
Machine Learning: Markov Decision Processes
Forest Agostinelli

University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Outline

• Motivation
• Reinforcement learning
• The Markov property
• Markov decision processes
• Value functions
• Textbook: Reinforcement Learning: An Introduction (2nd Edition)
• Freely available here: http://incompleteideas.net/book/RLbook2020.pdf

http://incompleteideas.net/book/RLbook2020.pdf

Reinforcement Learning

• Learning to maximize reward in
sequential decision making
problems
• Learning is done through

experience
• Decisions affect experience and

experience affects decisions
• There is often uncertainty involved

with this process
• What happens if I make this

decision?
• How good is this outcome?

Solving Problems with Search

• A* Search
• Minimax Search
• Informative heuristics may not be easy to

construct
• May not be deterministic
• May not have an explicit goal state
• Agent may continue indefinitely

Background: Retrosynthesis Problem
Task: predict synthesis routes for
target molecules.

Challenge: combinatorial search space.

Sub-problems:
� One-step retrosynthesis
� Retrosynthetic planning

Target Molecule

Intermediate
Compounds

Building Blocks

3

Solving Problems with Supervised Learning

• We can use imitation learning to train an agent to imitate the actions we want it
to take
• Use powerful machine learning models, such as deep neural networks, to learn

from human example and then generalize to similar problems
• Time consuming
• Due to imperfections in learning, there may be a shift in the distribution of

what is seen during training vs in the real world, causing the agent to run into
situations it was never prepared for
• Humans do not always know how to solve the problem!

Solving Problems with Supervised Learning
Background: Retrosynthesis Problem
Task: predict synthesis routes for
target molecules.

Challenge: combinatorial search space.

Sub-problems:
� One-step retrosynthesis
� Retrosynthetic planning

Target Molecule

Intermediate
Compounds

Building Blocks

3

Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610.7930 (2022): 47-53.

Reinforcement Learning

• We need machine learning algorithms that learn from their own experience.
• For this, we turn to reinforcement learning
• Reinforcement learning is frequently combined with techniques we have

learned in this class such as search and supervised learning

RL Successes: Atari

• Using RL algorithms, a deep
neural network is trained to
play Atari games using raw
pixels.
• Current work shows we can

train deep neural networks to
play better than humans on
57 different Atari games.
• RL was combined with deep

neural networks

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.

RL Successes : Solving the Rubik’s Cube

• 4.3 x 1019 possible combinations
• No domain-specific knowledge
• DeepCubeA solves the Rubik’s

cube and other puzzles
• Puzzles have up to 3.0 x 1062

possible combinations.

• Finds a shortest path in the
majority of verifiable cases
• http://deepcube.igb.uci.edu/
• RL was combined with deep

neural networks and A* search

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

http://deepcube.igb.uci.edu/

RL Successes: Robotics

• Can solve problems in
continuous environments
• Can train in simulation and

transfer to the real world
(Sim2Real)
• RL was combined with deep

neural networks

Andrychowicz, Marcin, et al. "Hindsight experience replay." Advances in neural information processing systems 30 (2017).

RL Successes: Go

• AlphaGo learned how to play Go from
expert demonstrations data and from
self-play
• Defeated one of the best Go players, Lee

Sedol, 4 to 1
• Move 37

• AlphaGoZero builds on AlphaGo and
learns only from self-play
• RL was combined with deep neural

networks and Monte Carlo tree search

Silver, David, et al. "Mastering the game of go without human knowledge." nature 550.7676 (2017): 354-359.

Reinforcement Learning

• Reinforcement learning: learning to
map states to actions so that we
maximize the expected future reward
we receive from the environment.
• This mapping of states to actions is

called a policy function.
• Deterministic: 𝑎 = 𝜋(𝑠)
• Stochastic: 𝜋 𝑎 𝑠 = 𝑃(𝐴 = 𝑎|𝑆 = 𝑠)

• At each time step 𝑡
• In state S!, agent takes action A!
• Based on state s! and action a!, the

environment transitions to state S!"# and
outputs reward R!"#

Agostinelli, Forest, et al. "From reinforcement learning to deep reinforcement learning: An overview." Braverman Readings in Machine Learning. Key Ideas From Inception to Current State.
Springer, Cham, 2018. 298-328.

