i v
y // R
Py W LS AN
"~ - V1N
DT '@ P
—7 \, S
A
) ,1‘v§;‘ ‘/x\\ ’
STl |
\7)
k/ A AN
\ N>
A /
TN X

INSTITUTE s Al1SC
UNIVERSITY OF SOUTH CAROLINA

Machine Learning: Markov Decision Processes

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

* Motivation

* Reinforcement learning

* The Markov property

* Markov decision processes
* Value functions

* Textbook: Reinforcement Learning: An Introduction (2" Edition)
* Freely available here: http://incompleteideas.net/book/RLbook2020.pdf

http://incompleteideas.net/book/RLbook2020.pdf

Reinforcement Learning

* Learning to maximize reward in
sequential decision making
problems

* Learning is done through
experience

* Decisions affect experience and
experience affects decisions

* There is often uncertainty involved
with this process

 What happens if | make this
decision?
* How good is this outcome?

900000

11

12

13

16

17

18

21

22

23

Solving Problems with Search

e A* Search

o M. . S h BU|Id|'n? B:Iocks m el | llllllllll
inimax Searc PN e L 3k

* Informative heuristics may not be easy to ;’ - — T i1

construct T T TR L e | Bmar
Compounds
* May not be deterministic 0 — S5 - o Pk
=i \ 3t 3 et LL S
* May not have an explicit goal state Target Molecule A

* Agent may continue indefinitely

Solving Problems with Supervised Learning

* We can use imitation learning to train an agent to imitate the actions we want it
to take

» Use powerful machine learning models, such as deep neural networks, to learn
from human example and then generalize to similar problems

* Time consuming

* Due to imperfections in learning, there may be a shift in the distribution of
what is seen during training vs in the real world, causing the agent to run into
situations it was never prepared for

* Humans do not always know how to solve the problem!

Solving Problems with Supervised Learning

Building Blocks

SPeaae
30
\
\
\
AN
A@ \\
<~ Intermediate
Compounds
Target Molecule
I [I
Input: n x n skew-symmetric matrix A, vector b.]) ‘ I [é ‘ I
Output: The resulting vector ¢ = Ab computed in w multiplications. N 1 [o/ JAR
()fori=1,...,n-2do i T 2 ol A ‘?O__ i
2 forj=i+1,...,ndo | UL LT il 4 et
©) w;=a;(b.-b;) > Computing the first (n-2)(n + 1)/2 intermediate products i O e T T T T
i~ GG T @ @
@fori=1,...,ndo [‘ AR
©) ql.=b,2;’=1 a > Computing the final n intermediate products L Ml ;““ 1| @ IR
®)fori=1,...,n-2do S L i L
i-1 n Al Y -
() o= X j Wi+ X jyq W= 9 ISR SIS i g i
_ n-2 « n-2 n-2 n il o . T ‘ $ W
) Cns == X jog T it Wi~ Z jo1 Win X i1 1% 7 r Wi ‘Q il
_ n-1an n-1 T S ; il (g
O Cp=-% 4 Xy WitE iz 9 - % _‘ i :

e et el s et et S N e el i L s

Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610.7930 (2022): 47-53.

Reinforcement Learning

* We need machine learning algorithms that learn from their own experience.
* For this, we turn to reinforcement learning

* Reinforcement learning is frequently combined with techniques we have
learned in this class such as search and supervised learning

RL Successes: Atari

* Using RL algorithms, a deep
neural network is trained to
play Atari games using raw
pixels.

* Current work shows we can
train deep neural networks to
play better than humans on

57 different Atari games.

* RL was combined with deep
neural networks

RL Successes : Solving the Rubik’s Cube

Solve the Rubik's Cube Using Deep

* 4.3 x 101 possible combinations Lejrﬂng

Solution:

* No domain-specific knowledge

e DeepCubeA solves the Rubik’s
cube and other puzzles

e Puzzles have up to 3.0 x 102
possible combinations.

* Finds a shortest path in the
majority of verifiable cases

 http://deepcube.igb.uci.edu/

* RL was combined with deep
neural networks and A* search

17 | 16

21 | 14

21 | 22

Rubik’s cube 24 puzzle Lights Out (7x7)

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

http://deepcube.igb.uci.edu/

RL Successes: Robotics

* Can solve problems in
continuous environments

e Can train in simulation and

transfer to the real world
(Sim2Real)

* RL was combined with deep
neural networks

Andrychowicz, Marcin, et al. "Hindsight experience replay." Advances in neural information processing systems 30 (2017).

RL Successes: GO

* AlphaGo learned how to play Go from
expert demonstrations data and from
self-play

* Defeated one of the best Go players, Lee
Sedol,4to 1

* Move 37 ALL SYSTEMS GO
* AlphaGoZero builds on AlphaGo and

nnnnnnnnnnnnnnnnnnn

learns only from self-play ; ‘ .,
, , A Byl B "L
* RL was combined with deep neural e el
networks and Monte Carlo tree search S
L9
:300_ 9 0;@2 H
aLin M

nnnnnnnnnnnnnnnnn

Silver, David, et al. "Mastering the game of go without human knowledge." nature 550.7676 (2017): 354-359.

Reinforcement Learning

* Reinforcement learning: learning to
map states to actions so that we
maximize the expected future reward

we receive from the environment. (Environment
* This mapping of states to actions is
called a policy function. action reward state
* Deterministic: a = m(s) '
e Stochastic: m(al|s) = P(A = a|S = s) Learning AgenD

* At each time step t
* In state S, agent takes action A;

* Based on state s; and action ag, the
environment transitions to state Sy, 4 and
outputs reward R 1

Agostinelli, Forest, et al. "From reinforcement learning to deep reinforcement learning: An overview." Braverman Readings in Machine Learning. Key Ideas From Inception to Current State.
Springer, Cham, 2018. 298-328.

* For notation, capital letters (i.e. S;) are used for random variables and lowercase
letters (i.e. s;) are used for a particular value of that random variable.

* For states, s typically refers to the current state and s’ typically refers to the
next state

Reinforcement Learning

states, actions, rewards?

£

.

’

¥ e
]

’ .:-Y’.-.
%'
"
h
s 0.0
"
A

(X}
‘g
¢ i
()

¢
U

)
.

)
U .9

Reinforcement Learning: A Simple Example

 State: the configuration of the environment
e Location of agent, plants, rocks, and goal
e Or, visual input from a drone

e Action: A decision made by the agent that can
affect the state of the environment

e up, down, left, right

 Reward: A scalar signal sent from the
environment to the agent that is a function of
the current state, the action, and the next state
* Large negative reward for driving on a plant
* Medium negative reward for driving on a rock
* Small negative reward for driving on any other space

 What is an optimal policy?

* A policy that maximizes reward we receive from the
environment

Markov Process

* Models a sequence of random variable S;, often referred to as the state, whose
future value only depends on the current value (memoryless)

* P(St11 =S¢ = 5) = P(S¢41 = 8|St = 5,8¢21 = St—1, , S0 = So)
* Referred to as the dynamics or transition probabilities

* In other words, the future state is independent of the past states given the
current state

 This is also referred to as the Markov property

Markov Process: Hospital Example

* The hospital can be in three
states

e Over capacity (O): Insufficient
staff and resources

e Under capacity (U): More than
enough staff and resources

* At capacity (A): About the right
number of staff and resources for

patients
0.333

* With Markov processes, we are
often interested in the how the
state changes over time

* |.e. Does a steady state
distribution exist, if so, what is it?

Markov Reward Process (MRP)

* There may be some scalar value we can assign to the transitions between states
to indicate how good each transition is

* Dynamics: P(S;41 =S, Rip1 =71|S; = 5)

* The state transition dynamics can be computed as
* p(s'ls) = Xrerp(s',7|S)

* The reward dynamics of a state can be computed as
* 7(8) = XrerT 2gres P(S',71S) = E[Re41[S: = 5]

MRP: Hospital Example

* Expected reward r(s) is shown
below the state name

0.333

Markov Decision Processes (MDPs)

* States
* Actions
* Transition Probabilities: P(S;,; = s',R;11 =71|S; = 5,4; = a)
* Defines the dynamics of the MDP
* The state-transition probabilities can be obtained from the transition
probabilities
* p(s'ls,a) = Xyerp(s',7ls, @)
* The expected reward can be obtained from the transition probabilities
*7(s,a) = YrerT LgresP(S),7ls, @) = E[Re11|Se = s, A¢ = a]
* For now, we assume the state and actions are discrete and finite, however, this
restriction can be relaxed to be continuous and infinite

The Markov Property for MDPs

* Our policy at timepoint t is only based on the current state s
e m(als) = P(A; = a|S; = s)

* However, the agent has a history up until S;
¢ Ht — So,Ao, R]_Sl'AlI RZ "'St—l'At—ll Rt, St

 We assume that all relevant information about the future is contained in the
current state and action
* P(St41 =S Rey1 =7IS¢ =5, At = @) = P(St41 = 5", Reyq = 7|Hy = hyy1, Ar = @)
* The joint distribution of the next state and reward is conditionally independent of the
history given the current state and action

Quick Quiz: State Representations

e Cartpole e Al Farm - Harvesting
* Actions: apply force left, apply e Actions: Same as before
force right * Rewards: Same as before and +1 for every crop
* Rewards: +1 for every step harvested. Can only harvest crop once.
* Episode ends when the pole falls * Episode ends when all crops are harvested
over

;Pi\

* What should the state representation be?
* Remember, the Markov property must hold: P(S;11 = s',R;11 =7|S; = 5,A; = a)

MDPs: Episodes and Returns

* Episode: Starts at some start state at timepoint 0 and ends at a special state,
called the terminal state, at timepoint T

* Return: the sum of rewards after timestep t
* Gt = Rey1 t+ Repz + Reyz o+ Ry
* We seek to maximize the expected return

MDPs: Continuing Tasks

* There are environments in which an agent’s experience is not guaranteed to
terminate

* Maximizing Gy = Ryy1 + R¢4» + Ri43 ...+ Ry becomes problematic
° T — 00

* Therefore, it is possible that G4 could be oo.

* Therefore, we discount the reward
_ 2 3
* Gt = Rey1 HYRe42 TV Rey3 H V7 Rpys -
c0<y<l1
* Will converge to a finite number as long as rewards are finite
* Geometric series: Yo, ar® = éfor Ir| <1
e y can be setto 1if Tis finite

* In finite cases, sometimes it is still better to make it less than 1 to reduce variance when doing function
approximation

MDPs: Unifying Continuing and Episodic Tasks

* Episodic tasks can be posed as continuing tasks with a terminal state that:
* Only transitions to itself
* Only generates rewards of O

* The return
* Gt = Reyq +YRey2 + VRey3 + ¥ Riys ..
* Gy = YoV “Resi+k
* Works both when T is finite and infinite
* If T is not infinite, then y can be 1

R,=0
R,=+1 R,=+1 R.=+1 4
@ I .@ 2 .@ 3= ORS:O

Value Functions

e State-value function
* The expected return when in state s and following policy

* Ur(s) = Eg[GelS; = s] = Ex[Xk=0 Vth+1+k |St = s]
* Action-value function
* The expected return when taking action a in state s and then following policy

* CIn(S: a) = En[thst =S, A4¢ = al = IEn[ZIOcO:O Vth+1+k |St =S,4; = al

Optimal Policy and Value Function

* Which policy is better?
 m=>n'ifandonlyif v (s) = v (s)foralls €S

* A policy that achieves the greatest possible return from any state is an optimal policy
e T, =1 foralln'

. ThF optimal value function is the value function obtained when following the optimal
policy
* v,(s) = maxv,(s)
T
* q.(s,a) = maxq,(s,a)
T

e Optimal policies can be obtained by behaving greedily with respect to the optimal
value function

* Many RL methods first learn a value function and then induce a policy by behaving
greedily with respect to the value function

* |s the optimal policy unique?
* |s the optimal value function unique?

Value Functions

A

o
Jille
X
P P)4
)4
< P P P P4 NvN 4
LI P P4 NAN P |)4
X
)4
X
h 4

4

P P P

4

q
q

q
q

M P P)
PN I)

q
S
2
M P D
P P D

4
4

2 2
A
x
¥
b 4

<
<

4
4

S 4
< P PCIPC P P D

A
v
A
b 4
A
h 4
a
h 4
A
PN)
b 4
A
h 4
a
v
A
h 4
o
h 4
aH
b 4

=D P P P)

)<
2
C P P P P P D P P P)

CIPCIPC P P D P P M)

4 >J{{4 4

S—

S

e A Al e

AL
AR

< P P P P P)<

A

P P P4

h 4
A
h 4
A

< P P P 4
X
X

h 4
@
A

L A e A I

v
A

4 P P—)d

h 4
A
h 4
VN
h. 4

4

Ul
Jille

4
4

q
4

M)
S

A
P P P P P
X
4

pe 2 P

h 4

q
< P P »(P4

i
A
v
A
b, 4

4 4

<

v (s) v (s)
m is uniform random for all states mr says to go up if below goal, go down if above
goal, otherwise, go in the direction of the goal

Optimal Value Function

OO
-

X X X T X XX TN
M Y pd D
XXX A >[N
MMM K ME)

\ A AR po AT 3 SaE> Su
AL)
"IRVIRVERY 4
CxTx o X
2 x 'z : ’
MM Nl >

M HED) CREAER
XNXN NX XX X—>
v”‘v e Y*Y*Y*L’l

v, (s)

q.(s,a)
m, = argmax(r(s,a) +y Z p(s’ls,a) v,(s")) m, = argmax q. (s, a)
a S’

a

Optimal Value Function: Strong Winds

* Wind blows you right with some probability p

Optimal Value Function: Effect of Rewards

 Reward r of driving on a plant

Bellman Equation

* U (5) = Egon(a)s)[GelSe = 51 = Ex[E720 V¥ Rev4n St = 5]

* Up($) = Exl[Ris1 + ¥Geq1lSe = s] = Ex[Ri11Se = s] + YEz[Gt44[S: = 5]

* Ex[Re411St = 5] = 2rp(rls)r = 2o 2r0(r,als)r = X 2 p(rls, a)m(als)r
* ExlRt+1lSt = s] = Xam(als) Xrp(rls, a)r = Xgm(als)r(s, a)

* Ex[Ger1l|Se = s] = Xam(als) X p(s'ls,) Er|Gryq[Ser1 = ']

* En[Gey1lSer1 = '] = vp(s)

* Up(s) = Xam(als)r(s,a) +y Lam(als) Xs p(s'ls, vy (s’)

* Ur(s) = Xam(als)(r(s,a) +y Xy p(s'ls,a) ve(s))
* p(sls,a) = Xrer (s’ Tls, @)
* 7(5,a) = LrerT Lyres P(S', 7S, @) = E[Re41|Se = 5,4 = a]

* From the definition of value, we can write the value function in terms of itself
* This will be the foundation of reinforcement learning

Bellman Equation

* U (s) = Lam(als)(r(s,a) +y Xy p(s'ls, a) vy (s'))

° Qn(sr a) — T(S, Cl) T VZS’ p(s'ls, a) Za T[(alsl)%r(sl; Cl)
* Optimal substructure: Can construct an optimal solution from optimal solutions
of subproblems

Bellman Optimality Equation

e v,(s) = mc?x(r(s, a) +yYap(s'ls,a)v.(s"))
* q.(s,a) =7r(s,a) +y 2 p(s'ls,a) max q.(s’,a’)

* Reinforcement learning studies how we can maximize reward in sequential
decision making problems

e Given a sequential decision making problem, we first must characterize our
problem as a Markov decision process (MDPs)
* The joint probability of the next state and reward is independent of the history given the
current state and action

* The problem of computing the value of a given policy has optimal substructure
(Bellman equation)
* Ur(s) = Xamlals)(r(s,a) +y Xy p(s'ls, a) vr(s))
* In the case of computing the value of an optimal policy (Bellman optimality
equation)
* v(s) = max(r(s,a) +y Ly p(s'ls, a) v.(s")

