

Machine Learning: Dynamic Programming Forest Agostinelli University of South Carolina

Topics Covered in This Class

• Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

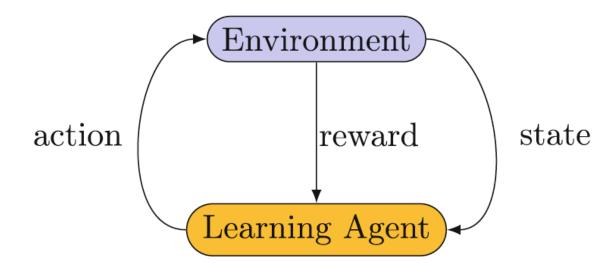
- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

- Background
- Policy Evaluation
- Policy Improvement
- Policy Iteration
 - Modified Policy Iteration
 - Value Iteration
- Approximate value iteration

Reinforcement Learning

- Reinforcement learning: learning to map states to actions so that we maximize the expected future reward we receive from the environment.
- This mapping of states to actions is called a policy function.
 - Deterministic: $a = \pi(s)$
 - Stochastic: $\pi(a|s) = P(A = a|S = s)$
- At each time step *t*
 - In state S_t , agent takes action A_t
 - Based on state s_t and action a_t , the environment transitions to state S_{t+1} and outputs reward R_{t+1}



Markov Decision Processes (MDPs)

- States
- Actions
- Transition Probabilities: $P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$
 - Defines the dynamics of the MDP
- The state-transition probabilities can be obtained from the transition probabilities
 - $p(s'|s,a) = \sum_{r \in \mathcal{R}} p(s',r|s,a)$
- The expected reward can be obtained from the transition probabilities

$$r(s,a) = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• For now, we assume the state and actions are discrete and finite, however, this restriction can be relaxed to be continuous and infinite

MDPs: Returns and Value

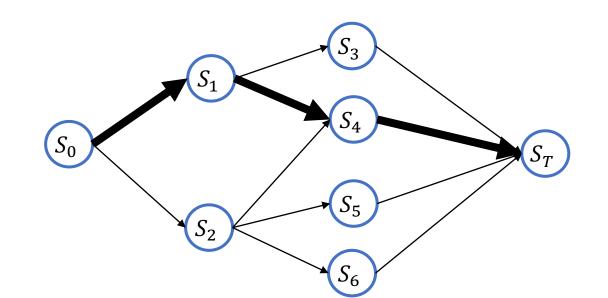
- **Return:** the sum of rewards after timestep *t*
 - $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots$
 - We seek to maximize the expected return
- State-value function
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} | S_t = s]$
 - $v_*(s) = \max_{\pi} v_{\pi}(s)$
- Action-value function
 - $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} | S_t = s, A_t = a]$
 - $q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- Value functions are specific to a given policy π

Dynamic Programming

- Solves problems by recursively breaking them down into simpler subproblems
- Requires
 - Optimal substructure: Can construct an optimal solution from optimal solutions of subproblems

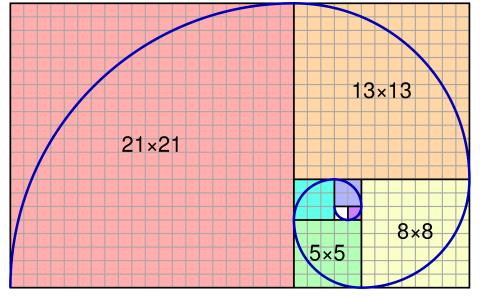
$$v_*(s) = \max_{a}(r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_*(s'))$$

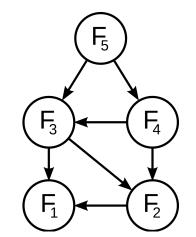
- Principle of optimality
- Overlapping subproblems: Solutions to subproblems are re-used
 - Value functions