Notation

• For notation, capital letters (i.e. 𝑆!) are used for random variables and lowercase
letters (i.e. 𝑠!) are used for a particular value of that random variable.
• For states, 𝑠 typically refers to the current state and 𝑠" typically refers to the

next state

Reinforcement Learning

states, actions, rewards?

Reinforcement Learning: A Simple Example
• State: the configuration of the environment

• Location of agent, plants, rocks, and goal
• Or, visual input from a drone

• Action: A decision made by the agent that can
affect the state of the environment
• up, down, left, right

• Reward: A scalar signal sent from the
environment to the agent that is a function of
the current state, the action, and the next state
• Large negative reward for driving on a plant
• Medium negative reward for driving on a rock
• Small negative reward for driving on any other space

• What is an optimal policy?
• A policy that maximizes reward we receive from the

environment

Goal

Agent

Markov Process

• Models a sequence of random variable 𝑆!, often referred to as the state, whose
future value only depends on the current value (memoryless)
• 𝑃 𝑆!#$ = 𝑠′ 𝑆! = 𝑠 = 𝑃 𝑆!#$ = 𝑠′ 𝑆! = 𝑠, 𝑆!%$ = 𝑠!%$, … , 𝑆& = 𝑠&
• Referred to as the dynamics or transition probabilities

• In other words, the future state is independent of the past states given the
current state
• This is also referred to as the Markov property

Markov Process: Hospital Example
• The hospital can be in three

states
• Over capacity (O): Insufficient

staff and resources
• Under capacity (U): More than

enough staff and resources
• At capacity (A): About the right

number of staff and resources for
patients

• With Markov processes, we are
often interested in the how the
state changes over time
• I.e. Does a steady state

distribution exist, if so, what is it?

A

O U

0.333

0.333

0.333

0.7

0.1

0.2

0.7

0.1

0.2

Markov Reward Process (MRP)

• There may be some scalar value we can assign to the transitions between states
to indicate how good each transition is
• Dynamics: 𝑃 𝑆!#$ = 𝑠", 𝑅!#$ = 𝑟 𝑆! = 𝑠
• The state transition dynamics can be computed as
• 𝑝 𝑠$ 𝑠 = ∑%∈ℛ 𝑝(𝑠$, 𝑟|𝑠)

• The reward dynamics of a state can be computed as
• 𝑟 𝑠 = ∑%∈ℛ 𝑟 ∑(!∈𝒮 𝑝(𝑠$, 𝑟|𝑠) = 𝔼[𝑅*"#|𝑆* = 𝑠]

MRP: Hospital Example

• Expected reward 𝑟(𝑠) is shown
below the state name

A
-1

O
-10

U
+10

0.333

0.333

0.333

0.7
0.1

0.2

0.7

0.1

0.2

Markov Decision Processes (MDPs)

• States
• Actions
• Transition Probabilities: 𝑃(𝑆!#$ = 𝑠", 𝑅!#$ = 𝑟|𝑆! = 𝑠, 𝐴! = 𝑎)
• Defines the dynamics of the MDP

• The state-transition probabilities can be obtained from the transition
probabilities
• 𝑝 𝑠$ 𝑠, 𝑎 = ∑%∈ℛ 𝑝(𝑠$, 𝑟|𝑠, 𝑎)

• The expected reward can be obtained from the transition probabilities
• 𝑟 𝑠, 𝑎 = ∑%∈ℛ 𝑟 ∑(!∈𝒮 𝑝(𝑠$, 𝑟|𝑠, 𝑎) = 𝔼[𝑅*"#|𝑆* = 𝑠, 𝐴* = 𝑎]

• For now, we assume the state and actions are discrete and finite, however, this
restriction can be relaxed to be continuous and infinite

The Markov Property for MDPs

• Our policy at timepoint 𝑡 is only based on the current state 𝑠
• 𝜋 𝑎 𝑠 = 𝑃(𝐴* = 𝑎|𝑆* = 𝑠)

• However, the agent has a history up until 𝑆!
• H! = 𝑆+, 𝐴+, 𝑅#𝑆#, 𝐴#, 𝑅,…𝑆*-#, 𝐴*-#, 𝑅*, 𝑆*

