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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Motivation
• Policy gradients (one-step MDP)
• Policy gradient theorem
• Policy gradients with baseline
• Actor-Critic
• Deep deterministic policy gradients



Induced Policies

• The goal of reinforcement learning is to find a policy 
that maximizes the expected future reward
• So far, we have only learned a policy indirectly by 

behaving greedily with respect to a value function
• 𝜋(𝑠) = argmax

!
(𝑟 𝑠, 𝑎 + 𝛾 ∑"! 𝑝 𝑠# 𝑠, 𝑎 2𝑣 𝑠#, 𝒘 )

• 𝜋(𝑠) = argmax
!

2𝑞(𝑠, 𝑎,𝒘)

• Instead, we can learn a policy directly

𝜋 𝑎!|𝑠, 𝜽 …𝜋 𝑎|𝒜||𝑠, 𝜽

𝜽

𝑠



Motivation: Function Complexity

• A policy function may be easier to learn
• Breakout
• Value function: expected future reward

• How many blocks are left?
• Are there any special blocks?
• How long will it take to clear them all?

• Policy Function: left, right, or do nothing?
• Where am I?
• Where is the ball?
• Where do I want it to go?



Motivation: Continuous Action Spaces

• Difficult to maximize over all possible actions if there are an infinite number of 
actions

DeepMind Asynchronous Advantage Actor-Critic (A3C)



Motivation: Convergence

• Induced policies can change drastically based on a small change in the value 
function
• Parameterized policies can change smoothly
• This can help with convergence in certain cases



Motivation: Aliasing

• Aliasing can occur due to
• Limited sensors
• Not being able to differentiate based on input features
• Approximation architecture not being expressive enough



Motivation: Aliasing

• A deterministic policy will not reach the goal from every state
• What about 𝜖-greedy? 



Motivation: Aliasing

• To maximize our expected future reward, we need to have a stochastic policy such that
• Move left with probability 0.5 and right with probability 0.5 in only the aliased states

• We cannot accomplish this by behaving greedily or 𝜖-greedily with respect to a value 
function 
• We can accomplish this by parameterizing a policy and learning 𝜋(𝑎|𝑠)



Motivation: Adversarial Settings

• In a setting with a non-stationary adversary, it can be good to act randomly
• Rock, paper, scissors



Parameterized Policy: Softmax Function

• Discrete actions
• We need to make sure that the probability sums to 1

• ∑!𝜋 𝑎 𝑠 = 1

• 𝜋 𝑎 𝑠 = +" #,%,𝜽

∑%! +
" #,%!,𝜽

• Continuous	actions
• 𝑎 ∼ 𝒩(𝜇 𝑠, 𝜽 , 𝜎(𝑠, 𝜽))

• 𝜋 𝑎 𝑠 = -
. ",𝜽 /0 𝑒

1 %'( #,𝜽
)

)* #,𝜽 )



One-Step Case

• Episodic (one step)
• Model-free
• Stochastic
• How will you adjust the parameters of the policy function?
• We want to maximize that reward we receive after one step



Policy Gradients: One-step MDP

• Starting state 𝑠 ∼ 𝑑
• Objective
• 𝐽 𝜽 = 𝔼"∼3,!∼0𝜽[𝑟(𝑠, 𝑎)]
• 𝐽 𝜽 = 𝔼"∼3[∑!𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]
• 𝐽 𝜽 = ∑"𝑑(𝑠)∑!𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)

• ∇𝜽𝐽 𝜽 = ∑( 𝑑(𝑠)∑) ∇𝜽𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)
• ∇𝜽𝐽 𝜽 = 𝔼(∼+[∑) ∇𝜽𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]
• Have to try all actions in a state before we can compute the gradient
• However, we are assuming we are model-free
• Hard to sample from this!



