> Tav
7.9 7\ [T RV ANS
Y- av \L
1 ' ' 7 >"
0 27 3y
7\, 3
A
% ":}‘; /x\\ +
Va! 1/ I
N
P a2
M/ P
NA
N 4
AR y
1) i
P2

INSTITUTE &= #AlISC
UNIVERSITY OF SOUTH CAROLINA

Reinforcement Learning: Policy Gradients

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

* Motivation
* Policy gradients (one-step MDP)
* Policy gradient theorem

* Policy gradients with baseline
* Actor-Critic
* Deep deterministic policy gradients

Induced Policies

* The goal of reinforcement learning is to find a policy
that maximizes the expected future reward

* So far, we have only learned a policy indirectly by
behaving greedily with respect to a value function

,) n(a4l|s, 0) ...n(a|c,q||s, 0)
* n(s) = argmax(r(s,a) +y Lo p(s'ls,a) D(s’,w))
a

* 1(s) = argmax g(s,a,w)
a

* Instead, we can learn a policy directly

Motivation: Function Complexity

* A policy function may be easier to learn

* Breakout

* Value function: expected future reward
 How many blocks are left?
* Are there any special blocks?
* How long will it take to clear them all?

* Policy Function: left, right, or do nothing?
* Wheream I?
 Where is the ball?
* Where do | want it to go?

Motivation: Continuous Action Spaces

* Difficult to maximize over all possible actions if there are an infinite number of
actions

DeepMind Asynchronous Advantage Actor-Critic (A3C)

Motivation: Convergence

* Induced policies can change drastically based on a small change in the value
function

* Parameterized policies can change smoothly

* This can help with convergence in certain cases

Motivation: Aliasing
S
* Aliasing can occur due to
* Limited sensors

* Not being able to differentiate based on input features
* Approximation architecture not being expressive enough

Motivation: Aliasing

—r e l <« | -—

5

* A deterministic policy will not reach the goal from every state

 What about e-greedy?

Motivation: Aliasing

* To maximize our expected future reward, we need to have a stochastic policy such that
* Move left with probability 0.5 and right with probability 0.5 in only the aliased states

* We cannot accomplish this by behaving greedily or e-greedily with respect to a value
function

* We can accomplish this by parameterizing a policy and learning m(a|s)

Motivation: Adversarial Settings

* In a setting with a non-stationary adversary, it can be good to act randomly
* Rock, paper, scissors

Parameterized Policy: Softmax Function

e Discrete actions

* We need to make sure that the probability sumsto 1

* 2am(als) =1
eh(s,a,e)

* TL'(alS) = 5 Sh(sa’0)

 Continuous actions
ca~N(u(s,0),0(s,0))

(a—p(s.8)*
20(s,0)2

1
o(s,0)V2r €

e t(als) =

One-Step Case

e Episodic (one step)
 Model-free
e Stochastic

* How will you adjust the parameters of the policy function?
* We want to maximize that reward we receive after one step

Policy Gradients: One-step MDP

 Starting state s ~ d
* Objective
« J(0) = IES~d,Cl~7T9 [r(s,a)]
* J(8) = Es—gq[Xqm(als,8)r(s,a)]
* J(0) = Xsd(s) ham(als, 8)r(s, a)
* Vo] (0) = .. d(s) Y., Vem(als,8)r(s,a)
* VB](B) — [Es~d [Za Ve”(a|5» 9)7"(8, a)]

* Have to try all actions in a state before we can compute the gradient

 However, we are assuming we are model-free
* Hard to sample from this!

