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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Clustering
• Dimensionality reduction
• PCA
• Autoencoders

• Generative models



Clustering

• Grouping objects into clusters where objects in a cluster 
are more similar than compared to those in other 
clusters
• Natural sciences
• High-energy physics
• Biology
• Chemistry

• Medicine
• Patients
• Diseases

• Reinforcement learning
• Cluster similar states for hierarchy
• Cluster similar actions to create meta-actions



K-means Clustering

• Suppose we have n data points
• We would like to partition them into K clusters
• Each cluster 𝐶! has a mean (centroid) 𝝁!
• Each data point can only be associated with 

one cluster
• Our objective is to minimize the sum of squares 

within each cluster
• argmin𝑪∑"#$% ∑𝒙∈(! 𝒙 − 𝝁" )



K-means Clustering: Algorithm

• Randomly initialize K centroids
• While True
• Assign each data point to the nearest centroid (Euclidean distance)
• Update the K centroids by averaging all points assigned to them
• If the location of the centroids do not change

• Break



K-means Clustering: Example

• Is this clustering good?
• What can we do to improve it?



K-means: Convergence

• K-means is not guaranteed to converge to the optimal clusters
• argmin𝑪∑"#$% ∑𝒙∈(! 𝒙 − 𝝁" )

• Initialization
• We can get better results with better initialization
• Take into account the range of the data
• We can partition the data into sections
• Many other initialization methods

• Multiple restarts
• Many K-means initialization methods have randomization
• Therefore, we can run K-means multiple times and select the best clusters according to 

our optimization criteria



K-means: Random Restarts

• After multiple tries, we may end up with an acceptable solution



Selecting the Best K

• We may not know K beforehand
• We can measure the best sum of squares we obtain for each K
• argmin𝑪∑"#$% ∑𝒙∈(! 𝒙 − 𝝁" )

• Larger K allows for the possibility of finding a lower sum of squares
• However, there is a point in which the sum of squares does not decrease as fast
• We can use this heuristic to find a good K



Curse of Dimensionality

• The phrase was coined by Richard Bellman in reference to solving problems with 
dynamic programming
• However, this is relevant to many other cases
• In high-dimensions, data has many possibly surprising properties
• In particular, data points tend to be sparse when the dimensionality is increased
• Euclidean distance becomes less meaningful
• This makes partitioning data into meaningful clusters difficult or impossible



Curse of Dimensionality: Examples

• Suppose we have a, relatively small, 28 x 28 images
• There are 28×28 = 784 −dimensional data points
• Running K-means on this data will most likely result in meaningless clusters
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Principal Component Analysis (PCA)

• Suppose we have 𝑛 data points, each with dimensionality 𝑑
• Each data point 𝑥(+) ∈ ℛ-

• We would like to find principal components with which to linearly project this 
data into a new orthogonal coordinate system of lower dimensionality that 
preserves as much variance as possible

https://cs229.stanford.edu/notes2022fall/main_notes.pdf



Linear Projection and Variance

• Given the following data 
points (x), projecting 
them on to the first line 
results in higher variance 
than the second line
• PCA seeks to find the line 

with maximum variance



PCA Visualization

• u1 and u2 are the two principal 
components
• They are orthogonal to one another



Linear Projection and Variance

• Assuming the principal components are unit vectors, the length of a projection 
of 𝑥(#) on to a principal component 𝑢 is 𝑥 # !𝑢
• The first principal component, 𝑢% ∈ ℛ& , should maximize the variance of 

projected data

• Empirical variance: %
'
∑#(%' 𝑥(#) −𝑚 )

, where m is the mean.

• We normalize our data beforehand so that it has a mean of zero and a standard 
deviation of 1

• Therefore 𝑢% should maximize %
'
∑#(%' 𝑥 # !𝑢%

)

• subject to||𝑢$||) = 1



Linear Projection and Variance

• %
'
∑#(%' 𝑥 # !𝑢%

)
= %

'
∑#(%' 𝑢%*𝑥(#)𝑥 # !𝑢%

• = 𝑢%*(
%
'
∑#(%' 𝑥(#)𝑥 # !)𝑢%

• We see that 𝜮 = (%
'
∑#(%' 𝑥(#)𝑥 # !) is the empirical covariance matrix given that 

our data has mean zero
• How can we choose a 𝑢% that maximizes the expression 𝑢%*𝚺𝑢% subject to 
||𝑢%||) = 1?



Linear Projection and Variance

• Eigenvectors of a linear transformation are non-zero vectors that do not change 
direction when the linear transformation is applied and change, at most, by 
some scalar factor known as its corresponding eigenvalue
• Therefore, if 𝑢% is an eigenvector of 𝜮 with corresponding eigenvalue 
• 𝜆𝚺𝑢$ = 𝜆𝑢$

• Therefore, because the angle between a vector with itself is 0
• 𝑢$.𝜆𝑢$ = 𝜆||𝑢$||)||𝑢$||)

• Therefore, maximizing this expression amounts to setting 𝑢% to the eigenvector 
of the covariance matrix with the largest corresponding eigenvalue
• In general, to obtain k principal components where k < d, we can find the top k 

eigenvectors of the covariance matrix
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Autoencoders

• Neural networks that are trained without labels
• The input is passed through an encoder
• The dimensionality of the output of the encoder is 

usually much less than the dimensionality of the input
• Called code layer or bottleneck layer

• The output of the encoder is then passed to the 
decoder which is trained to mimic the input
• This is known as minimizing the reconstruction 

error

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the 
dimensionality of data with neural networks." science 

313.5786 (2006): 504-507.



Autoencoders: Reconstruction Results

• The reconstructions of autoencoders are generally not exactly the same as the 
input
• However, they tend to capture the salient features



Autoencoders: Dimensionality Reduction on Digits

• A - PCA
• B - Autoencoder
• By visual inspection we see that the data is grouped into clusters based on the 

type of digit
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Generative Models

• By observing real-world data, we can learn to generate (imagine) new data that 
we have never seen before
• Simple case: if we assume the data has a Gaussian distribution, we can fit a 

Gaussian distribution to the data
• There are known ways to sample from a Gaussian distribution



Variational Autoencoders

• The bottleneck layer of an autoencoder can be designed to follow a Gaussian 
distribution
• After training, we only have to sample from this Gaussian distribution and feed 

this sample to the decoder to generate data

https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73



Variational Autoencoders

• We can modify a single datapoint by moving its latent code in a certain direction

Kingma, Diederik P., and Max Welling. "Auto-encoding 
variational bayes." arXiv preprint arXiv:1312.6114 (2013).



Generative Adversarial Networks

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In NIPS (pp. 2672-2680).
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

• We can generate data by trying to fool a discriminator



Generative Adversarial Networks

• Unpaired domain transfer 

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.



Normalizing Flows
• Using invertible neural networks one can directly do maximum likelihood during training
• Data can then be generative by sampling from a Gaussian and inverting passing it through in 

reverse

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039.