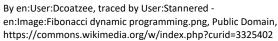


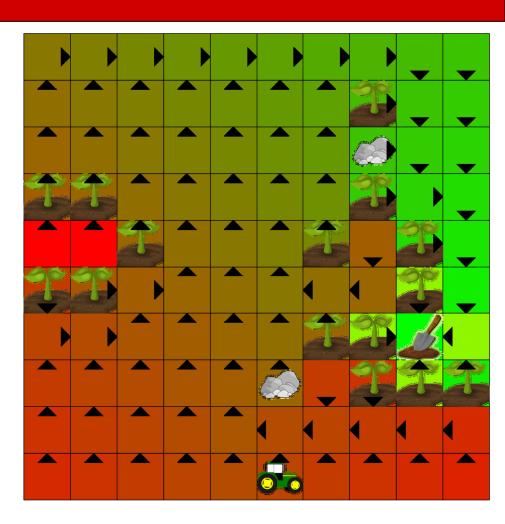
Dynamic Programming

- Fibonacci sequence
- Scheduling
- Sequence alignment (DNA)
- Al Farm









Dynamic Programming: History

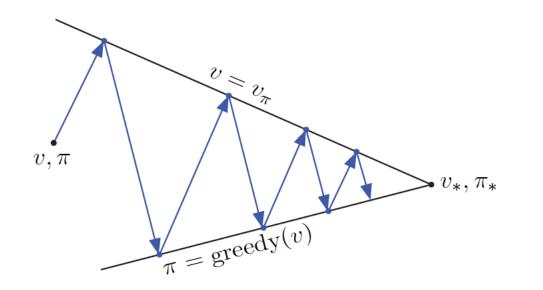
- The term *dynamic programming* was originally used in the 1940s by Richard Bellman to describe the process of solving problems where one needs to find the best decisions one after another.
- By 1953, he refined this to the modern meaning, referring specifically to nesting smaller decision problems inside larger decisions.
- The word *dynamic* was chosen by Bellman to capture the time-varying aspect of the problems, and because it sounded impressive.
- The word *programming* referred to the use of the method to find an optimal *program*.

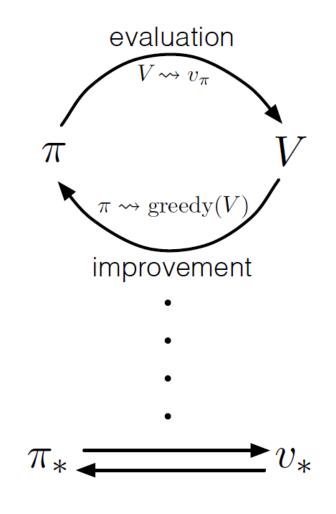
Dynamic Programming

- We will use it to evaluate a policy and compute an optimal policy given a perfect model an MDP
 - p(s',r|s,a)
- Foundational for reinforcement learning
- Using dynamic programming, we will do policy iteration by iterating between policy evaluation and policy improvement

Generalized Policy Iteration

- **Policy Evaluation:** Estimate the expected future reward when following policy π
- Policy Improvement: Improve policy π so that it obtains a greater expected future reward
- We can obtain an optimal policy by iterating between policy evaluation and policy improvement



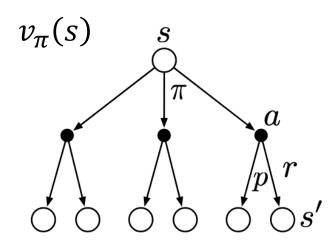


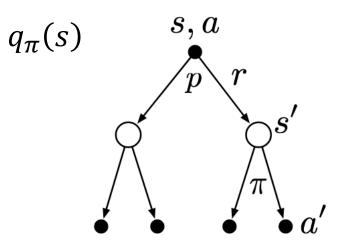
Dynamic Programming: Applications

- We assume that we are given a model of the MDP that characterizes our problem
- While this assumption does not hold in many contexts, it does in many others
 - Organic chemistry
 - Puzzles
 - Quantum computing
 - Theorem proving
- Furthermore, it builds the foundation that we will use to explore model-free algorithms

