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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Review
• Model-free prediction
• Monte Carlo prediction
• Temporal difference prediction

• Model-free control
• Monte Carlo control
• Temporal difference control



Reinforcement Learning

• Reinforcement learning: learning to 
map states to actions so that we 
maximize the expected future reward
we receive from the environment.
• This mapping of states to actions is 

called a policy function.
• Deterministic: 𝑎 = 𝜋(𝑠)
• Stochastic: 𝜋 𝑎 𝑠 = 𝑃(𝐴 = 𝑎|𝑆 = 𝑠)

• At each time step 𝑡
• In state S!, agent takes action A!
• Based on state s! and action a!, the 

environment transitions to state S!"# and 
outputs reward R!"#



Generalized Policy Iteration

• Policy Evaluation: Estimate the expected future 
reward when following policy 𝜋
• Policy Improvement: Improve policy 𝜋 so that it 

obtains a greater expected future reward
• We can obtain an optimal policy by iterating 

between policy evaluation and policy improvement



Dynamic Programming Summary

• Policy Evaluation: Uses Bellman equation as an update rule
𝑉 𝑠 =2

$

𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾2
%!
𝑝 𝑠& 𝑠, 𝑎 𝑉 𝑠& )

• Policy Improvement: Behave greedily with respect to value function
𝜋& 𝑠 = argmax

$
(𝑟 𝑠, 𝑎 + 𝛾2

%!
𝑝 𝑠& 𝑠, 𝑎 𝑉 𝑠& )

• Policy Iteration: Iterate between policy evaluation and policy improvement until 
convergence
• Value Iteration: Uses Bellman optimality equation as an update rule

𝑉 𝑠 = max
$
(𝑟 𝑠, 𝑎 + 𝛾2

%!
𝑝 𝑠& 𝑠, 𝑎 𝑉 𝑠& )



Crucial Assumption

• Assuming environment dynamics are known
• 𝑃 𝑆'"# = 𝑠&, 𝑅'"# = 𝑟 𝑆' = 𝑠, 𝐴' = 𝑎

• Environment dynamics are unknown in many real-world scenarios
• Self-driving cars
• Space exploration

• Even if known, may be too costly to compute (i.e. physics)



Crucial Assumption

𝑉 𝑠 = max
!
(𝑟 𝑠, 𝑎 + 𝛾/

"!
𝑝 𝑠# 𝑠, 𝑎 𝑉 𝑠# )

Unknown Unknown



Model-Free Reinforcement Learning

• Instead of using a model, learn from experience
• We know 𝒜
• We know what actions we can take
• We do not know 𝑝 𝑠&, 𝑟 𝑠, 𝑎 .

• We may not know 𝒮
• That is, we may not be able to simply enumerate every possible state



Model-Free RL: Examples

• Self-driving cars
• Disaster cleanup
• Conversational agent



Model-Free RL: Prediction vs Control

• Prediction (policy evaluation)
• Previously, when we wanted to know the 𝑣(, we used the Bellman equation as an update 

equation
• We proved that we have found 𝑣( when we reach a fixed point
• However, this requires a model
• Nonetheless, we can evaluate 𝑣( (predict the expected reward)
• However, we cannot know for sure if we have conveged to 𝑣(

• Control
• We now want to learn how to act (control)
• We cannot know for sure if we have converged to 𝑣∗
• The concepts of policy iteration are used: iterate between policy evaluation and 

improvement
• For now, we will need 𝑞(



Model-Free RL: Exploration vs Exploitation

• Exploration: Learn more about the environment
• Exploitation: Use what you have learned to obtain more reward



Model-Free RL: On-Policy vs Off-Policy

• Your policy determines your experience
• We need to explore using randomness
• May not be the best policy

• Experience may be delicate and hard to obtain (i.e. a hospital)
• Behavior policy: policy that we use to interact with the environment
• Target policy: policy that we wish to evaluate and/or improve



Monte Carlo Prediction (Policy Evaluation)

• We want to know the value of some policy 𝜋
𝑣( 𝑠 = 𝔼( 𝐺' 𝑆' = 𝑠

𝐺' = 𝑅'"# + 𝛾𝑅'"* + 𝛾*𝑅'"+ + 𝛾+𝑅'",… = 2
-./

0

𝛾-𝑅'"#"-

• Can approximate via a running average
• 𝑁 𝑆' = 𝑁 𝑆' + 1 Number of times state has been seen
• 𝑆 𝑆' = 𝑆 𝑆' + 𝐺' - Sum of all returns from 𝑆'

𝑉 𝑆' = 𝑆(𝑆')/𝑁(𝑆')
• Will converge to 𝑣( 𝑆' as 𝑁(𝑆') → ∞
• First visit or every visit



Monte Carlo Policy Prediction

• Can do every state, though this adds bias due to correlation
• Have to wait for the end of the episode to update estimates