Policy Gradients: One-step MDP

* J(8) = Xsd(s) Xam(als,0)r(s,a)
* Vol (0) = Es gq[2q Ve (als, 8)r(s,a)]

* Use the likelihood ratio trick: Vg Inw(als, @) = Ve (a]s, 0)

-~ n(als, 0)

Vo) (8) = B, _q[Sa(als, 0) T (s,)]

* VoJ(0) = Es_q[Xqm(als, 0)VgInm(als, 8) r(s,a)]
* VgJ(0) = Esq,a~mg [Vo Inm(als, 8) r(s,a)]

Policy Gradients: One-step MDP

* Now we can do gradient ascent by sampling the gradient
* J(0) = Xsd(s) Nam(als, 0)r(s, a)

* Vo] (0) = Es-q,a~mg [Vo Inm(als, 8) r(s, a)]

0 =0+ a%z{go Voln r(a®|s®, 9)r®

* Average over m episodes

Policy Gradients: One-step MDP

0 =0+ “izﬁo Voln r(a®@|s®, 9)r®

 What is the intuition behind this update?

vgn(a(i)|s(i), 9)
n(a(i)‘s(i), 9)

* The update is proportional to the reward obtained

(D)

1

* The update is inversely proportional to the probability of taking that action
* Frequently selected actions get updated more frequently

* Therefore, we should be more aggressive when updating actions that are selected less
frequently

Policy Gradient Theorem

* One-step MDP
* Vg/(0) = E[VgInmn(als,0)r(s,a)]

* Generalizes to multi-step MDPs
* Vo/(0) = E[VgInm(als, 0) qr,(s,a)]
* We do not know g, (s, a), so we can sample it with the return G

e After sampling m episodes

0 =0+ a%Z}ZO Yo Velnm (agi)

Sfi)) Gt

Policy Gradients: REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for 7,

Input: a differentiable policy parameterization w(als,)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R* (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,57_1,Ar_1, Ry, following 7 (-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G i VTR (Gy)
0+ 60 + Oé’}/tGVh’l’/T(At|St, 9)

* Monte-Carlo algorithm
* On-policy algorithm

Williams, Ronald J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning." Machine learning 8.3-4 (1992): 229-256.

Policy Gradient Derivation

* Trajectory T = (Sg, A, Ty, --- ST—1, A7—1, T, ST)
* P(7,0) = P(sp) H o T(a¢|se, O)P(Sey1lSe, ar)
« J(0) = a~n9[t=0 T(St, ap)]
* R(D) = Lizo (s, ar)
* J(0) = Ecopr,o)R(D)] = X P(7,0)R(7)

* VoJ(0) = X: VP (7,0)R(T)
VoP (1, 0)

Vo) (6) = . P(r,6) L R(r)

e Likelihood ratio trick
* Vo) (8) = X, P(1,0)V4 In P(7,0) R(7) = E¢-p(r.0)[Vg In P(z,0) R(D)]

Policy Gradient Derivation

*J(0) = Eqry[XiZ0 (st ar)] = X P(z, 0)R(7)

* VoJ(0) = E;p(r,9)[Vg InP(7,0) R(7)]

* We can then estimate the gradient through sampling
0 =0+ a%Z?LO VoInP(z®,0) R(zV)

 How do we take the gradient of the probability of a trajectory?

* P(1,0) = P(so) [1{=g m(a¢|se, O)P(Ses1l5e ar)
* We probably do not know the state transition probabilities
* Even if we do, it may not be differentiable

Policy Gradient Derivation

c0 =0+ a%Z?LO VoInP(z®,0) R(zV)

* P(7,0) = P(sp) [I;=o m(aclse, O)P(se1115e ar)

* Vg In P(T(i): 9) = Vg In[P(so) [1{=0 m(aclse, O)P(Ses1l5e ar)]

* = Vo(InP(sp) + XiZg Inm(ac|se, 0) + Xf In P(Seiqlse, ar))

* = VgInP(sy) + X129 Velnm(a;lss, 8) + Xf Voln P(sp11]Se, ar)
e = Y13 Volnm(a.ls,, 0)

Policy Gradient Derivation

0 =0+ a%z{go VoInP(z®,0) R(zV)
* VoInP(tW,8) = Y12} Voln m(a¢|s;, 0)
0 =0+ a%z;’go Yo Velnm (agi) ‘S(i), 9) R(t®)