Bellman Equation

- $v_{\pi}(s) = \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_{\pi}(s'))$
- $q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) \sum_{a} \pi(a|s') q_{\pi}(s', a)$
- Optimal substructure: Can construct an optimal solution from optimal solutions of subproblems





Outline

- Background
- Policy Evaluation
- Policy Improvement
- Policy Iteration
 - Modified Policy Iteration
 - Value Iteration
- Approximate value iteration

Policy Evaluation

- Estimate the expected future reward when following policy π
- From the Bellman equation we know that
 - $v_{\pi}(s) = \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_{\pi}(s'))$
- Given a policy π , what if we searched for a function V that satisfies the Bellman equation?
 - Will we have successfully evaluated π ?
- If so, how should we search for V?
- Use the Bellman equation as an update rule
 - $V(s) = \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$

Policy Evaluation

Algorithm 1 Policy Evaluation

1: procedure POLICY EVALUATION(S, V, π, γ) $\Delta \leftarrow \inf$ 2: while $\Delta > 0$ do 3: $\Delta \leftarrow 0$ 4: for $s \in S$ do 5: $v \leftarrow V(s)$ 6: $V(s) \leftarrow \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a)V(s'))$ 7: $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ 8: end for 9: end while 10: return V11: 12: end procedure

Policy Evaluation: Convergence

$$v_{\pi}(s) = \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_{\pi}(s'))$$
$$v_{\pi}(s) = \sum_{a} \pi(a|s)r(s,a) + \gamma \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a) v_{\pi}(s')$$

$$\boldsymbol{v}^{\boldsymbol{\pi}} = \boldsymbol{r}^{\boldsymbol{\pi}} + \boldsymbol{\gamma} \boldsymbol{P}^{\boldsymbol{\pi}} \boldsymbol{v}^{\boldsymbol{\pi}}$$

- Matrices:
 - v^{π} is a vector of values for each state, size |S|
 - r^{π} is a vector of rewards for each state, size |S|
 - P^{π} is a matrix of transition probabilities for each pair of states, size $|S| \times |S|$

Policy Evaluation: Convergence

• Define *T* as the Bellman backup operator:

$$T(v) \coloneqq r^{\pi} + \gamma P^{\pi} v$$

- We know that there exists a fixed point $T(v^{\pi}) = v^{\pi}$
- The infinity norm:

$$||\boldsymbol{x}||_{\infty} \coloneqq \max_{i} |\mathbf{x}_{i}|$$

• If:

$$||T(\boldsymbol{u}) - T(\boldsymbol{v})||_{\infty} \le \gamma ||\boldsymbol{u} - \boldsymbol{v}||_{\infty}$$

for $\gamma \in [0, 1)$

- Then *T* is a contraction mapping
- Banach-Caccioppoli fixed point theorem proves that repeated applications of T will converge to a unique fixed point (i.e. v^{π}).

Policy Evaluation: Convergence

$$\begin{aligned} \left| |T(\boldsymbol{u}) - T(\boldsymbol{v})| \right|_{\infty} &= \left| |\boldsymbol{r}^{\pi} + \gamma \boldsymbol{P}^{\pi} \boldsymbol{u} - \boldsymbol{r}^{\pi} + \gamma \boldsymbol{P}^{\pi} \boldsymbol{v}| \right|_{\infty} \\ &= \left| |\gamma \boldsymbol{P}^{\pi} \boldsymbol{u} + \gamma \boldsymbol{P}^{\pi} \boldsymbol{v}| \right|_{\infty} \\ &= \gamma \left| |\boldsymbol{P}^{\pi} (\boldsymbol{u} + \boldsymbol{v})| \right|_{\infty} \end{aligned}$$
$$\leq \gamma \left| \left| \boldsymbol{P}^{\pi} ||\boldsymbol{u} + \boldsymbol{v}| \right|_{\infty} \right| \right|_{\infty} // \boldsymbol{P}^{\pi} \text{ is a matrix of transition probabilities, sums to 1} \\ &\leq \gamma \left| |\boldsymbol{u} + \boldsymbol{v}| \right|_{\infty} \end{aligned}$$

