

RL: Model-Free RL

Forest Agostinelli University of South Carolina

Topics Covered in This Class

Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

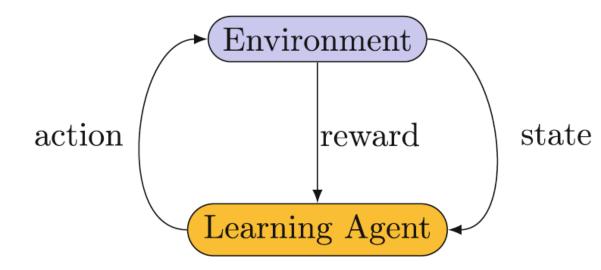
- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

- Review
- Model-free prediction
 - Monte Carlo prediction
 - Temporal difference prediction
- Model-free control
 - Monte Carlo control
 - Temporal difference control

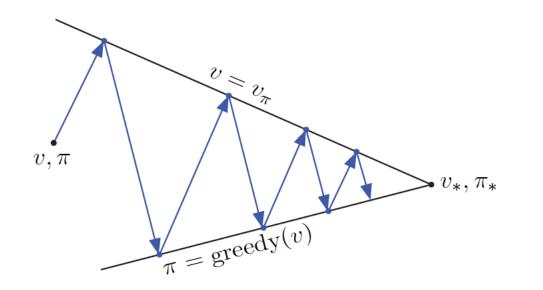
Reinforcement Learning

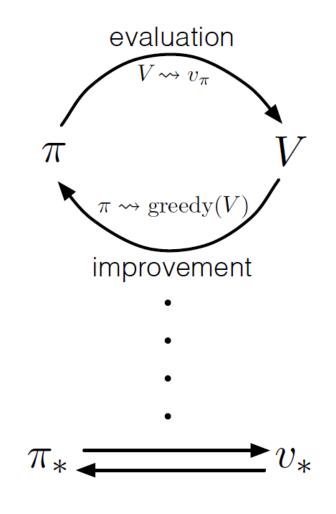
- Reinforcement learning: learning to map states to actions so that we maximize the expected future reward we receive from the environment.
- This mapping of states to actions is called a policy function.
 - Deterministic: $a = \pi(s)$
 - Stochastic: $\pi(a|s) = P(A = a|S = s)$
- At each time step *t*
 - In state S_t , agent takes action A_t
 - Based on state s_t and action a_t , the environment transitions to state S_{t+1} and outputs reward R_{t+1}



Generalized Policy Iteration

- **Policy Evaluation:** Estimate the expected future reward when following policy π
- Policy Improvement: Improve policy π so that it obtains a greater expected future reward
- We can obtain an optimal policy by iterating between policy evaluation and policy improvement





Dynamic Programming Summary

• Policy Evaluation: Uses Bellman equation as an update rule

$$V(s) = \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

• Policy Improvement: Behave greedily with respect to value function

$$\pi'(s) = \operatorname*{argmax}_{a}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

- **Policy Iteration**: Iterate between policy evaluation and policy improvement until convergence
- Value Iteration: Uses Bellman optimality equation as an update rule

$$V(s) = \max_{a}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

Crucial Assumption

- Assuming environment dynamics are known
 - $P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$
- Environment dynamics are unknown in many real-world scenarios
 - Self-driving cars
 - Space exploration
- Even if known, may be too costly to compute (i.e. physics)

Crucial Assumption

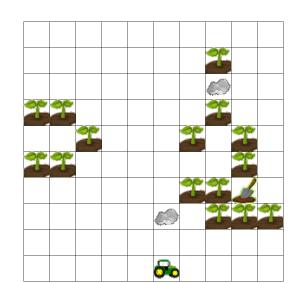
$$V(s) = \max_{a} (r(s, a) + \gamma \sum_{s'} p(s'|s, a) V(s'))$$
Unknown
Unknown
Unknown

Model-Free Reinforcement Learning

- Instead of using a model, learn from experience
- We know ${\mathcal A}$
 - We know what actions we can take
 - We do *not* know p(s', r|s, a).
- We may not know ${\mathcal S}$
 - That is, we may not be able to simply enumerate every possible state

Model-Free RL: Examples

- Self-driving cars
- Disaster cleanup
- Conversational agent



Model-Free RL: Prediction vs Control

• Prediction (policy evaluation)