* Reward of entire trajectory gets applied to each decision made, even past decisions

Policy Gradient Derivation

*VoJ(0) = E; p1,0)[VoInP(7,0) R(7)]

* Vo) (0) = E._proy[Xio Voln (a,ls,, @) R(7)]

* R(7) = XiZo (s, ar)

* ng(B) = E;p(1,0) [Zt 0 y Voln m(a,|s, 6) (Zk o T(Sk, i) + Z T(Skn ak,))]

Z r(sk a;) does not depend on the current state and action, therefore, we remove it

— IET~P(T 0) [Zt Veln T[(at |St; 9) Z T(Sk,, akl)]
* = IET~P(T,9) [Zt=0 Veln T[(at |St: 9) Arg (S» Cl)]

Policy Gradient Derivation

* VB](B) — IET~P(T,0) [217::01 Veln n(atlst» 9) Qng (S» a)]

° VB](B) — [Es~,u,a~n9 [Veln T[(at |St: 9)(’17'[3 (s, a)]
* Where u(s) is the probability of seeing state s under policy g

o O — 1 (1) () (1)
9—9+am2 o Dts Velnn(B)Gt

Policy Gradient Derivation

- J(O) = a~n9[T_Olr(st» as)| = 2. P(t,0)R(7)
* P(7,0) = P(sp) T[(atlst: O)P(sSts1lse,ar)

* VoJ(0) = X; VeP(T; 0)R(7)

VgP(7,0
Vo) (6) = T, P(z,0) 2 R ()

e Likelihood ratio trick
+ VgJ(6) = 3 P(1,0)VgIn P(1,0) R(7) = Erp(z,0)[Vg In P(z,0) R()]
* Vo (0) = E;_pr0)[2iz0 Voln m(aclss, 8) R(7)]

* P(sg) and P(s¢41|S¢, az) not a function of @

* Vo/(0) = Erepr0)[Xico Voln m(a¢|ss,) qr, (s, a)]
* Remove previous rewards
5©,8) 60

* Vol (0) = =X, T2 Vlnﬂ((l)
°0=H+agz 0 2ts Vlnn()‘St,)Gt(i)

Connection to Policy Iteration

* Policy gradients are still doing a form of policy iteration

* Policy evaluation
* Calculate the return obtained by your policy over multiple runs

* Policy improvement
* Take a gradient step to improve your objective

Policy Gradient with a Baseline

)] o .
e Vy/(0) ~ — MoxizoVelnm (agl) ‘Sfl), 9) Gt(l)

* Some gradients will be larger than others
* That does not mean the update should be larger
* Relationship to Huber loss for DQNs

. Ye] (0) =~ o |
- ST oxico Velnm (agl) ‘S(l), 9) (Gt(l) — b(sy))

* Reduces variance

* Does not change expectation of gradient if the
baseline is independent of the action

Probably Larger

Gradients
Probably Smaller

Gradients

Policy Gradients: Baseline

* Es-pya-ny | Vo In7(als, 0) (ry (s, @) — b(s))]
* = IES~u a~mg [VB Inm(als,) Ay (s, a)] S~[J, a~Tg [VgInm(als, 8) b(s)]

Vorr(als, 0)

* Bs- o[V In7(als, 8) b(s)] = By [Sam(als,) T b(s)

* 2qm(als, 0)

Vorr(als, 8)

n(als, @)

b(s) = Xa Vem(als,8)b(s)

e = b(s)Vgd,m(als, @) = b(s)Vgl =0

Policy Gradient: Reducing Variance

* VB](B) — IET~P(T,0) [217::01 Veln n(atlst» 9) Qng (S» a)]

* Using sampled returns will have variance due to
randomness

* Vo) () ~ —3T XT3 Voln m (a5, 8) G
* Instead, we can approximate g, (s, a)