Policy Evaluation AI Farm

- Policy: Uniform random
- Al Farm took 4576 iterations to converge with $\gamma=1$
 - $\gamma = 0.99$ takes 1345 iterations
 - $\gamma = 0.9$ takes 191 iterations
- What if policy said to always go up?
 - $\gamma = 1$
 - $\gamma < 1$

-2274.06	-2246.84	-2197.41	-2135.24	-2069.99	-2009.64	-1959.49	-1918.20	-1857.38	-1820.67
							<u> </u>		
-2297.28	-2265.07	-2206.14	-2134.31	-2061.11	-1995.42	-1946.64	-188 72	-1829.27	-1779.97
2348.70	-2306.01	-2223.76	-2130.77	-2040.71	-1960.30	-1893.92		-1742.02	-1685.95
-238 81	-233 .52	-2248.12	-2120.29	-2006.68	-1907.14	-1823.96	-170 48	-1608.05	-1531.88
2385.21	-2337.15	-221 90	-2091.58	-1954.59	-1833.61	-168 29	-1541.14	-135 83	-1297.63
-232 68	-226 96	-2170.76	-2025.55	-1882.47	-1731.44	-1550.44	-1268.95	-907 49	-956.19
-2226.86	-2176.25	-2076.61	-1953.40	-1814.29	-1655.26	-141 06	-974 74		-610.45
2124.66	-2082.58	-2002.04	-1893.14	-1762.04		-1410.82	-111 95	-768 32	-822 15
2060.53	-2023.37	-1951.82	-1851.10	-1725.48	-1576.81	-1402.05	-1211.91	-1032.18	-985.69
2029.55	-1994.57	-1926.78	-1829.95	-1707.97	0	-1404.66	-1243.45	-1109.79	-1049.74

Outline

- Background
- Policy Evaluation
- Policy Improvement
- Policy Iteration
 - Modified Policy Iteration
 - Value Iteration
- Approximate value iteration

Policy Improvement

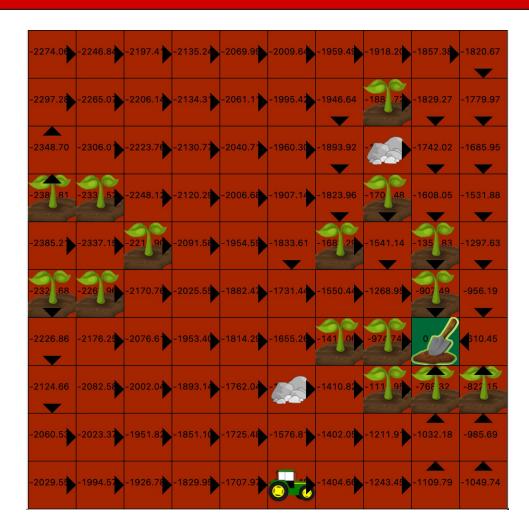
- We have evaluated policy π , how can we find a better policy?
- $\pi' \ge \pi$ if and only if $v_{\pi'}(s) \ge v_{\pi}(s)$ for all $s \in S$
- We set the policy to be greedy with respect to v_π

•
$$\pi'(s) = \underset{a}{\operatorname{argmax}}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_{\pi}(s'))$$

- This policy will always be the same or better than the previous one
 - Policy improvement theorem.

Policy Improvement

- Better than original uniform random policy
- Still not optimal



When acting greedily with respect to v_π

Outline

- Background
- Policy Evaluation
- Policy Improvement
- Policy Iteration
 - Modified Policy Iteration
 - Value Iteration
- Approximate value iteration

Policy Iteration

- Policy improvement improves a policy π and obtains a new policy π' such that, $\pi' \geq \pi$
- If $\pi' = \pi$, then $v_{\pi'} = v_{\pi}$
- Therefore, $v_{\pi'}(s) = \max_{a} (r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_{\pi'}(s'))$
- This is the same as the Bellman optimality equation!
- Does this mean $\pi' = \pi_*$ and $v_{\pi'} = v_*$?
- There is a proof showing that the Bellman optimality equation is a unique fixed point
 - Similar to that of the Bellman equation

Policy Iteration

Algorithm Policy Iteration

1: **Inputs**:

- 2: π : Initial Policy
- 3: V: Initial value function. Value of terminal state must be zero
- 4: θ : Termination threshold

5:

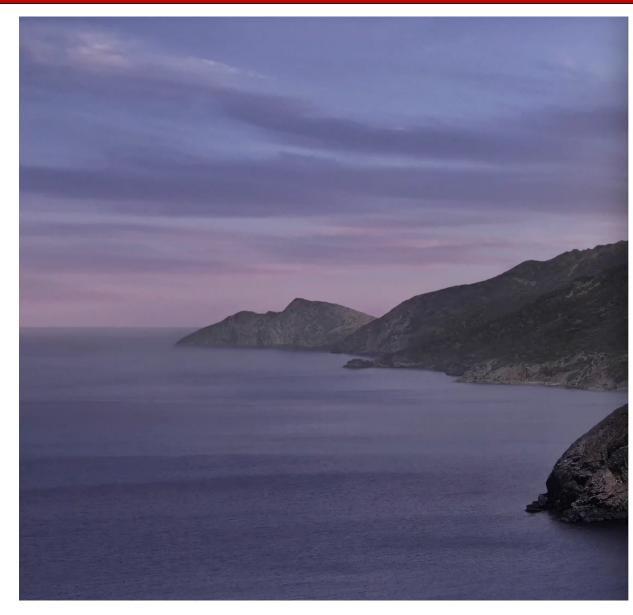
6: while has not converged do

7:
$$V = \text{Policy}_\text{Evaluation}(\pi, V, \theta)$$

- 8: $\pi = \text{Policy}_\text{Improvement}(V)$
- 9: end while
- 10: return π

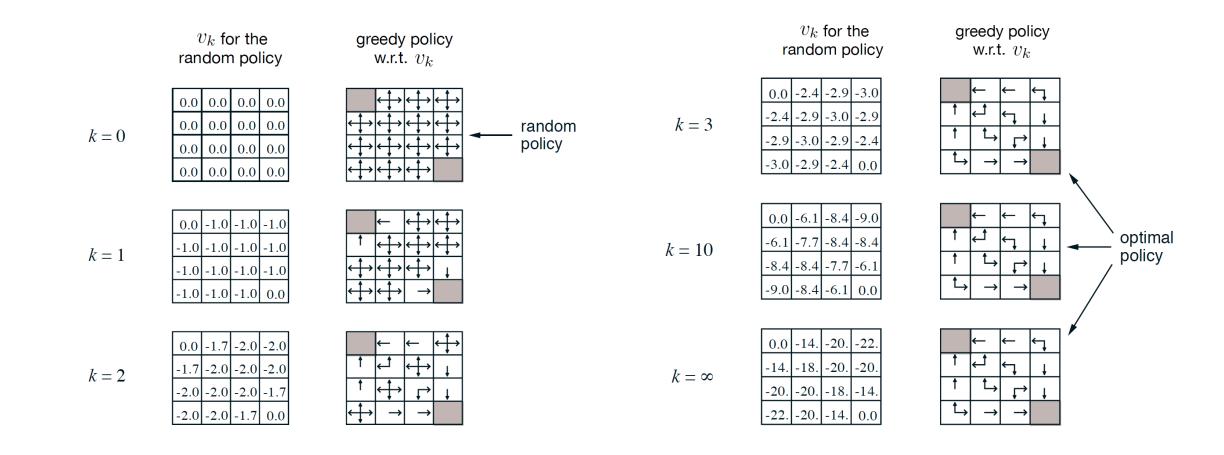
 \triangleright Approximation of $\pi*$

Policy Iteration: AI Farm



(drl) forestagostinelli@Forests-MacBook-Pro Farm_Grid_World % pytho 🗏 n run_policy_iteration.py --map maps/map1.txt --wait 1.0 --wait_eva l 0.0 --rand_right 0.0

Do We Have to Wait For Policy Evaluation to Converge?