Policy Gradients: One-step MDP

• 𝐽 𝜽 = ∑( 𝑑(𝑠)∑) 𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)
• ∇𝜽𝐽 𝜽 = 𝔼(∼+[∑) ∇𝜽𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]

• Use the likelihood ratio trick: ∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 = ∇𝜽- 𝑎 𝑠, 𝜽
- 𝑎 𝑠, 𝜽

• ∇𝜽𝐽 𝜽 = 𝔼(∼+[∑) 𝜋 𝑎 𝑠, 𝜽 ∇𝜽- 𝑎 𝑠, 𝜽
- 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]

• ∇𝜽𝐽 𝜽 = 𝔼(∼+[∑) 𝜋 𝑎 𝑠, 𝜽 ∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]
• ∇𝜽𝐽 𝜽 = 𝔼(∼+,)∼-𝜽[∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]



Policy Gradients: One-step MDP

• Now we can do gradient ascent by sampling the gradient
• 𝐽 𝜽 = ∑( 𝑑(𝑠)∑) 𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)
• ∇𝜽𝐽 𝜽 = 𝔼(∼+,)∼-𝜽[∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∇𝜽ln 𝜋 𝑎(1) 𝑠(1), 𝜽 𝑟(1)

• Average over 𝑚 episodes



Policy Gradients: One-step MDP

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∇𝜽ln 𝜋 𝑎(1) 𝑠(1), 𝜽 𝑟(1)

• What is the intuition behind this update?

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∇𝜽- 𝑎 1 𝑠 1 , 𝜽

- 𝑎(1) 𝑠(1), 𝜽
𝑟(1)

• The update is proportional to the reward obtained
• The update is inversely proportional to the probability of taking that action
• Frequently selected actions get updated more frequently
• Therefore, we should be more aggressive when updating actions that are selected less 

frequently



Policy Gradient Theorem

• One-step	MDP
• ∇𝜽𝐽 𝜽 = 𝔼[∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑟(𝑠, 𝑎)]

• Generalizes	to	multi-step	MDPs
• ∇𝜽𝐽 𝜽 = 𝔼[∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑞0𝜽(𝑠, 𝑎)]

• We do not know 𝑞-𝜽(𝑠, 𝑎), so we can sample it with the return 𝐺
• After sampling 𝑚 episodes

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

(1) 𝑠6
(1) 𝐺6



Policy Gradients: REINFORCE

Williams, Ronald J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning." Machine learning 8.3-4 (1992): 229-256.

• Monte-Carlo algorithm
• On-policy algorithm



Policy Gradient Derivation

• Trajectory 𝜏 = (𝑠3, 𝑎3, 𝑟/, … 𝑠78/, 𝑎78/, 𝑟7 , 𝑠7)
• 𝑃 𝜏, 𝜽 = 𝑃 𝑠3 ∏623

78/𝜋(𝑎6|𝑠6 , 𝜽)𝑃(𝑠69/|𝑠6 , 𝑎6)
• 𝐽 𝜽 = 𝔼)∼-𝜽 ∑623

78/ 𝑟(𝑠6 , 𝑎6)
• 𝑅 𝜏 = ∑45671- 𝑟(𝑠4, 𝑎4)

• 𝐽 𝜽 = 𝔼:∼; :,𝜽 𝑅(𝜏) = ∑: 𝑃 𝜏, 𝜽 𝑅(𝜏)
• ∇𝜽𝐽 𝜽 = ∑: ∇𝜽𝑃 𝜏, 𝜽 𝑅(𝜏)

• ∇𝜽𝐽 𝜽 = ∑: 𝑃 𝜏, 𝜽 ∇𝜽; :,𝜽
; :,𝜽

𝑅(𝜏)
• Likelihood ratio trick

• ∇𝜽𝐽 𝜽 = ∑: 𝑃 𝜏, 𝜽 ∇𝜽 ln 𝑃 𝜏, 𝜽 𝑅(𝜏) = 𝔼:∼; :,𝜽 [∇𝜽 ln 𝑃 𝜏, 𝜽 𝑅(𝜏)]



Policy Gradient Derivation

• 𝐽 𝜽 = 𝔼)∼-𝜽 ∑623
78/ 𝑟(𝑠6 , 𝑎6) = ∑: 𝑃 𝜏, 𝜽 𝑅(𝜏)

• ∇𝜽𝐽 𝜽 = 𝔼:∼; :,𝜽 [∇𝜽 ln 𝑃 𝜏, 𝜽 𝑅(𝜏)]
• We can then estimate the gradient through sampling

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∇𝜽 ln 𝑃 𝜏(1), 𝜽 𝑅(𝜏(1))

• How do we take the gradient of the probability of a trajectory?
• 𝑃 𝜏, 𝜽 = 𝑃 𝑠6 ∏456

71-𝜋(𝑎4|𝑠4, 𝜽)𝑃(𝑠48-|𝑠4, 𝑎4)
• We probably do not know the state transition probabilities
• Even if we do, it may not be differentiable