* Vo/(0) = nil o 2T -1 Vgln n((®) st(l), 9) 4r, (s, a,W)

e Reduces variance

* Since the function approximator most likely will have
errors, this introduces bias

* Policy is the actor and value function is the critic

 While a learned value function can be used as a baseline, this is
not actor-critic, because it does not introduce bias

Not yet experienced

Experienced

Function approximator
can generalize

Advantage Actor Critic (A2C)

* Policy gradient with sampled returns

Vo) (0) ~ 1 S 1z Voln (a5, 0) G
* Policy gradient with a critic

* Vo/(0) = % izoXi=o Veln (at(:i)

St(i), 9) Qne (s,a,w)

* Advantage actor critic: policy gradient with a critic and baseline
+ Vo) (0) ~ — 31 213 Voin (a” |5, 0) (G, (5.0, W) — (s, $))
* Vo] (0) = %Z’iﬁo Y dvelnm (agi) s, 9) A(s,a)

Breakout Session: A2C Using Only State Value Function

1 —]] A A~
+ Vo) (8) ~ — 3T X123 Vgln 1t (a” |57, 8) (o (s, @, W) — D, (5, $))

» Advantages of using only a state value function
* Fewer parameters
* Depends on fewer variables than an action value function

e Can we approximate the advantage using only a state value function?
° A(S, a) — 61\77,'9 (SJ a' W) _ 97'[9 (SI ¢)

A2C Using Only State Value Function

* U (5) = Ex[GelS: = 5] = Ex[Xr_o ¥ Resrsx |Se = 5]
° Qn(sr a) = En[thst =S, 4; = al =]En[ZZC’:o yth+1+k |St =5,4; = al
° Qn(sr a) — T(S, Cl) T VZS’ P(S'|S; a) Un(S’)

* qr(s,a) = Ryyq + vp(s")
* One step of sampling

A2C Using Only State Value Function

) B N R , R
+ Vo) (0) ~ — ¥ X123 VoIn 1t (0|5, 0) (Ress + B,y (5", §) — Dy (s, $))
e Qur estimate of the advantage:

° Rt+1 + 97'[9 (S’, ¢) _ ﬁ7'L"9 (S, ¢)

* May be easier to learn (less bias), but, due to the one step of sampling, more
variance than:

° 6I\TL'Q (S' a’ W) _ ﬁ7'l,'g (SI ¢)
e Less variance, but more biased than:
° Gt _ ﬁ77,'9 (S' ¢)

Training the Value Function

CEw) =2 (y - 9(s,w))’
e VWwE(W) = (y — 7(s, w))Vwﬁ(S, w)
* Monte Carlo
*y =G
* TD(0)
* Y = Rpyq +yU(Se41, W)
* n-Step TD
* ¥ = Rey1 + YRz + -+ ¥ 'Resn + ¥ 0(St W)
* TD(A)

» Average over n-step returns

Advantage Actor Critic (A2C)

One-step Actor—Critic (episodic), for estimating mg ~ T,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter @ € R% and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ (]S, 0)
Take action A, observe S/, R
§ < R+ ~vyo(S"\w) —0(5,w) (if S’ is terminal, then v(S",w) = 0)

W w4+ aVoVo(S,w)
0+ 0+a°I5Vinm(AlS,0)
I < ~I

S+ S

Online vs Batch Methods

* Online methods
* Update value and policy function after every step

e Batch methods

* Sample multiple steps or trajectories and then update value and policy function from
batch

e Can be more stable due to more samples

synchronized parallel actor-critic asynchronous parallel actor-critic

get (s,a,s’,r)<—l I I I

update 0 «+— B =

get (s, a, s’,r)<—l
update 0 «— =
J

N\

I_II_II_!

