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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Induc&ve logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Automatic differentiation
• PyTorch



Verification

• We need to make sure the output of the neural network matches the expected 
output and that the gradient is correct
• Verifying the gradient can be done with finite differences
• lim
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• For every single parameter
• Do a forward pass through the network
• Add a small value to that parameter (i.e. 10^-5)
• Do a forward pass again
• Estimate gradient and compare it to the gradient computed by your code



Verification

• Building a separate forward and backwards pass for every iteration of a deep 
neural network can be very time consuming
• Fortunately, we can divide deep neural networks into functionally independent 

components (layers)
• Fully connected layers
• Convolutional layers
• Residual layers
• Activation function layers (logistic, ReLU, tanh, etc.)

• We can then verify each layer independently and then compose these layers to 
form a deep neural networks



Deep Learning Software

• Building a deep neural network consists of defining a forward pass (obtaining 
the output) and the backwards pass (backpropagaDon)
• AEer backpropagaDon, the gradient obtained is then used to adjust the 

parameters
• Furthermore, deep neural networks consist of matrix mulDplicaDons which can 

benefit from parallelizaDon on the simpler, but plenDful, processors of GPUs
• Deep learning soEware automates some, or all, of this process



Deep Learning So?ware

• Modern day deep learning software has 
abstracted away almost all aspects of the 
backward pass and many aspects of the 
forward pass
• However, understanding them can be 

crucial to your research



Automatic Differentiation

• Objective: 𝐸 𝒘 = !
"#
∑# || 𝒚# − 𝑓(𝒙# , 𝒘)||""

• Gradient: ∇𝐰𝐸 𝐰 = !
#
∑# || 𝒚# − 𝑓(𝒙# , 𝒘)||"∇𝐰 𝑓(𝒙# , 𝒘)

• For every function we use to calculate 𝑓(𝒙# , 𝒘), we define:
• Forward pass

• Inputs to outputs
• Backward pass

• Updates backpropagated gradient to update parameters
• Differentiate with respect to inputs, multiply result by backpropagated gradient (chain rule)

• Can create many different types of deep neural networks without having to 
define a backward pass



Automatic Differentiation

• Can create all these deep 
neural network architectures 
using modern deep learning 
software by only defining a 
forward pass



Automatic Differentiation

• /𝒚 = 𝑾(")𝜎(𝑾(!)𝒙)
• Linear
• AcKvaKon
• Error

• Can then create networks of this 
structure with arbitrary depth
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ComputaBon Graph

https://towardsdatascience.com/getting-started-with-pytorch-part-1-understanding-how-automatic-differentiation-works-5008282073ec

Forward Backward



Backpropagatio
n Exercise

• https://cs230.stanford.ed
u/winter2020/section3_ex
ercises.pdf

• What are the symbolic 
gradients?

https://cs230.stanford.edu/winter2020/section3_exercises.pdf
https://cs230.stanford.edu/winter2020/section3_exercises.pdf
https://cs230.stanford.edu/winter2020/section3_exercises.pdf


Backpropagation Exercise



Deep Learning So?ware

• Handmade
• C++/MATLAB/etc.

• AutomaDc DifferenDaDon
• Theano
• Torch
• Caffe
• TensorFlow
• PyTorch



Outline

• Automatic differentiation
• PyTorch



PyTorch: Tensor

• A multi-dimensional matrix whose elements are of a single data type
• The neural network inputs, intermediate outputs, and outputs are all of type 

Tensor
• Very similar to a numpy ndarray



PyTorch: Training

• Important: If you want to keep the loss 
around, use loss.item(), not loss
• Otherwise, computation graph for previous 

computation is kept
• Will eventually run out of memory

• Important: In most cases, PyTorch will be 
expecting data of type float32. You can either 
(for inputs and outputs)
• Convert to float32 before making tensor

• nnet_inputs_np = nnet_inputs_np.astype(np.float32)
• Covert to float32 after making tensor

• nnet_inputs = nnet_inputs.float()



PyTorch: EvaluaBon

• Put the neural network in evaluaDon mode to turn off behavior exclusive to 
training
• Batch normalizaKon
• Dropout

• .cpu() ensures that the data is on the CPU and not the GPU



PyTorch: Neural Network Model

• Define parameters
• Define forward pass



PyTorch: Batch Normalization

• Maintains a running average of mean 
and variance during training
• Uses running average during eval so 

that evaluation is not stochastic



PyTorch: 
Generalized Fully 
Connected Model

• For parameters, use 
nn.ModuleList instead 
of List



PyTorch: Residual Networks

Loss surfaceArchitecture





PyTorch: Residual Networks

• Residual networks require that 
input is the same dimension as the 
dimension of the hidden layers
• Can use a linear transformation to 

make them the same dimension



PyTorch: Initialization

• Functions that end with “_” indicate the operation modifies the object “in-
place” instead of returning a new object
• PyTorch’s default initialization is usually good
• They do not initialize bias to zero, sometimes may be good to do that



PyTorch: GPU vs CPU
• The CUDA_VISIBLE_DEVICES 

determines which GPUs will 
get used
• If set, device is always “cuda:0”
• CUDA_VISIBLE_DEVICES will 

ensure the correct GPUs will 
get used

• DataParallel
• DataParallel will distribute 

computaKon across mulKple 
GPUs

• On CPU someDmes good to 
limit the number of threads 
to 1



PyTorch: Saving/Loading a Model

• Important: PyTorch only saves 
parameters, not computation 
graph
• When loading, the nnet must 

correspond to the same 
nn.Module as the one that was 
used to train the nnet



PyTorch: .detach

• When you want to remove something from the computation graph, use .detach
• a.detach() returns a new Tensor that is detached
• a.detach_() detaches the Tensor in place



PyTorch: Debugging

• Debugging is simple
• pdb.set_trace() sets a breakpoint
• Newer versions of Python can just use 

breakpoint()



TensorBoard

• Developed by TensorFlow
• Useable with PyTorch



PyTorch Tutorial

• PyTorch
• https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

• TensorBoard
• https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