Policy Gradient Derivation

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∇𝜽 ln 𝑃 𝜏(1), 𝜽 𝑅(𝜏(1))

• 𝑃 𝜏, 𝜽 = 𝑃 𝑠3 ∏623
78/𝜋(𝑎6|𝑠6 , 𝜽)𝑃(𝑠69/|𝑠6 , 𝑎6)

• ∇𝜽 ln 𝑃 𝜏(1), 𝜽 = ∇𝜽 ln[𝑃 𝑠3 ∏623
78/𝜋(𝑎6|𝑠6 , 𝜽)𝑃(𝑠69/|𝑠6 , 𝑎6)]

• = ∇𝜽 ln 𝑃 𝑠3 + ∑62378/ ln 𝜋 𝑎6 𝑠6 , 𝜽 + ∑67 ln 𝑃 𝑠69/ 𝑠6 , 𝑎6
• = ∇𝜽 ln 𝑃 𝑠3 + ∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 + ∑67 ∇𝜽ln 𝑃(𝑠69/|𝑠6 , 𝑎6)
• = ∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽



Policy Gradient Derivation

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∇𝜽 ln 𝑃 𝜏(1), 𝜽 𝑅(𝜏(1))

• ∇𝜽 ln 𝑃 𝜏(1), 𝜽 = ∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

(1) 𝑠6
(1), 𝜽 𝑅(𝜏(1))

• Reward of entire trajectory gets applied to each decision made, even past decisions



Policy Gradient Derivation

• ∇𝜽𝐽 𝜽 = 𝔼:∼; :,𝜽 [∇𝜽 ln 𝑃 𝜏, 𝜽 𝑅(𝜏)]
• ∇𝜽𝐽 𝜽 = 𝔼:∼; :,𝜽 [∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 𝑅(𝜏)]
• 𝑅 𝜏 = ∑62378/ 𝑟(𝑠6 , 𝑎6)
• ∇𝜽𝐽 𝜽 = 𝔼:∼; :,𝜽 [∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 (∑<2368/ 𝑟 𝑠< , 𝑎< + ∑<=2678/ 𝑟(𝑠<=, 𝑎<=))]
• ∑95641- 𝑟 𝑠9, 𝑎9 does not depend on the current state and action, therefore, we remove it

• = 𝔼:∼; :,𝜽 [∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 ∑<=2678/ 𝑟(𝑠<=, 𝑎<=)]
• = 𝔼:∼; :,𝜽 [∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 𝑞-𝜽(𝑠, 𝑎)]



Policy Gradient Derivation

• ∇𝜽𝐽 𝜽 = 𝔼:∼; :,𝜽 [∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 𝑞-𝜽(𝑠, 𝑎)]
• ∇𝜽𝐽 𝜽 = 𝔼(∼>,)∼-𝜽[∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 𝑞-𝜽(𝑠, 𝑎)]
• Where 𝜇(𝑠) is	the	probability	of	seeing	state	𝑠 under	policy	𝜋𝜽

• 𝜽 = 𝜽 + 𝛼 /
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

(1) 𝑠6
(1), 𝜽 𝐺6

(1)



Policy Gradient Derivation

• 𝐽 𝜽 = 𝔼!∼0𝜽 ∑456
71- 𝑟(𝑠4, 𝑎4) = ∑:𝑃 𝜏, 𝜽 𝑅(𝜏)

• 𝑃 𝜏, 𝜽 = 𝑃 𝑠6 ∏456
71-𝜋(𝑎4|𝑠4, 𝜽)𝑃(𝑠48-|𝑠4, 𝑎4)

• ∇𝜽𝐽 𝜽 = ∑:∇𝜽𝑃 𝜏, 𝜽 𝑅(𝜏)

• ∇𝜽𝐽 𝜽 = ∑:𝑃 𝜏, 𝜽 ∇𝜽< :,𝜽
< :,𝜽 𝑅(𝜏)

• Likelihood ratio trick

• ∇𝜽𝐽 𝜽 = ∑:𝑃 𝜏, 𝜽 ∇𝜽 ln 𝑃 𝜏, 𝜽 𝑅(𝜏) = 𝔼:∼< :,𝜽 [∇𝜽 ln 𝑃 𝜏, 𝜽 𝑅(𝜏)]
• ∇𝜽𝐽 𝜽 = 𝔼:∼< :,𝜽 [∑45671-∇𝜽ln 𝜋 𝑎4 𝑠4, 𝜽 𝑅(𝜏)]