- Previously, when we wanted to know the v_{π} , we used the Bellman equation as an update equation
- We proved that we have found v_{π} when we reach a fixed point
- However, this requires a model
- Nonetheless, we can evaluate v_{π} (predict the expected reward)
- However, we cannot know for sure if we have conveged to v_{π}

Control

- We now want to learn how to act (control)
- We cannot know for sure if we have converged to v_*
- The concepts of policy iteration are used: iterate between policy evaluation and improvement
- For now, we will need q_π

Model-Free RL: Exploration vs Exploitation

- **Exploration**: Learn more about the environment
- Exploitation: Use what you have learned to obtain more reward

Model-Free RL: On-Policy vs Off-Policy

- Your policy determines your experience
- We need to explore using randomness
 - May not be the best policy
- Experience may be delicate and hard to obtain (i.e. a hospital)
- Behavior policy: policy that we use to interact with the environment
- Target policy: policy that we wish to evaluate and/or improve

Monte Carlo Prediction (Policy Evaluation)

- We want to know the value of some policy π $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$ $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$
- Can approximate via a running average
 - $N(S_t) = N(S_t) + 1$ Number of times state has been seen
 - $S(S_t) = S(S_t) + G_t$ Sum of all returns from S_t $V(S_t) = S(S_t)/N(S_t)$
 - Will converge to $v_{\pi}(S_t)$ as $N(S_t) \to \infty$
 - First visit or every visit

Monte Carlo Policy Prediction

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in S
    Returns(s) \leftarrow an empty list, for all s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
              Append G to Returns(S_t)
              V(S_t) \leftarrow \operatorname{average}(Returns(S_t))
```

- Can do every state, though this adds bias due to correlation
- Have to wait for the end of the episode to update estimates

Monte Carlo Prediction: Incremental Update

- Or, can do an incremental update
 - $V(S_t) = V(S_t) + \alpha(G_t V(S_t))$
 - α is the learning rate
- $V_n(s) = \frac{1}{n(s)} \sum_{k=1}^{n(s)} G^k$ • $= \frac{1}{n(s)} (G^{n(s)} + \sum_{k=1}^{n(s)-1} G^k)$ • $= \frac{1}{n(s)} (G^{n(s)} + (n(s) - 1)V_{n-1}(s))$ • $= \frac{G^{n(s)}}{n(s)} + V_{n-1}(s) - \frac{V_{n-1}(s)}{n(s)}$
- = $V_{n-1}(s) + \frac{1}{n(s)}(G^{n(s)} V_{n-1}(s))$
- = $V_{n-1}(s) + \alpha_n(G^{n(s)} V_{n-1}(s))$
- Shown to converge to v_{π} if Robbins-Monro conditions are met
 - $\sum_{n=0}^{\infty} \alpha_n = \infty$
 - $\sum_{n=0}^{\infty} \alpha_n^2 < \infty$

Temporal Difference Prediction

- For Monte-Carlo methods, we have to wait until the end of the episode before we can learn
 - We cannot learn from positive or negative experiences before our episode has ended
 - Does not work for infinite horizon problems
- Temporal differences methods can learn after every step through bootstrapping
 - This exploits the Markov property

Temporal Difference Prediction

- Monte-Carlo
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$
 - $V(S_t) = V(S_t) + \alpha(G_t V(S_t))$
- Temporal Differences

•
$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

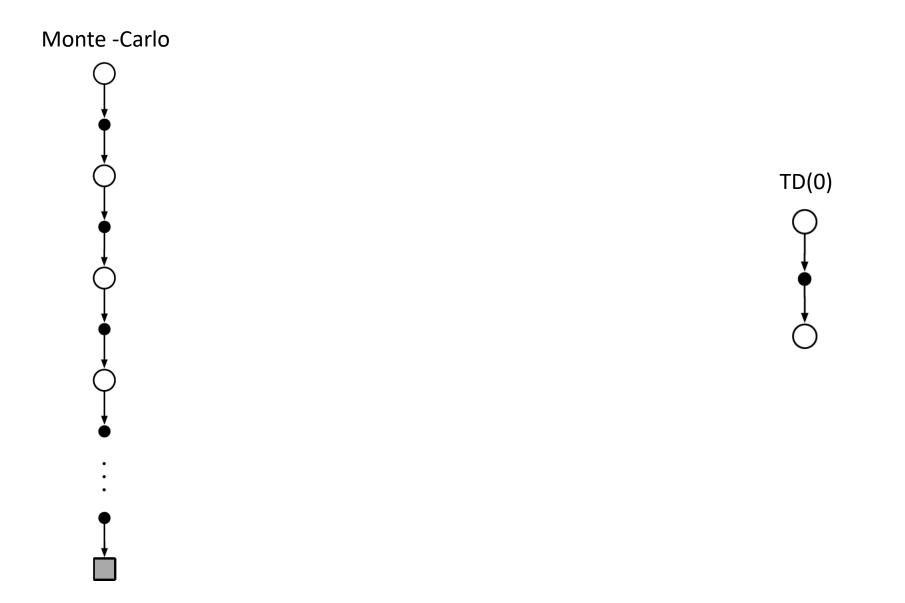
- $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$
- $V(S_t) = V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) V(S_t))$
- Note that $V(S_{t+1})$ is **not** an unbiased estimate of $v_{\pi}(S_{t+1})$
- Shown to converge to v_{π} if Robbins-Monro conditions are met
 - $\sum_{n=0}^{\infty} \alpha_n = \infty$
 - $\sum_{n=0}^{\infty} \alpha_n^2 < \infty$

TD(0) Prediction

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
       Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha \left[ R + \gamma V(S') - V(S) \right]
      S \leftarrow S'
   until S is terminal
```