• We assume that all relevant information about the future is contained in the
current state and action
• 𝑃 𝑆*"# = 𝑠′, 𝑅*"# = 𝑟 𝑆* = 𝑠, 𝐴* = 𝑎 = 𝑃(𝑆*"# = 𝑠$, 𝑅*"# = 𝑟|𝐻* = ℎ*"#, 𝐴* = 𝑎)
• The joint distribution of the next state and reward is conditionally independent of the

history given the current state and action

Quick Quiz: State Representations
• Cartpole
• Actions: apply force left, apply

force right
• Rewards: +1 for every step
• Episode ends when the pole falls

over

• AI Farm - Harvesting
• Actions: Same as before
• Rewards: Same as before and +1 for every crop

harvested. Can only harvest crop once.
• Episode ends when all crops are harvested

• What should the state representation be?
• Remember, the Markov property must hold: 𝑃(𝑆!"# = 𝑠$, 𝑅!"# = 𝑟|𝑆! = 𝑠, 𝐴! = 𝑎)

MDPs: Episodes and Returns

• Episode: Starts at some start state at timepoint 0 and ends at a special state,
called the terminal state, at timepoint 𝑇
• Return: the sum of rewards after timestep 𝑡
• 𝐺* = 𝑅*"# + 𝑅*", + 𝑅*":…+ 𝑅;
• We seek to maximize the expected return

MDPs: Continuing Tasks

• There are environments in which an agent’s experience is not guaranteed to
terminate
• Maximizing 𝐺! = 𝑅!#$ + 𝑅!#' + 𝑅!#(…+ 𝑅) becomes problematic
• 𝑇 = ∞
• Therefore, it is possible that 𝐺* could be ∞.

• Therefore, we discount the reward
• 𝐺* = 𝑅*"# + 𝛾𝑅*", + 𝛾,𝑅*": + 𝛾:𝑅*"<…
• 0 ≤ 𝛾 < 1

• Will converge to a finite number as long as rewards are finite
• Geometric series: ∑!"#$ 𝑎𝑟! = %

&'(
for 𝑟 < 1

• 𝛾 can be set to 1 if T is finite
• In finite cases, sometimes it is still better to make it less than 1 to reduce variance when doing function

approximation

MDPs: Unifying Continuing and Episodic Tasks

• Episodic tasks can be posed as continuing tasks with a terminal state that:
• Only transitions to itself
• Only generates rewards of 0

• The return
• 𝐺* = 𝑅*"# + 𝛾𝑅*", + 𝛾,𝑅*": + 𝛾:𝑅*"<…
• 𝐺* = ∑=>+? 𝛾=𝑅*"#"=
• Works both when 𝑇 is finite and infinite
• If 𝑇 is not infinite, then 𝛾 can be 1

Value Functions

• State-value function
• The expected return when in state s and following policy 𝜋
• 𝑣@ 𝑠 = 𝔼@ 𝐺* 𝑆* = 𝑠 = 𝔼@ ∑=>+? 𝛾=𝑅*"#"= 𝑆* = 𝑠

• Action-value function
• The expected return when taking action a in state s and then following policy 𝜋
• 𝑞@ 𝑠, 𝑎 = 𝔼@ 𝐺* 𝑆* = 𝑠, 𝐴* = 𝑎 = 𝔼@ ∑=>+? 𝛾=𝑅*"#"= 𝑆* = 𝑠, 𝐴* = 𝑎

Optimal Policy and Value Function
• Which policy is better?

• 𝜋 ≥ 𝜋! if and only if 𝑣" 𝑠 ≥ 𝑣"% 𝑠 for all 𝑠 ∈ 𝑆
• A policy that achieves the greatest possible return from any state is an optimal policy

• 𝜋∗ ≥ 𝜋! for all 𝜋!

• The optimal value function is the value function obtained when following the optimal
policy
• 𝑣∗ 𝑠 = max

"
𝑣" 𝑠

• 𝑞∗ 𝑠, 𝑎 = max
"

𝑞" 𝑠, 𝑎

• Optimal policies can be obtained by behaving greedily with respect to the optimal
value function
• Many RL methods first learn a value function and then induce a policy by behaving

greedily with respect to the value function
• Is the optimal policy unique?
• Is the optimal value function unique?