• 𝑃 𝑠" and	𝑃(𝑠#$%|𝑠#, 𝑎#) not	a	function	of	𝜽

• ∇𝜽𝐽 𝜽 = 𝔼:∼< :,𝜽 [∑45671-∇𝜽ln 𝜋 𝑎4 𝑠4, 𝜽 𝑞0𝜽(𝑠, 𝑎)]
• Remove previous rewards

• ∇𝜽𝐽 𝜽 ≈ -
=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

(>) 𝑠4
(>), 𝜽 𝐺4

(>)

• 𝜽 = 𝜽 + 𝛼 -
=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

(>) 𝑠4
(>), 𝜽 𝐺4

(>)



Connection to Policy Iteration

• Policy gradients are still doing a form of policy iteration
• Policy evaluation
• Calculate the return obtained by your policy over multiple runs

• Policy improvement
• Take a gradient step to improve your objective



Policy Gradient with a Baseline

• ∇𝜽𝐽 𝜽 ≈ /
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

(1) 𝑠6
(1), 𝜽 𝐺6

(1)

• Some gradients will be larger than others
• That does not mean the update should be larger
• Relationship to Huber loss for DQNs

• ∇𝜽𝐽 𝜽 ≈
/
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

1 𝑠6
1 , 𝜽 (𝐺6

1 − 𝑏 𝑠6 )

• Reduces variance
• Does not change expectation of gradient if the 

baseline is independent of the action
Probably Larger 

Gradients
Probably Smaller 

Gradients



Policy Gradients: Baseline

• 𝔼(∼>,)∼-𝜽 ∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑞-𝜽(𝑠, 𝑎) − 𝑏 𝑠

• = 𝔼(∼>,)∼-𝜽 ∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑞-𝜽(𝑠, 𝑎) − 𝔼(∼>,)∼-𝜽 ∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑏(𝑠)

• 𝔼(∼>,)∼-𝜽 ∇𝜽 ln 𝜋 𝑎 𝑠, 𝜽 𝑏(𝑠) = 𝔼(∼> ∑) 𝜋 𝑎 𝑠, 𝜽 ∇𝜽- 𝑎 𝑠, 𝜽
- 𝑎 𝑠, 𝜽 𝑏(𝑠)

• ∑) 𝜋 𝑎 𝑠, 𝜽 ∇𝜽- 𝑎 𝑠, 𝜽
- 𝑎 𝑠, 𝜽 𝑏(𝑠) = ∑) ∇𝜽𝜋 𝑎 𝑠, 𝜽 𝑏(𝑠)

• = 𝑏 𝑠 ∇𝜽 ∑) 𝜋 𝑎 𝑠, 𝜽 = 𝑏 𝑠 ∇𝜽1 = 0



Policy Gradient: Reducing Variance

• ∇𝜽𝐽 𝜽 = 𝔼:∼; :,𝜽 [∑62378/∇𝜽ln 𝜋 𝑎6 𝑠6 , 𝜽 𝑞-𝜽(𝑠, 𝑎)]
• Using sampled returns will have variance due to 

randomness
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

(>) 𝑠4
(>), 𝜽 𝐺4

(>)

• Instead, we can approximate 𝑞-𝜽(𝑠, 𝑎)
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 2𝑞0+(𝑠, 𝑎,𝒘)

• Reduces variance
• Since the function approximator most likely will have 

errors, this introduces bias
• Policy is the actor and value function is the critic

• While a learned value function can be used as a baseline, this is 
not actor-critic, because it does not introduce bias

Experienced

Not yet experienced

Function approximator 
can generalize



Advantage Actor Critic (A2C)

• Policy	gradient	with	sampled	returns
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

(>) 𝑠4
(>), 𝜽 𝐺4

(>)

• Policy	gradient	with	a	critic
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 2𝑞0+(𝑠, 𝑎,𝒘)

• Advantage actor critic: policy gradient with a critic and baseline
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 (2𝑞0+ 𝑠, 𝑎,𝒘 − 2𝑣 𝑠,𝝓 )

• ∇𝜽𝐽 𝜽 ≈ -
=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 ]𝐴(𝑠, 𝑎)