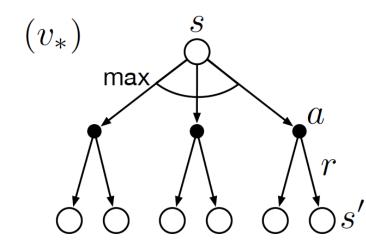
Modified Policy Iteration

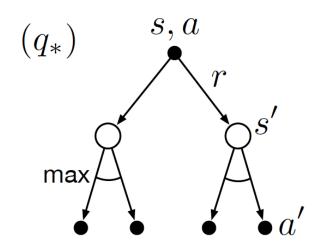
- We do not have to run policy evaluation to convergence.
- We can stop after reaching some threshold
- We can stop after k iterations
 - k = 1 is the same as value iteration

Bellman Optimality Equation

•
$$v_*(s) = \max_a (r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_*(s'))$$

• $q_*(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) \max_{a'} q_*(s', a')$





Value Iteration

- Find the optimal value function
- Recall the Bellman optimality equation

•
$$v_*(s) = \max_a (r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_*(s'))$$

• Use this as an update rule

•
$$V(s) = \max_{a} (r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

- Combines policy evaluation and policy improvement into one step
- There is a proof similar to that of policy evaluation to prove that repeatedly updating V will converge to a unique fixed point
 - Bellman optimality equation

Value Iteration

Algorithm Value Iteration

1: Inputs:

- 2: V: Initial value function. Value of terminal state must be zero
- 3: θ : Termination threshold

4:

- 5: **procedure** VALUE_ITERATION(V, θ, γ)
- 6: $\Delta \leftarrow \inf$
- 7: while $\Delta > \theta$ do
- 8: $\Delta \leftarrow 0$
- 9: for $s \in \mathcal{S}$ do
- 10: $v \leftarrow V(s)$
- 11: $V(s) \leftarrow \max_{a} (r(s, a) + \gamma \sum_{s'} p(s'|s, a) V(s'))$
- 12: $\Delta \leftarrow \max(\Delta, |v V(s)|)$
- 13: **end for**
- 14: end while
- 15: return V

16: end procedure

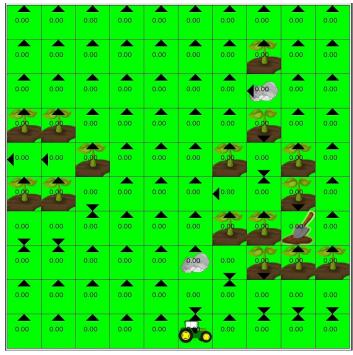
 \triangleright Approximation of v_*

Value Iteration: AI Farm

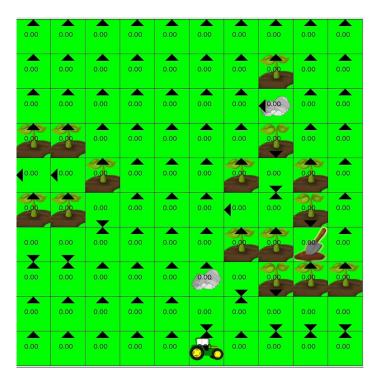
p = 0

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00	0.00	0.00	0.00	0.00

p = 0.1



p = 0.5



Asynchronous Policy Iteration

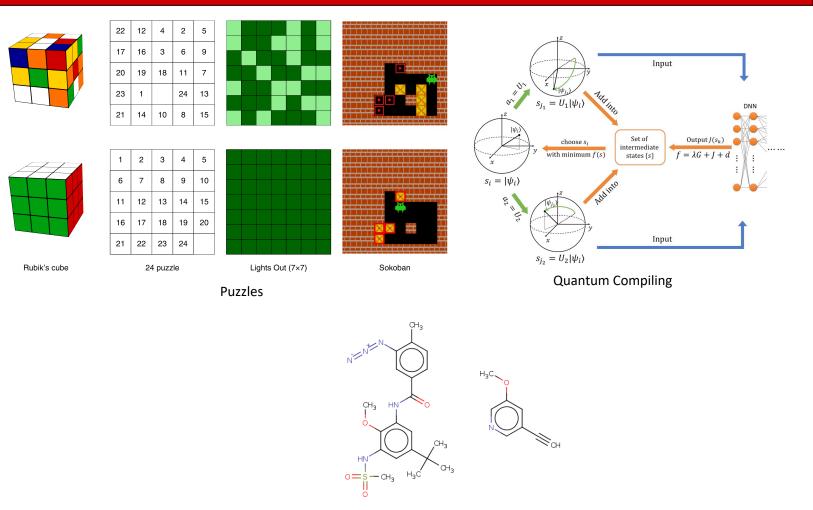
- We do not have to update all states at every iteration
- Prioritize states based on Bellman error
 - Difference between current and updated estimation of state value
- Prioritize states based on relevance to the agent's experience
- To converge, must continue to update all states, though it does not have to be at every iteration

Outline

- Background
- Policy Evaluation
- Policy Improvement
- Policy Iteration
 - Modified Policy Iteration
 - Value Iteration
- Approximate value iteration

Approximate Value Iteration

- Sometimes, we can accurately define the MDP, however, the state space is too large to store in a table
- Therefore, we will need to use an architecture to approximate the value
- The goal is to have an architecture whose number of parameters is far less than the size of the state space



Chemical Synthesis

Approximate Value Iteration

• Value Iteration

•
$$V(s) = \max_{a} (r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

- Approximate Value Iteration
 - $y = \max_{a}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) \hat{v}(s', \boldsymbol{w}))$

•
$$E(\mathbf{w}) = \frac{1}{2} \left(y - \hat{v}(s, \mathbf{w}) \right)^2$$

•
$$\nabla_{\mathbf{w}} E(\mathbf{w}) = (y - \hat{v}(s, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})$$

- Even though y depends on w, we do not differentiate y with respect to w.
- Only supervision is that y = 0 for terminal states

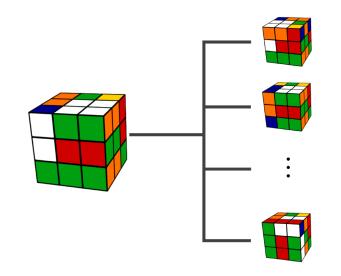
Convergence

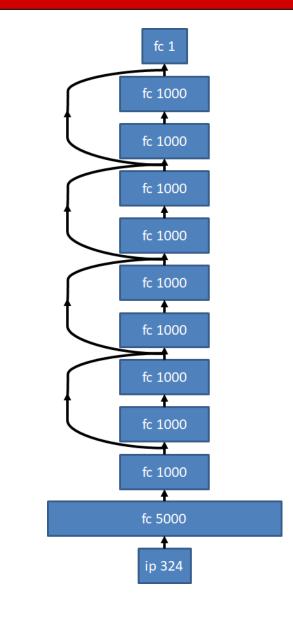
- Unlike in the tabular case, we cannot guarantee convergence in the case of nonlinear function approximators
- However, there are many different methods that we can use to make deep reinforcement learning work in practice

Deep Approximate Value Iteration

•
$$y = \max_{a} (r(s,a) + \gamma \sum_{s'} p(s'|s,a) \hat{v}(s', \boldsymbol{w}))$$