Monte Carlo Prediction: Incremental Update

• Or, can do an incremental update 
• 𝑉(𝑆!) = 𝑉 𝑆! + 𝛼(𝐺! − 𝑉 𝑆! )
• 𝛼 is the learning rate

• 𝑉" 𝑠 = #
"(%)

∑'(#
"(%)𝐺'

• = #
" %

(𝐺" % + ∑'(#
" % )#𝐺')

• = #
" %

𝐺" % + 𝑛 𝑠 − 1 𝑉")# 𝑠

• = *! "

" %
+ 𝑉")# 𝑠 − +!#$ %

" %

• = 𝑉")# 𝑠 + #
" %

(𝐺" % − 𝑉")# 𝑠 )

• = 𝑉")# 𝑠 + 𝛼"(𝐺" % − 𝑉")# 𝑠 )

• Shown to converge to 𝑣- if Robbins-Monro conditions are met
• ∑"#$% 𝛼" = ∞
• ∑"#$% 𝛼"& < ∞



Temporal Difference Prediction

• For Monte-Carlo methods, we have to wait until the end of the episode before 
we can learn
• We cannot learn from positive or negative experiences before our episode has ended
• Does not work for infinite horizon problems

• Temporal differences methods can learn after every step through bootstrapping
• This exploits the Markov property



Temporal Difference Prediction

• Monte-Carlo
• 𝑣( 𝑠 = 𝔼( 𝐺' 𝑆' = 𝑠
• 𝑉(𝑆') = 𝑉 𝑆' + 𝛼(𝐺' − 𝑉 𝑆' )

• Temporal Differences
• 𝑣( 𝑠 = 𝔼( 𝑅'"# + 𝛾𝐺'"# 𝑆' = 𝑠
• 𝑣( 𝑠 = 𝔼( 𝑅'"# + 𝛾𝑣((𝑆'"#) 𝑆' = 𝑠
• 𝑉 𝑆' = 𝑉 𝑆' + 𝛼(R'"# + 𝛾𝑉(𝑆'"#) − 𝑉 𝑆' )
• Note that 𝑉(𝑆'"#) is not an unbiased estimate of 𝑣((𝑆'"#)

• Shown to converge to 𝑣$ if Robbins-Monro conditions are met
• ∑1./0 𝛼1 = ∞
• ∑1./0 𝛼1* < ∞



TD(0) Prediction



Monte-Carlo and TD(0) Policy Evaluation

TD(0)

Monte -Carlo



MC vs TD(0): Bias/Variance

• Monte Carlo
• Samples 𝔼( 𝐺' 𝑆' = 𝑠
• Randomness introduced at every sample from random policies, transitions, and rewards. 

• TD(0)
• Estimates 𝔼( 𝑅'"# + 𝛾𝑣((𝑆'"#) 𝑆' = 𝑠 with 𝑉 𝑆'"#
• 𝑉(𝑆'"#) is, most likely, initially incorrect
• Only samples one step

• Monte Carlo is unbiased but more variance
• TD(0) is biased but less variance



MC vs TD(0): Step-by-Step
• Evaluate uniform random policy on AI Farm
• Learning rate = 0.01

Monte-Carlo TD(0)



MC vs TD(0): Over 40,000 iterations
• Evaluate uniform random policy on AI Farm
• Learning rate = 0.01

• Not optimal, needs to be tuned
• Videos show estimates after every 1000 episodes. 

True 𝑣! Monte-Carlo TD(0)



Monte Carlo vs TD
• Consider this MDP
• Say you experience the following eight episodes:

• A(0), B(0)
• B(1) <- 6 episodes
• B(0) <- 1 episode

• If you repeatedly loop over these episodes while doing 
Monte Carlo or TD, what are the predicted values for A and 
B
• V(B)

• MC: ¾
• TD: ¾ 

• V(A)
• MC: 0
• TD: ¾

• Temporal difference finds the correct value for V(A) 
because it bootstraps from its estimate of V(B)



n-step Temporal Difference Prediction



n-step Temporal Difference Prediction

• Monte	Carlo	Prediction
• 𝑣( 𝑠 = 𝔼( 𝐺' 𝑆' = 𝑠
• 𝑉(𝑆') = 𝑉 𝑆' + 𝛼(𝐺' − 𝑉 𝑆' )

• Temporal	Difference	Prediction
• 𝑣( 𝑠 = 𝔼( 𝑅'"# + 𝛾𝑣((𝑆'"#) 𝑆' = 𝑠
• 𝑉 𝑆' = 𝑉 𝑆' + 𝛼(R'"# + 𝛾𝑉(𝑆'"#) − 𝑉 𝑆' )