Value Functions

𝑣& 𝑠
𝜋 is uniform random for all states

𝑣& 𝑠
𝜋 says to go up if below goal, go down if above
goal, otherwise, go in the direction of the goal

Optimal Value Function

𝑣∗ 𝑠

𝜋∗ = argmax
(

(𝑟 𝑠, 𝑎 + 𝛾J
)!
𝑝 𝑠$ 𝑠, 𝑎 𝑣∗ 𝑠$)

𝑞∗ 𝑠, 𝑎
𝜋∗ = argmax

(
𝑞∗(𝑠, 𝑎)

Optimal Value Function: Strong Winds
• Wind blows you right with some probability 𝑝

𝑝 = 0 𝑝 = 0.1 𝑝 = 0.5

Optimal Value Function: Effect of Rewards

• Reward 𝑟 of driving on a plant

𝑟 = −50 𝑟 = −20 𝑟 = −2

Bellman Equation

• 𝑣@ 𝑠 = 𝔼S~@(S|() 𝐺* 𝑆* = 𝑠 = 𝔼@ ∑=>+? 𝛾=𝑅*"#"= 𝑆* = 𝑠
• 𝑣@ 𝑠 = 𝔼@ 𝑅*"# + 𝛾𝐺*"# 𝑆* = 𝑠 = 𝔼@ 𝑅*"# 𝑆* = 𝑠 + 𝛾𝔼@ 𝐺*"# 𝑆* = 𝑠
• 𝔼@ 𝑅*"# 𝑆* = 𝑠 = ∑% 𝑝 𝑟 𝑠 𝑟 = ∑S∑% 𝑝 𝑟, 𝑎 𝑠 𝑟 = ∑S∑% 𝑝 𝑟 𝑠, 𝑎 𝜋(𝑎|𝑠)𝑟
• 𝔼@ 𝑅*"# 𝑆* = 𝑠 = ∑S𝜋(𝑎|𝑠)∑% 𝑝 𝑟 𝑠, 𝑎 𝑟 = ∑S𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎)
• 𝔼@ 𝐺*"# 𝑆* = 𝑠 = ∑S𝜋(𝑎|𝑠)∑($𝑝 𝑠$ 𝑠, 𝑎 𝔼@ 𝐺*"# 𝑆*"# = 𝑠′
• 𝔼@ 𝐺*"# 𝑆*"# = 𝑠′ = 𝑣@ 𝑠′
• 𝑣@ 𝑠 = ∑S𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾 ∑S𝜋(𝑎|𝑠)∑($𝑝 𝑠$ 𝑠, 𝑎 𝑣@ 𝑠′
• 𝑣@ 𝑠 = ∑S𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑣@ 𝑠$)

• 𝑝 𝑠) 𝑠, 𝑎 = ∑(∈ℛ 𝑝(𝑠), 𝑟|𝑠, 𝑎)
• 𝑟 𝑠, 𝑎 = ∑(∈ℛ 𝑟 ∑,!∈𝒮 𝑝(𝑠), 𝑟|𝑠, 𝑎) = 𝔼[𝑅./&|𝑆. = 𝑠, 𝐴. = 𝑎]

• From the definition of value, we can write the value function in terms of itself
• This will be the foundation of reinforcement learning

Bellman Equation

• 𝑣< 𝑠 = ∑= 𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾 ∑>! 𝑝 𝑠" 𝑠, 𝑎 𝑣< 𝑠")
• 𝑞< 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑>! 𝑝 𝑠" 𝑠, 𝑎 ∑= 𝜋 𝑎 𝑠′ 𝑞< 𝑠′, 𝑎
• Optimal substructure: Can construct an optimal solution from optimal solutions

of subproblems

𝑣@ 𝑠 𝑞@ 𝑠

Bellman Optimality Equation

• 𝑣∗ 𝑠 = max
=
(𝑟 𝑠, 𝑎 + 𝛾 ∑>! 𝑝 𝑠" 𝑠, 𝑎 𝑣∗ 𝑠")

• 𝑞∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑>! 𝑝 𝑠" 𝑠, 𝑎 max
="

𝑞∗ 𝑠′, 𝑎′

Summary

• Reinforcement learning studies how we can maximize reward in sequential
decision making problems
• Given a sequential decision making problem, we first must characterize our

problem as a Markov decision process (MDPs)
• The joint probability of the next state and reward is independent of the history given the

current state and action

• The problem of computing the value of a given policy has optimal substructure
(Bellman equation)
• 𝑣@ 𝑠 = ∑S𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑣@ 𝑠$)

• In the case of computing the value of an optimal policy (Bellman optimality
equation)
• 𝑣∗ 𝑠 = max

S
(𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑣∗ 𝑠$)

