

Machine Learning: Unsupervised Learning Forest Agostinelli University of South Carolina

Topics Covered in This Class

• Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

• Clustering

- Dimensionality reduction
 - PCA
 - Autoencoders
- Generative models

Clustering

- Grouping objects into clusters where objects in a cluster are more similar than compared to those in other clusters
- Natural sciences
 - High-energy physics
 - Biology
 - Chemistry
- Medicine
 - Patients
 - Diseases
- Reinforcement learning
 - Cluster similar states for hierarchy
 - Cluster similar actions to create meta-actions

K-means Clustering

- Suppose we have n data points
- We would like to partition them into K clusters
- Each cluster C_k has a mean (centroid) μ_k
- Each data point can only be associated with one cluster
- Our objective is to minimize the sum of squares within each cluster
 - $\operatorname{argmin}_{C} \sum_{k=1}^{K} \sum_{x \in C_{k}} ||x \mu_{k}||^{2}$

K-means Clustering: Algorithm

- Randomly initialize K centroids
- While True
 - Assign each data point to the nearest centroid (Euclidean distance)
 - Update the K centroids by averaging all points assigned to them
 - If the location of the centroids do not change
 - Break

K-means Clustering: Example

- Is this clustering good?
- What can we do to improve it?

K-means: Convergence

- K-means is not guaranteed to converge to the optimal clusters
 - $\operatorname{argmin}_{C} \sum_{k=1}^{K} \sum_{x \in C_{k}} ||x \mu_{k}||^{2}$
- Initialization
 - We can get better results with better initialization
 - Take into account the range of the data
 - We can partition the data into sections
 - Many other initialization methods
- Multiple restarts
 - Many K-means initialization methods have randomization
 - Therefore, we can run K-means multiple times and select the best clusters according to our optimization criteria

K-means: Random Restarts

• After multiple tries, we may end up with an acceptable solution

Selecting the Best K

- We may not know K beforehand
- We can measure the best sum of squares we obtain for each K
 - $\operatorname{argmin}_{C} \sum_{k=1}^{K} \sum_{x \in C_{k}} ||x \mu_{k}||^{2}$
- Larger K allows for the possibility of finding a lower sum of squares
- However, there is a point in which the sum of squares does not decrease as fast
- We can use this heuristic to find a good K

Curse of Dimensionality

- The phrase was coined by Richard Bellman in reference to solving problems with dynamic programming
- However, this is relevant to many other cases
- In high-dimensions, data has many possibly surprising properties
- In particular, data points tend to be sparse when the dimensionality is increased
 - Euclidean distance becomes less meaningful
 - This makes partitioning data into meaningful clusters difficult or impossible

Curse of Dimensionality: Examples

- Suppose we have a, relatively small, 28 x 28 images
 - There are $28 \times 28 = 784$ –dimensional data points
 - Running K-means on this data will most likely result in meaningless clusters

Outline

- Clustering
- Dimensionality reduction
 - PCA
 - Autoencoders
- Generative models

Principal Component Analysis (PCA)

- Suppose we have *n* data points, each with dimensionality *d*
 - Each data point $x^{(i)} \in \mathcal{R}^d$
- We would like to find principal components with which to linearly project this data into a new orthogonal coordinate system of lower dimensionality that preserves as much variance as possible

- Given the following data points (x), projecting them on to the first line results in higher variance than the second line
- PCA seeks to find the line with maximum variance

PCA Visualization

- u1 and u2 are the two principal components
- They are orthogonal to one another

- Assuming the principal components are unit vectors, the length of a projection of $x^{(i)}$ on to a principal component u is $x^{(i)^T}u$
- The first principal component, $u_1 \in \mathcal{R}^d$, should maximize the variance of projected data
- Empirical variance: $\frac{1}{n}\sum_{i=1}^{n} (x^{(i)} m)^2$, where m is the mean.
- We normalize our data beforehand so that it has a mean of zero and a standard deviation of 1
- Therefore u_1 should maximize $\frac{1}{n} \sum_{i=1}^n \left(x^{(i)^T} u_1 \right)^2$
 - subject to $||u_1||_2 = 1$

•
$$\frac{1}{n} \sum_{i=1}^{n} \left(x^{(i)^{T}} u_{1} \right)^{2} = \frac{1}{n} \sum_{i=1}^{n} u_{1}^{T} x^{(i)} x^{(i)^{T}} u_{1}$$

• $= u_{1}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} x^{(i)} x^{(i)^{T}} \right) u_{1}$

- We see that $\Sigma = (\frac{1}{n} \sum_{i=1}^{n} x^{(i)} x^{(i)^{T}})$ is the empirical covariance matrix given that our data has mean zero
- How can we choose a u_1 that maximizes the expression $u_1^T \Sigma u_1$ subject to $||u_1||_2 = 1$?

- Eigenvectors of a linear transformation are non-zero vectors that do not change direction when the linear transformation is applied and change, at most, by some scalar factor known as its corresponding eigenvalue
- Therefore, if u_1 is an eigenvector of $\pmb{\Sigma}$ with corresponding eigenvalue
 - $\lambda \Sigma u_1 = \lambda u_1$
- Therefore, because the angle between a vector with itself is 0
 - $u_1^T \lambda u_1 = \lambda ||u_1||_2 ||u_1||_2$
- Therefore, maximizing this expression amounts to setting u_1 to the eigenvector of the covariance matrix with the largest corresponding eigenvalue
- In general, to obtain k principal components where k < d, we can find the top k eigenvectors of the covariance matrix

Outline

- Clustering
- Dimensionality reduction
 - PCA
 - Autoencoders
- Generative models

Autoencoders

- Neural networks that are trained without labels
- The input is passed through an encoder
 - The dimensionality of the output of the encoder is usually much less than the dimensionality of the input
 - Called code layer or bottleneck layer
- The output of the encoder is then passed to the decoder which is trained to mimic the input
- This is known as minimizing the reconstruction error

Autoencoders: Reconstruction Results

- The reconstructions of autoencoders are generally not exactly the same as the input
- However, they tend to capture the salient features

Autoencoders: Dimensionality Reduction on Digits

- A PCA
- B Autoencoder
- By visual inspection we see that the data is grouped into clusters based on the type of digit

Outline

- Clustering
- Dimensionality reduction
 - PCA
 - Autoencoders
- Generative models

Generative Models

- By observing real-world data, we can learn to generate (imagine) new data that we have never seen before
- Simple case: if we assume the data has a Gaussian distribution, we can fit a Gaussian distribution to the data
 - There are known ways to sample from a Gaussian distribution

Variational Autoencoders

- The bottleneck layer of an autoencoder can be designed to follow a Gaussian distribution
- After training, we only have to sample from this Gaussian distribution and feed this sample to the decoder to generate data

https://towardsdatascience.com/understanding-variationalautoencoders-vaes-f70510919f73

Variational Autoencoders

• We can modify a single datapoint by moving its latent code in a certain direction

66600000000 0 5 5.6 в 5

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).

Generative Adversarial Networks

• We can generate data by trying to fool a discriminator

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In *NIPS* (pp. 2672-2680). http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

Generative Adversarial Networks

• Unpaired domain transfer

Monet \rightarrow photo

photo →Monet

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

Normalizing Flows

- Using **invertible** neural networks one can directly do maximum likelihood during training
- Data can then be generative by sampling from a Gaussian and inverting passing it through in reverse

(a) Smiling

(c) Blond Hair

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. *arXiv preprint arXiv:1807.03039*.