• n-step	Temporal	Difference	Prediction
• 𝑣( 𝑠 = 𝔼( 𝑅'"# + 𝛾𝑅'"* + 𝛾*𝑣((𝑆'"*) 𝑆' = 𝑠
• 𝑣( 𝑠 = 𝔼( R!"# + 𝛾R!"* +⋯+ 𝛾13#𝑅'"1 + 𝛾1𝑉(𝑆'"1) 𝑆' = 𝑠
• 𝐺':'"1 = R!"# + 𝛾R!"* +⋯+ 𝛾13#𝑅'"1 + 𝛾1𝑉(𝑆'"1)
• 𝑉 𝑆' = 𝑉 𝑆' + 𝛼(𝐺':'"1 − 𝑉 𝑆' )



n-step Temporal Difference Prediction
• n=5
• Must be tuned to the problem at hand



TD(𝝀)
• Average over n-step returns
• Have to wait n-steps before updating 

state for n-step TD
• Use eligibility traces to update states 

without having to wait n-steps
• Achieves approximately the same update

• TD(0): 𝜆 = 0
• Monte Carlo 𝜆 = 1



Visualization of Backups

Monte-Carlo TD(0)

Dynamic Programming



Model-Free Control

• In this dynamic programming, we induced a policy by doing a one step 
lookahead using the value function
• 𝜋 𝑠 = argmax

$
(𝑟 𝑠, 𝑎 + 𝛾 ∑%! 𝑝 𝑠& 𝑠, 𝑎 𝑉 𝑠& )

• However, we cannot do this in the model-free case because we do not have 
access to a model
• Therefore, we use an action-value function to induce a policy
• 𝑞( 𝑠, 𝑎 = 𝔼( 𝐺' 𝑆' = 𝑠, 𝐴' = 𝑎 = 𝔼( ∑-./0 𝛾-𝑅'"#"- 𝑆' = 𝑠, 𝐴' = 𝑎
• 𝑞( 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑%! 𝑝 𝑠& 𝑠, 𝑎 𝑣( 𝑠&
• 𝜋 𝑠 = argmax

$
(𝑄(𝑠, 𝑎))



Model-Free Control: Exploration

• How do we ensure that we explore our state space?
• In	dynamic	programming,	we	assumed	that	we	could	just	loop	over	every	possible	
state
• Cannot	do	this	in	the	model-free	case

• 𝜖-greedy policy
• Take a random action with probability 𝜖
• Take the greedy action, argmax

$
𝑄 𝑠, 𝑎 , with probability 1- 𝜖

• While there are many more sophisticated exploration methods, 𝜖-greedy 
exploration can work well on some problems



Model-Free Control

• Policy Evaluation: Learn an action-value function. 
• Policy Improvement: Act epsilon greedily with respect to it.

Dynamic programming Model-free with infinite 
time to estimate 𝑞!

Model-free with finite time 
to estimate 𝑞!



Model-Free Control
Policy improvement theorem: 𝑣!% 𝑠 ≥ 𝑞! 𝑠, 𝜋" 𝑠 ≥ 𝑣!(𝑠) for all 𝑠 ∈ 𝒮



Monte Carlo Control



Sarsa

• Model-free	on-policy	prediction	(policy	evaluation)
• 𝑉 𝑆' = 𝑉 𝑆' + 𝛼[𝑅'"# + 𝛾𝑉 𝑆'"# − 𝑉(𝑆')]

• Sarsa: model-free on-policy temporal-difference control
• Sarsa: State, action, reward, state (next), action (next)
• Q 𝑆', 𝐴' = 𝑄 𝑆', 𝐴' + 𝛼[𝑅'"# + 𝛾𝑄 𝑆'"#, 𝐴'"# − 𝑄(𝑆', 𝐴')]
• Behavior policy: epsilon greedy
• Target policy: epsilon greedy
• Shown to converge to 𝑞∗ if greedy in the limit with infinite exploration 

and if Robbins-Monro conditions hold for 𝛼



Sarsa



Q-learning

• Q-learning: model-free off-policy temporal-difference control
• Q 𝑆', 𝐴' = 𝑄 𝑆', 𝐴' + 𝛼[𝑅'"# + 𝛾max$ 𝑄 𝑆'"#, 𝑎 − 𝑄(𝑆', 𝐴')]
• Behavior policy: epsilon greedy
• Target policy: greedy
• Converges to 𝑞∗ if Robbins-Monro conditions hold for 𝛼



Q-learning



Sarsa vs Q-learning

• Q-learning updates are more aggressive
• Since Q-learning is off policy, it can re-use its past experiences and even use the 

experience of other agents



Q-learning

Q-learning step-by-step Q-learning. Showing greedy policy after 
every 100 episodes.



Dynamic Programming and Temporal Differences



n-step Sarsa

• We can update our estimate of Q 𝑆% , 𝐴% after n-steps
• Can speed up learning
• Also have to tune n