Breakout Session: A2C Using Only State Value Function 

• ∇𝜽𝐽 𝜽 ≈ /
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

1 𝑠6
1 , 𝜽 (�̂�-" 𝑠, 𝑎,𝒘 − �̂�-" 𝑠, 𝝓 )

• Advantages of using only a state value function
• Fewer parameters
• Depends on fewer variables than an action value function

• Can we approximate the advantage using only a state value function?
• ]𝐴 𝑠, 𝑎 = 2𝑞0+ 𝑠, 𝑎,𝒘 − 2𝑣0+ 𝑠, 𝝓



A2C Using Only State Value Function

• 𝑣- 𝑠 = 𝔼- 𝐺6 𝑆6 = 𝑠 = 𝔼- ∑<23K 𝛾<𝑅69/9< 𝑆6 = 𝑠
• 𝑞- 𝑠, 𝑎 = 𝔼- 𝐺6 𝑆6 = 𝑠, 𝐴6 = 𝑎 = 𝔼- ∑<23K 𝛾<𝑅69/9< 𝑆6 = 𝑠, 𝐴6 = 𝑎
• 𝑞- 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑(# 𝑝 𝑠= 𝑠, 𝑎 𝑣- 𝑠=

• 𝑞- 𝑠, 𝑎 ≈ 𝑅69/ + 𝑣- 𝑠=
• One step of sampling



A2C Using Only State Value Function

• ∇𝜽𝐽 𝜽 ≈ /
0
∑1230 ∑62378/∇𝜽ln 𝜋 𝑎6

1 𝑠6
1 , 𝜽 (𝑅69/ + �̂�-" 𝑠′, 𝝓 − �̂�-" 𝑠, 𝝓 )

• Our estimate of the advantage:
• 𝑅48- + 2𝑣0+ 𝑠′, 𝝓 − 2𝑣0+ 𝑠, 𝝓

• May be easier to learn (less bias), but, due to the one step of sampling, more 
variance than:
• 2𝑞0+ 𝑠, 𝑎,𝒘 − 2𝑣0+ 𝑠, 𝝓

• Less variance, but more biased than:
• 𝐺4 − 2𝑣0+ 𝑠, 𝝓



Training the Value Function

• 𝐸 𝒘 = /
L
𝑦 − �̂� 𝑠,𝒘

L

• ∇𝐰𝐸 𝐰 = 𝑦 − �̂� 𝑠,𝒘 ∇𝐰�̂� 𝑠, 𝒘
• Monte Carlo
• 𝑦 = 𝐺4

• TD(0)
• 𝑦 = 𝑅48- + 𝛾 2𝑣(𝑆48-, 𝒘)

• n-Step TD
• 𝑦 = RA8- + 𝛾RA8/ +⋯+ 𝛾B1-𝑅48B + 𝛾B 2𝑣(𝑆48B, 𝒘)

• TD(𝜆)
• Average over n-step returns



Advantage Actor Critic (A2C)



Online vs Batch Methods

• Online methods
• Update value and policy function after every step

• Batch methods
• Sample multiple steps or trajectories and then update value and policy function from 

batch
• Can be more stable due to more samples



Comparison of Methods

• Policy gradient with fixed baseline
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 (𝐺4

> − 𝑏)
• Unbiased
• Higher variance

• Policy gradient with state value function baseline
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 (𝐺4

> − 2𝑣 𝑠,𝒘 )
• Unbiased
• Lower variance

• Advantage actor critic
• ∇𝜽𝐽 𝜽 ≈ -

=
∑>56= ∑45671-∇𝜽ln 𝜋 𝑎4

> 𝑠4
> , 𝜽 (𝑅48- + 2𝑣0+ 𝑠′, 𝝓 − 2𝑣0+ 𝑠, 𝝓 )

• Biased
• Lower variance



On-Policy vs Off-Policy

• 𝐽 𝜽 = 𝔼)∼-𝜽 ∑623
78/ 𝑟(𝑠6 , 𝑎6)

• Policy gradients are on-policy because we are assuming the actions are drawn 
according to the current policy 𝑎 ∼ 𝜋𝜽
• Off-policy variants can be obtained from importance sampling or violating this 

on-policy assumption in a constrained manner
• Q-learning was a very convenient off-policy algorithm that could make use of 

data obtained from other policies
• Is difficult in continuous action spaces



Q-learning in Continuous Action Spaces

• Q-learning requires us to select actions and to bootstrap using a max over all 
actions
• max

