
Algorithmic Design I
Forest Agostinelli

University of South Carolina



Outline

• Logistics
• Background
• JVM
• Hello World



Faculty and Staff

• Instructor
• Forest Agostinelli

• B.S. in Electrical and Computer Engineering from Ohio State
• M.S. in Computer Science from the University of Michigan
• Ph.D. in Computer Science from the University of California, Irvine

• Area of research
• Explainable artificial intelligence
• Applications of deep learning and reinforcement learning to the sciences

• Teaching Assistant
• TBD



Class Time and Website

• Lecture
• Mon/Wed 1:10pm-2pm, Swearingen Eng Center, 2A27

• Lab Q&A
• H01 – Tue/Thur 8:00am-9:40am, Carolina Coliseum, 3012
• H02 – Mon/Wed 8:00am-9:40am, Carolina Coliseum, 3012
• Starts next week

• Will create a course website with lecture slides, assignments, and other course 
material
• Office hours
• After class

• While attendance is not mandatory, you will most likely benefit from attending



Piazza

• For all questions regarding assignments and course concepts, please use Piazza
• You can also post anonymously, if you wish

• To ensure everyone turns in their own work, do not post code or solutions (or 
partially completed solutions) to homework assignments on Piazza.



Textbooks

• Java: An Introduction to Problem Solving and Programming
• All relevant information should be contained in the lecture slides, but you 

can use this book to supplement your learning



Labs and Homeworks

• There will be 9 labs and 8-9 homeworks
• Submissions will be through Dropbox
• All deadlines are strict! No late submissions will be accepted!

• Labs
• Smaller coding assignments accompanied by written reports designed to measure 

conceptual knowledge

• Homeworks
• Longer coding assignments designed to measure practical ability

• A large percentage of grade is determined by the code’s functionality
• Meaning that it must run in order to get credit!



Supplementary Lectures

• Dr. JJ Shepherd at UofSC
• https://www.youtube.com/channel/UCDPP8U6GG0O1FiGdDFCnFyQ

• Note, this is to supplement your learning. Anything related to course logistics, 
grading, etc. will be given in this class

https://www.youtube.com/channel/UCDPP8U6GG0O1FiGdDFCnFyQ


Academic Integrity

• All work turned in must be your own. Plagiarism of any kind, including from 
online sources, is strictly prohibited. All potential Honor Code violations will be 
reported to the Office of Academic Integrity. Honor Code violations of any kind 
(including plagiarism) on the homework assignments will result in a zero on that 
assignment. Furthermore, students who have plagiarized a homework 
assignment will not be able to drop their lowest grade. Honor Code violations of 
any kind (including plagiarism) on the midterm or final will result in failure of the 
course. You can familiarize yourself with the Honor Code here: 
http://www.sc.edu/policies/ppm/staf625.pdf.
• If your homework is copied from online sources or another student, you will receive a 

zero.

http://www.sc.edu/policies/ppm/staf625.pdf


Academic Integrity Examples

• Discussing concepts with fellow students
• Okay

• Copying answers of fellow students
• Not okay

• Searching the internet for conceptual material
• Okay

• Copying code from the internet
• Not okay

• Copying answers to the written homework from the internet
• Not okay

• If there are any questions, please ask!



ChatGPT

• I view ChatGPT as a calculator
• If you can be a great programmer with ChatGPT, then that is fine by me

• However, we are currently learning the process behind the calculator
• Therefore, I expect all work turned in to be your own



Grading

• Homeworks – 60%
• Laboratory Assignments – 10%
• Laboratory Reports – 10%
• Final – 20%

• Grades
• A [90 – 100] 
• B+ [85 – 90) 
• B [80 – 85) 
• C+ [75 – 80) 
• C [70 – 75) 
• D+ [65 – 70) 
• D [60 – 65) 
• F [0 – 60) 



Honors

• Connections to artificial intelligence (AI) algorithms will be made throughout the 
class
• I like to think much of AI as meta-algorithms
• That is, algorithms that write algorithms



Special Thanks

• JJ Shepherd
• Neema Kanapala



Outline

• Logistics
• Background
• JVM
• Hello World



Algorithmic Design

• What is an algorithm?
• Why do we care about algorithms?



Algorithmic Design

• What is an algorithm?
• A sequence of instructions

• Why do we care about algorithms?
• We can solve many problems with a sequence of instructions



Evaluating Algorithms

• Imagine developing an algorithm for solving the Rubik’s cube. 
• What are aspects of the algorithm one may consider when evaluating it?