Comparison of Methods

* Policy gradient with fixed baseline
)) .
* Vo) () ~ -3, XT=¢ Vgln 7 (o
* Unbiased
* Higher variance

5”,0) (6" - b)

* Policy gradient with state value function baseline
) i o N
+ Vol (0) ~ 3o 2Id Voln 7 (af|s{, 0) (61 — o(s, w))
* Unbiased
* Lower variance

* Advantage actor critic

. - . . R ’ R
+ Vo) (8) ~ — X, XT3 Voln (aP|s{, 0) (Ress + By (57,) — B, (s,))
e Biased

* Lower variance

On-Policy vs Off-Policy

*J(0) = Eqry[XtZo (St ar)]

* Policy gradients are on-policy because we are assuming the actions are drawn
according to the current policy a ~ 1y

» Off-policy variants can be obtained from importance sampling or violating this
on-policy assumption in a constrained manner

* Q-learning was a very convenient off-policy algorithm that could make use of
data obtained from other policies

* |s difficult in continuous action spaces

Q-learning in Continuous Action Spaces

* Q-learning requires us to select actions and to bootstrap using a max over all
actions

* maxQ(s,a)
a
* |n general, this is not possible for continuous action spaces

* Analytical Methods

* Restrict your Q-function to functions where it is easy to obtain the maximum (i.e. using
simple calculus)

* Numerical Methods
* Estimate the maximum by randomly sampling actions or using evolutionary methods

Deep Deterministic Policy Gradients

Previously policy gradient methods

* Need a policy that defines probabilities over actions
* On-policy

* Q-learning
* Q(s,a) =Q(s,a) + a[r + y max Q(s’,a") —Q(s,a)]
DQN
» Off-policy but, generally, does not work for continuous action spaces
e y=r+ymaxg(s,a,w)
al
" ~ 2
« E(w) = E(y —q(s,a, w))
e Deep Deterministic Policy Gradients (DDPG)
* y=1+yq(s,n(s, 0),w)
" ~ 2
« E(w) = E(y —q(s,a, w))
* VoJ(6) ~ E[Voq(s, aW)la=n(sp)]
* = [E[Vac?(s, a,w)Vgr(s, 0) |a=1t(s,0)]

Deep Deterministic Policy Gradients

e Action can be a vector
* Multiple joints on a robot

q(s,a,w)

Deep Deterministic Policy Gradients

e Similar to DQN, utilize
* Replay buffer
* Target networks

* Exploration
 When acting, add Gaussian noise to the policy
 DQN used e-greedy

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|6?) and actor p(s|6*) with weights 69 and 6+.
Initialize target network Q’ and p/ with weights 09 < 09, 9#" «+ g
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s
fort=1,Tdo
Select action a; = p(s¢|6*) + Nz according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (¢, at, ¢, S¢41) in R
Sample a random minibatch of N transitions (s;, a;, 7;, S;11) from R
Set y; = ri + ¥Q' (sit1, i (5:41]0")[69)
Update critic by minimizing the loss: L = % Y, (y; — Q(s;,a;]69))?
Update the actor policy using the sampled policy gradient:

S4

1
Voud ~ N zi:an(37a|9Q)|s=51,a=#(5i)v9““(3|0u)

Update the target networks:
09 < 709 + (1 —71)0°
0" T + (1 —7)0"

end for
end for

Summary

* Policy gradient with sampled returns

« VoJ(0) z% L) v Vglnn(ag St(l),)G(l)
* Policy gradient with a baseline
* VgJ(0) ~ T ZT_lvglnn(Ols,8) (6 -
« VoJ(0) zi mo Vglnn((@) S,fl),) G(l) v(s w))
* Actor-critic
* Vo/(O) zi i Vglnn(a St ,) (s,a,w)
« Advantage actor critic
© Vgl (6) ~ =3 velnn(a£ 5,0) @ry (5,0, W) — 0, (5,)
+ Vo) (8) ~ X ST=3 Voln 7 (P |5, 8) (Ress + Dy (5",) — Py (5,)

e Deterministic pollcy gradlents
* VG](B) ~ IE[VBEI\(S» a, W)|a=7r(s,9)] = E[Vafl(& a, W)VBT[(S: 0)|a=7r(s,0)]