Monte-Carlo and TD(0) Policy Evaluation



MC vs TD(0): Bias/Variance

- Monte Carlo
 - Samples $\mathbb{E}_{\pi}[G_t|S_t = s]$
 - Randomness introduced at every sample from random policies, transitions, and rewards.
- TD(0)
 - Estimates $\mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$ with $V(S_{t+1})$
 - $V(S_{t+1})$ is, most likely, initially incorrect
 - Only samples one step
- Monte Carlo is unbiased but more variance
- TD(0) is biased but less variance

MC vs TD(0): Step-by-Step

- Evaluate uniform random policy on AI Farm
- Learning rate = 0.01

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00	0.00	0.00	0.00	0.00

0.00 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Monte-Carlo

TD(0)

MC vs TD(0): Over 40,000 iterations

- Evaluate uniform random policy on AI Farm
- Learning rate = 0.01
 - Not optimal, needs to be tuned
- Videos show estimates after every 1000 episodes.

-2274.06	-2246.84	-2197.41	-2135.24	-2069.99	-2009.64	-1959.49	-1918.20	-1857.38	-1820.67
-2297.28	-2265.07	-2206.14	-2134.31	-2061.11	-1995.42	-1946.64	-1884.72	-1829.27	-1779.97
-2348.70	-2306.01	-2223.76	-2130.77	-2040.71	-1960.30	-1893.92	-1831.79	-1742.02	-1685.95
-2389.81	-2333.52	-2248.12	-2120.29	-2006.68	-1907.14	-1823.96	-1704.48	-1608.05	-1531.88
-2385.21	-2337.15	-2212.90	-2091.58	-1954.59	-1833.61	-1688.29	-1541.14	-1351.83	-1297.63
-2326.68	-2265.96	-2170.76	-2025.55	-1882.47	-1731.44	-1550.44	-1268.95	-907.49	-956.19
-2226.86	-2176.25	-2076.61	-1953.40	-1814.29	-1655.26	-1411.06	-974.74	0,00	-610.45
-2124.66	-2082.58	-2002.04	-1893.14	-1762.04	-1602.23	-1410.82	-1116.95	-768.32	-822.15
-2060.53	-2023.37	-1951.82	-1851.10	-1725.48	-1576.81	-1402.05	-1211.91	-1032.18	-985.69
-2029.55	-1994.57	-1926.78	-1829.95	-1707.97	0 48	-1404.66	-1243.45	-1109.79	-1049.74