Implementing Algorithms: Transistors

• We can create digital (binary 0/1) circuits using transistors
• Many possibilities for computation and for storing data in memory

https://www.101computing.net/creating-logic-gates-using-transistors/



Implementing Algorithms: Logic Gates

• From transistors, we can implement basic logical operations

https://www.101computing.net/creating-logic-gates-using-transistors/



Implementing Algorithms: Computation

• From logic gates, we can do computation
• From simple adders to CPUs, which have billions of transistors

https://www.geeksforgeeks.org/full-adder-in-digital-logic/



Implementing Algorithms: Machine Code

• Given a CPU, we would like to be able to tell it what computations to do without 
having to manually set voltages on the hardware
• We can instead tell the machine what to do using some software where we can 

communicate a series of 1s and 0s to the hardware

https://www.geeksforgeeks.org/full-adder-in-digital-logic/



Implementing Algorithms: Assembly

• Writing 1s and 0s is tedious
• Higher level languages, such as assembly, are able to 

abstract this process using commands such as “add” 
and “move”
• This is then “assembled” into machine code

https://www.nayuki.io/res/a-fundamental-introduction-to-x86-assembly-programming/machine-code.svg



Implementing Algorithms: Higher-level Languages

• Writing assembly code is tedious
• We can use higher-level programming languages, such as C++, Java, Python, etc.
• These high-level languages take care of many important functions in a few lines 

of code, a single line of code, or even without any explicit code at all
• Memory allocation
• Control flow
• Arithmetic
• Memory cleanup
• Etc.



Implementing Algorithms

Found on Reddit



Outline

• Logistics
• Background
• JVM
• Hello World



Terminology: Compiled vs Interpreted Languages

• Compiled languages
• Convert code to assembly or machine code through a process called compilation
• Examples: C++, Java

• Interpreted Languages
• Call precompiled code based on the code written in the high-level language
• Examples: Python, Perl



Hardware and Code Execution

• When running a program, the machine code that it eventually produces must be 
specific to the hardware on which it is running
• Furthermore, the hardware determines what is possible in that language
• Therefore, code may need to be re-compiled or even re-written based on the 

computer architecture



Java Virtual Machine (JVM)
• To address this issue, Java is compiled to Java 

bytecode and then runs its code within its own 
virtual machine
• Therefore, compiled code and its behavior can 

be consistent across architectures given an 
architecture-specific translation to machine 
code

https://en.wikipedia.org/wiki/Java_virtual_machine



Outline

• Logistics
• Algorithms
• Java Virtual Machine (JVM)
• Hello World



Integrated Development Environment (IDE)

• IDEs are convenient software applications that assist in software development
• Catch syntax errors
• Organize code
• Convenient compilation and execution

• While you can really use anything, this class will use Eclipse
• Installing the Java Eclipse IDE
• https://www.eclipse.org/downloads/packages/installer

https://www.eclipse.org/downloads/packages/installer


Java Organization

• A project is composed of classes
• A class is composed of methods
• Source code are files with the 

.JAVA extension
• The filename must match the 

name of the class
• Source code is compiled to the 

intermediate bytecode which is 
then run on the java virtual 
machine



Terminology: General



Creating Your First Project



Creating Your First Project

• Uncheck “Create module-info.java” if checked



Creating Your First Class

• src - source



Creating Your First Method

• HelloWorld is the class
• main is a method in the class
• This is the method that gets executed



Creating Your First Method

Hello World
What is your name?
JJ
Greetings! JJ
How many cats do you have?
3
How does one live with 3 cats?



Terminology: Syntax Errors



Terminology: Runtime Errors



Terminology: Logic Errors



Getting Involved in Research

• Lots of exciting research going on at USC
• https://www.sc.edu/study/colleges_schools/engineering_and_computing/departments/c

omputer_science_and_engineering/our_people/index.php

• AI Institute
• https://aiisc.ai 

• My own research: explainability, deep learning, reinforcement learning, and 
planning

https://www.sc.edu/study/colleges_schools/engineering_and_computing/departments/computer_science_and_engineering/our_people/index.php
https://www.sc.edu/study/colleges_schools/engineering_and_computing/departments/computer_science_and_engineering/our_people/index.php
https://aiisc.ai/