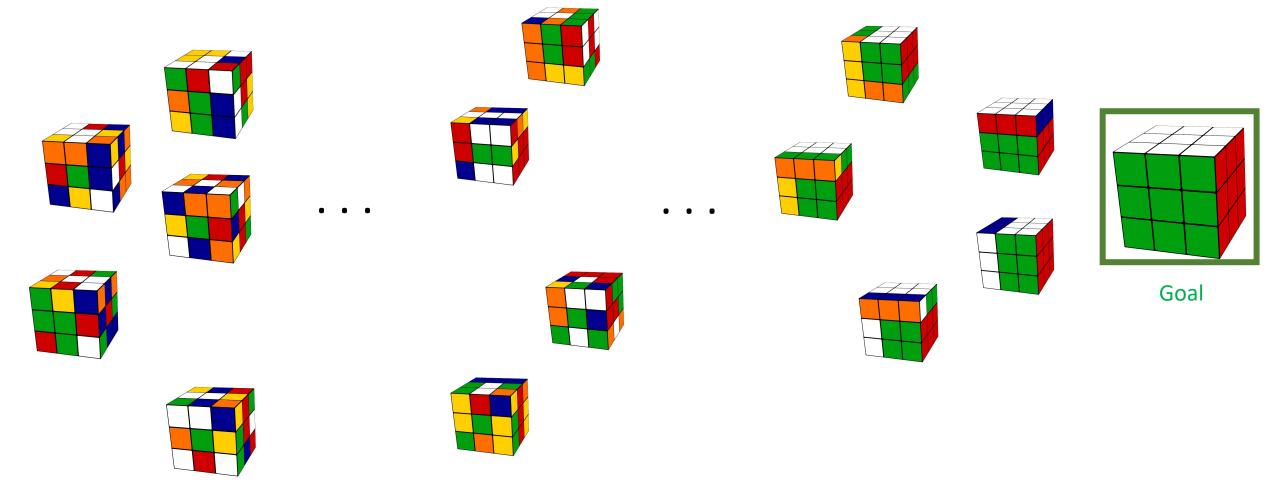
• $E(\boldsymbol{w}) = \frac{1}{2} (y - \hat{v}(s, \boldsymbol{w}))^2$





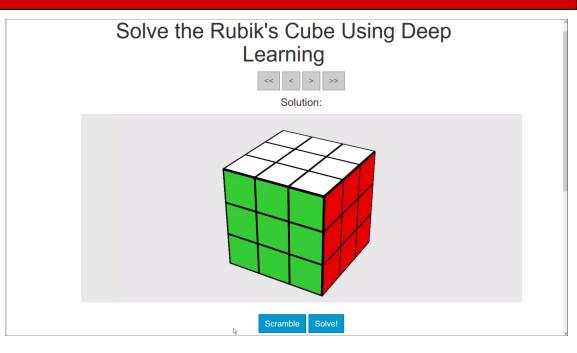
Prioritized Sweeping

 Prioritized sweeping: Generate training data by taking moves in reverse from the goal

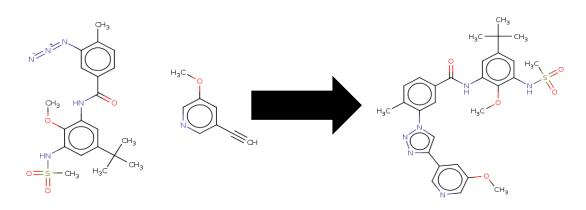


Solving the Rubik's Cube

- Deep approximate value iteration and A* search
- Solves the Rubik's cube and 6 other puzzles
- Can be applied to other areas in the natural sciences



http://deepcube.igb.uci.edu/



Summary

• Policy Evaluation: Uses Bellman equation as an update rule

$$V(s) = \sum_{a} \pi(a|s)(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

• Policy Improvement: Behave greedily with respect to value function

$$\pi'(s) = \operatorname*{argmax}_{a}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$

- **Policy Iteration**: Iterate between policy evaluation and policy improvement until convergence
- Value Iteration: Uses Bellman optimality equation as an update rule

$$V(s) = \max_{a}(r(s,a) + \gamma \sum_{s'} p(s'|s,a) V(s'))$$