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00	0.00	0.00	0.00	0.00

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00	0.00	0.00	0.00	0.00

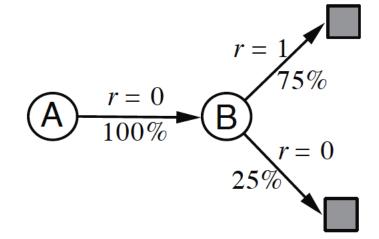
True v_{π}

Monte-Carlo

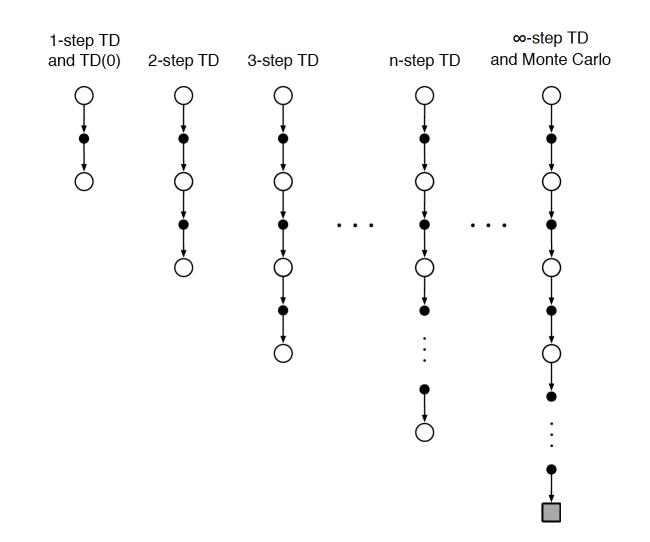
TD(0)

Monte Carlo vs TD

- Consider this MDP
- Say you experience the following eight episodes:
 - A(0), B(0)
 - B(1) <- 6 episodes
 - B(0) <- 1 episode
- If you repeatedly loop over these episodes while doing Monte Carlo or TD, what are the predicted values for A and B
- V(B)
 - MC: ³⁄₄
 - TD: ³⁄₄
- V(A)
 - MC: 0
 - TD: ³⁄₄
- Temporal difference finds the correct value for V(A) because it bootstraps from its estimate of V(B)



n-step Temporal Difference Prediction



n-step Temporal Difference Prediction

- Monte Carlo Prediction
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$
 - $V(S_t) = V(S_t) + \alpha(G_t V(S_t))$
- Temporal Difference Prediction
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$
 - $V(S_t) = V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) V(S_t))$
- n-step Temporal Difference Prediction
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2})|S_t = s]$
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1}R_{t+n} + \gamma^n V(S_{t+n}) | S_t = s]$
 - $G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$
 - $V(S_t) = V(S_t) + \alpha(G_{t:t+n} V(S_t))$

n-step Temporal Difference Prediction

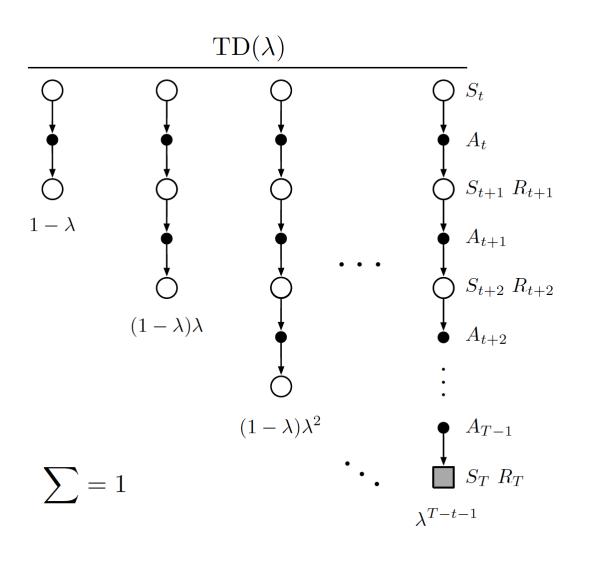
• n=5

• Must be tuned to the problem at hand

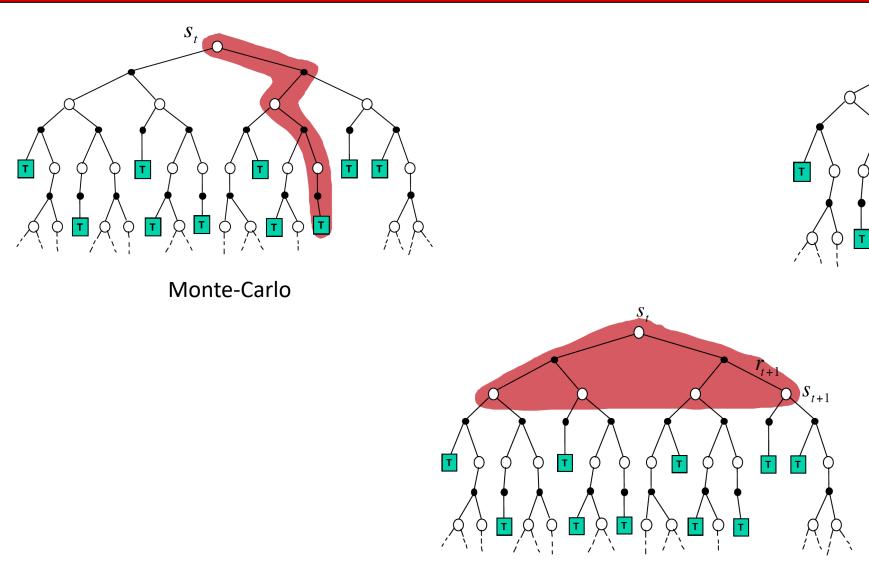
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00	0.00	0.00	0.00	0.00

