cluster
• Our objective is to minimize the sum of squares

within each cluster
• argmin𝑪∑"#$% ∑𝒙∈(! 𝒙 − 𝝁")

K-means Clustering: Algorithm

• Randomly initialize K centroids
• While True
• Assign each data point to the nearest centroid (Euclidean distance)
• Update the K centroids by averaging all points assigned to them
• If the location of the centroids do not change

• Break

K-means Clustering: Example

• Is this clustering good?
• What can we do to improve it?

K-means: Convergence

• K-means is not guaranteed to converge to the optimal clusters
• argmin𝑪∑"#$% ∑𝒙∈(! 𝒙 − 𝝁")

• Initialization
• We can get better results with better initialization
• Take into account the range of the data
• We can partition the data into sections
• Many other initialization methods

• Multiple restarts
• Many K-means initialization methods have randomization
• Therefore, we can run K-means multiple times and select the best clusters according to

our optimization criteria

K-means: Random Restarts

• After multiple tries, we may end up with an acceptable solution

Selecting the Best K

• We may not know K beforehand
• We can measure the best sum of squares we obtain for each K
• argmin𝑪∑"#$% ∑𝒙∈(! 𝒙 − 𝝁")

• Larger K allows for the possibility of finding a lower sum of squares
• However, there is a point in which the sum of squares does not decrease as fast
• We can use this heuristic to find a good K

Curse of Dimensionality

• The phrase was coined by Richard Bellman in reference to solving problems with
dynamic programming
• However, this is relevant to many other cases
• In high-dimensions, data has many possibly surprising properties
• In particular, data points tend to be sparse when the dimensionality is increased
• Euclidean distance becomes less meaningful
• This makes partitioning data into meaningful clusters difficult or impossible

Curse of Dimensionality: Examples

• Suppose we have a, relatively small, 28 x 28 images
• There are 28×28 = 784 −dimensional data points
• Running K-means on this data will most likely result in meaningless clusters

Outline

• Clustering
• Dimensionality reduction
• PCA
• Autoencoders

• Generative models

Principal Component Analysis (PCA)

• Suppose we have 𝑛 data points, each with dimensionality 𝑑
• Each data point 𝑥(+) ∈ ℛ-

• We would like to find principal components with which to linearly project this
data into a new orthogonal coordinate system of lower dimensionality that
preserves as much variance as possible

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

Linear Projection and Variance

• Given the following data
points (x), projecting
them on to the first line
results in higher variance
than the second line
• PCA seeks to find the line

with maximum variance

PCA Visualization

• u1 and u2 are the two principal
components
• They are orthogonal to one another

Linear Projection and Variance

• Assuming the principal components are unit vectors, the length of a projection
of 𝑥(#) on to a principal component 𝑢 is 𝑥 # !𝑢
• The first principal component, 𝑢% ∈ ℛ& , should maximize the variance of

projected data

• Empirical variance: %
'
∑#(%' 𝑥(#) −𝑚)

, where m is the mean.

• We normalize our data beforehand so that it has a mean of zero and a standard
deviation of 1

• Therefore 𝑢% should maximize %
'
∑#(%' 𝑥 # !𝑢%

)

• subject to||𝑢$||) = 1

Linear Projection and Variance

• %
'
∑#(%' 𝑥 # !𝑢%

)
= %

'
∑#(%' 𝑢%*𝑥(#)𝑥 # !𝑢%

• = 𝑢%*(
%
'
∑#(%' 𝑥(#)𝑥 # !)𝑢%

• We see that 𝜮 = (%
'
∑#(%' 𝑥(#)𝑥 # !) is the empirical covariance matrix given that

our data has mean zero
• How can we choose a 𝑢% that maximizes the expression 𝑢%*𝚺𝑢% subject to
||𝑢%||) = 1?

Linear Projection and Variance

• Eigenvectors of a linear transformation are non-zero vectors that do not change
direction when the linear transformation is applied and change, at most, by
some scalar factor known as its corresponding eigenvalue
• Therefore, if 𝑢% is an eigenvector of 𝜮 with corresponding eigenvalue
• 𝜆𝚺𝑢$ = 𝜆𝑢$

• Therefore, because the angle between a vector with itself is 0
• 𝑢$.𝜆𝑢$ = 𝜆||𝑢$||)||𝑢$||)

• Therefore, maximizing this expression amounts to setting 𝑢% to the eigenvector
of the covariance matrix with the largest corresponding eigenvalue
• In general, to obtain k principal components where k < d, we can find the top k

eigenvectors of the covariance matrix

Outline

• Clustering
• Dimensionality reduction
• PCA
• Autoencoders

• Generative models

Autoencoders

• Neural networks that are trained without labels
• The input is passed through an encoder
• The dimensionality of the output of the encoder is

usually much less than the dimensionality of the input
• Called code layer or bottleneck layer

• The output of the encoder is then passed to the
decoder which is trained to mimic the input
• This is known as minimizing the reconstruction

error

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." science

313.5786 (2006): 504-507.

Autoencoders: Reconstruction Results

• The reconstructions of autoencoders are generally not exactly the same as the
input
• However, they tend to capture the salient features

Autoencoders: Dimensionality Reduction on Digits

• A - PCA
• B - Autoencoder
• By visual inspection we see that the data is grouped into clusters based on the

type of digit

Outline

• Clustering
• Dimensionality reduction
• PCA
• Autoencoders

• Generative models

Generative Models

• By observing real-world data, we can learn to generate (imagine) new data that
we have never seen before
• Simple case: if we assume the data has a Gaussian distribution, we can fit a

Gaussian distribution to the data
• There are known ways to sample from a Gaussian distribution

Variational Autoencoders

• The bottleneck layer of an autoencoder can be designed to follow a Gaussian
distribution
• After training, we only have to sample from this Gaussian distribution and feed

this sample to the decoder to generate data

https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73

Variational Autoencoders

• We can modify a single datapoint by moving its latent code in a certain direction

Kingma, Diederik P., and Max Welling. "Auto-encoding
variational bayes." arXiv preprint arXiv:1312.6114 (2013).

Generative Adversarial Networks

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In NIPS (pp. 2672-2680).
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

• We can generate data by trying to fool a discriminator

Generative Adversarial Networks

• Unpaired domain transfer

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

Normalizing Flows
• Using invertible neural networks one can directly do maximum likelihood during training
• Data can then be generative by sampling from a Gaussian and inverting passing it through in

reverse

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039.