!
𝑄 𝑠, 𝑎

• In general, this is not possible for continuous action spaces

• Analytical Methods
• Restrict your Q-function to functions where it is easy to obtain the maximum (i.e. using 

simple calculus)

• Numerical Methods
• Estimate the maximum by randomly sampling actions or using evolutionary methods



Deep Deterministic Policy Gradients
• Previously policy gradient methods

• Need a policy that defines probabilities over actions
• On-policy

• Q-learning
• Q 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max

!&
𝑄 𝑠&, 𝑎′ − 𝑄(𝑠, 𝑎)]

• DQN
• Off-policy but, generally, does not work for continuous action spaces
• 𝑦 = 𝑟 + 𝛾max

!&
Z𝑞 𝑠′, 𝑎′, 𝒘

• 𝐸 𝒘 = %
'
𝑦 − Z𝑞 𝑠, 𝑎, 𝒘

'

• Deep Deterministic Policy Gradients (DDPG)
• 𝑦 = 𝑟 + 𝛾Z𝑞 𝑠′, 𝜋(𝑠, 𝜽), 𝒘

• 𝐸 𝒘 = %
'
𝑦 − Z𝑞 𝑠, 𝑎, 𝒘

'

• ∇𝜽𝐽 𝜽 ≈ 𝔼 ∇𝜽 Z𝑞 𝑠, 𝑎, 𝒘 |!)*(,,𝜽)
• = 𝔼 ∇! Z𝑞 𝑠, 𝑎, 𝒘 ∇𝜽𝜋(𝑠, 𝜽)|!)*(,,𝜽)



Deep Deterministic Policy Gradients

• Action can be a vector
• Multiple joints on a robot

𝑎

𝜽

𝑠

C𝑞 𝑠, 𝑎, 𝒘

𝒘

𝑠 𝑎



Deep Deterministic Policy Gradients

• Similar to DQN, utilize
• Replay buffer
• Target networks

• Exploration
• When acting, add Gaussian noise to the policy
• DQN used 𝜖-greedy



Deep Deterministic Policy Gradients



Summary
• Policy	gradient	with	sampled	returns

• ∇𝜽𝐽 𝜽 ≈ %
/
∑0)"/ ∑#)"12%∇𝜽ln 𝜋 𝑎#

(0) 𝑠#
(0), 𝜽 𝐺#

(0)

• Policy gradient with a baseline
• ∇𝜽𝐽 𝜽 ≈ %

/
∑0)"/ ∑#)"12%∇𝜽ln 𝜋 𝑎#

0 𝑠#
0 , 𝜽 (𝐺#

0 − 𝑏)

• ∇𝜽𝐽 𝜽 ≈ %
/
∑0)"/ ∑#)"12%∇𝜽ln 𝜋 𝑎#

0 𝑠#
0 , 𝜽 (𝐺#

0 − Z𝑣 𝑠,𝒘 )

• Actor-critic
• ∇𝜽𝐽 𝜽 ≈ %

/
∑0)"/ ∑#)"12%∇𝜽ln 𝜋 𝑎#

0 𝑠#
0 , 𝜽 Z𝑞*!(𝑠, 𝑎, 𝒘)

• Advantage actor critic
• ∇𝜽𝐽 𝜽 ≈ %

/
∑0)"/ ∑#)"12%∇𝜽ln 𝜋 𝑎#

0 𝑠#
0 , 𝜽 (Z𝑞*! 𝑠, 𝑎, 𝒘 − Z𝑣*! 𝑠, 𝝓 )

• ∇𝜽𝐽 𝜽 ≈ %
/
∑0)"/ ∑#)"12%∇𝜽ln 𝜋 𝑎#

0 𝑠#
0 , 𝜽 (𝑅#$% + Z𝑣*! 𝑠′, 𝝓 − Z𝑣*! 𝑠, 𝝓 )

• Deterministic policy gradients
• ∇𝜽𝐽 𝜽 ≈ 𝔼 ∇𝜽 Z𝑞 𝑠, 𝑎, 𝒘 |!)*(,,𝜽) = 𝔼 ∇! Z𝑞 𝑠, 𝑎, 𝒘 ∇𝜽𝜋(𝑠, 𝜽)|!)*(,,𝜽)