$TD(\lambda)$

- Average over n-step returns
- Have to wait n-steps before updating state for n-step TD
- Use eligibility traces to update states without having to wait n-steps
 - Achieves approximately the same update
- TD(0): $\lambda = 0$
- Monte Carlo $\lambda = 1$



Visualization of Backups



Dynamic Programming

TD(0)

S_t

т

Ϋ Γ Ω Γ Ϋ

С

+1

T

т

Q T Q

т

т

Model-Free Control

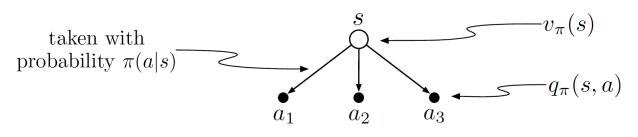
• In this dynamic programming, we induced a policy by doing a one step lookahead using the value function

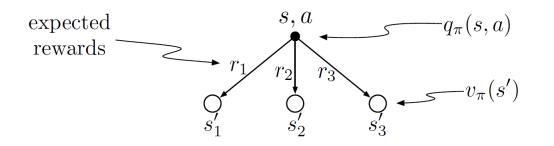
$$\pi(s) = \operatorname*{argmax}_{a}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

- However, we cannot do this in the model-free case because we do not have access to a model
- Therefore, we use an action-value function to induce a policy

•
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} | S_t = s, A_t = a]$$

- $q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_{\pi}(s')$
- $\pi(s) = \underset{a}{\operatorname{argmax}}(Q(s, a))$



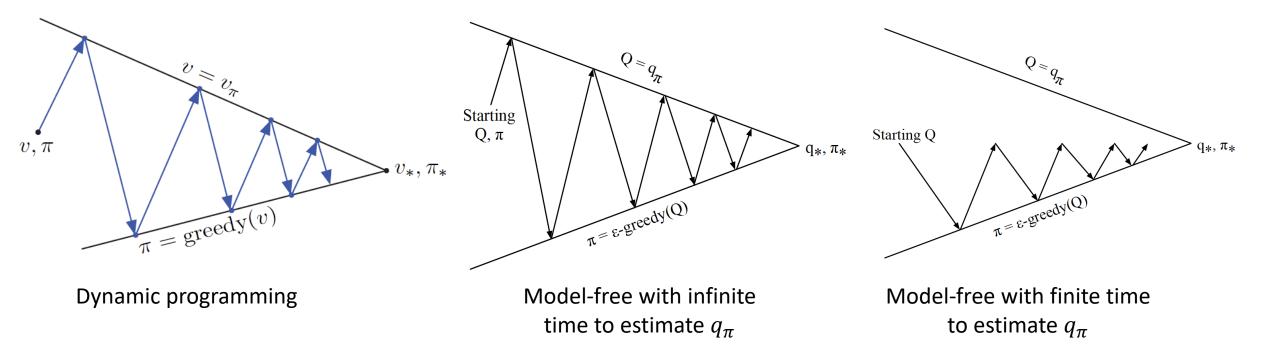


Model-Free Control: Exploration

- How do we ensure that we explore our state space?
 - In dynamic programming, we assumed that we could just loop over every possible state
 - Cannot do this in the model-free case
- ϵ -greedy policy
 - Take a random action with probability ϵ
 - Take the greedy action, $\operatorname{argmax}(Q(s, a))$, with probability 1- ϵ
- While there are many more sophisticated exploration methods, ϵ -greedy exploration can work well on some problems

Model-Free Control

- Policy Evaluation: Learn an action-value function.
- **Policy Improvement**: Act epsilon greedily with respect to it.



Model-Free Control

Policy improvement theorem: $v_{\pi'}(s) \ge q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ for all $s \in S$

Theorem

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$\begin{split} q_{\pi}(s,\pi'(s)) &= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s,a) \\ &= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s,a) \\ &\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1-\epsilon} q_{\pi}(s,a) \\ &= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a) = v_{\pi}(s) \end{split}$$

Therefore from policy improvement theorem, $v_{\pi'}(s) \ge v_{\pi}(s)$

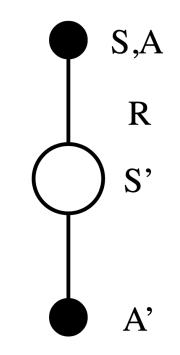
Monte Carlo Control

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

```
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all <math>s \in S, a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                      (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                       \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

Sarsa

- Model-free on-policy prediction (policy evaluation)
 - $V(S_t) = V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
- Sarsa: model-free on-policy temporal-difference control
 - Sarsa: State, action, reward, state (next), action (next)
 - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t)]$
 - Behavior policy: epsilon greedy
 - Target policy: epsilon greedy
 - Shown to converge to q_* if greedy in the limit with infinite exploration and if Robbins-Monro conditions hold for α



Sarsa

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

 $S \leftarrow S'; A \leftarrow A';$

until S is terminal

Q-learning

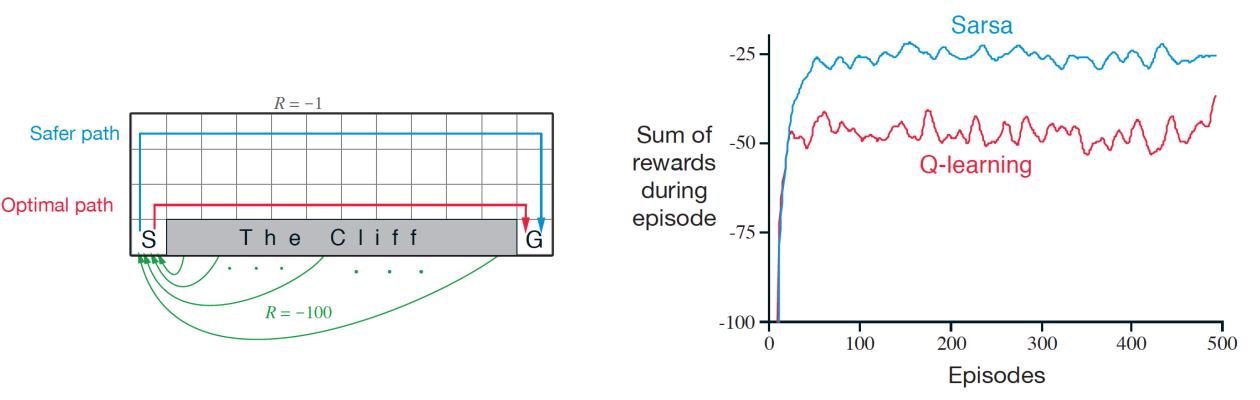
- Q-learning: model-free off-policy temporal-difference control
 - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_a Q(S_{t+1}, a) Q(S_t, A_t)]$
 - Behavior policy: epsilon greedy
 - Target policy: greedy
 - Converges to q_* if Robbins-Monro conditions hold for lpha

Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

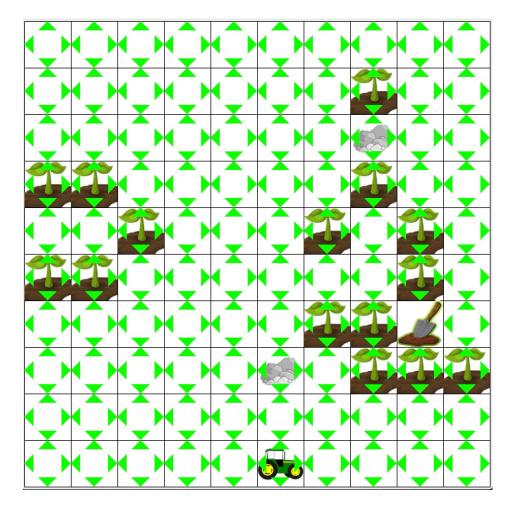
Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$ $S \leftarrow S'$ until S is terminal

Sarsa vs Q-learning



- Q-learning updates are more aggressive
- Since Q-learning is off policy, it can re-use its past experiences and even use the experience of other agents

Q-learning



Q-learning step-by-step



Q-learning. Showing greedy policy after every 100 episodes.

Dynamic Programming and Temporal Differences



n-step Sarsa

- We can update our estimate of $Q(S_t, A_t)$ after n-steps
- Can speed up learning
 - Also have to tune n

