- =
vV
. 1 7\ 7 DA RN
Y < \/
P I
DA 7 |
4 ‘ A | <
S
A 'A’ﬂ; /x\
Ve /g |
S {
DY a - \ AN
= M/\ N>
NZ
A >
INA
Z 4

INSTITUTE @ #A11SC
UNIVERSITY OF SOUTH CAROLINA

Machine Learning: Deep Learning

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks

Artificial Neural Networks

* Inspired from biological
neural networks

 Far from an exact model

* The main parallels are

e Dendrites (inputs)

e Action potential (activation
function)

e Axon terminals (outputs)

Jennifer Walinga - https://opentextbc.ca/introductiontopsychology/chapter/3-1-the-neuron-is-the-building-block-of-the-nervous-system/

Terminal buttons
(form junctions
with other cells)

Cell body Dendrites
(soma) (receive messages
from other cells)

Axon
(passes messages away
from the cell body to

other neurons, muscles,
or glands)

/

Action potential

(electrical signal

traveling down Myelin sheath

the axon) (covers the axon of some
neurons and helps speed
neural impulses)

Dendrites
(from another
neuron)

/N

A biological neuron

Neural Networks

s flx,w) = WP ogWx)
« kD = g(WwWyx)
« flx,w) = WPp!

* Where g is some non-linear function

Neurons/

Units Hidden layer

Weights

Quick Quiz: Linear Activation Functions

1

s flx,w) = W@g(WMx)
« kD = g(WwWyx) o
Wiy

1
bl
— 2)n1 (1) (2)
* fx,w) = W@h X1 Wz h, Wy a
e« What if g is a linear function? \ i
(1)
o (D) @)

12
(1) h2 VVlZ
Wa2

(1
b

* The resulting function would also be linear. This is true no matter how deep the
network is.

Backpropagation: Activation Functions

* Allow neural network to learn non-linear Sigmoid

f Leaky ReLU)

i max(0.1z, x)

functions ==) e

* Logistic (Sigmoid) tanh | Maxout
1 tanh(x) " ° max(w] z + by, wl z + by)

) O-(x) = 1+e=%)
e g (x) =0x)(1—-0(x)) RelLU ELU J
» Rectified Linear Unit (ReLU) max(0, 2) SO
* g(x) = max(0, x)
e o’'(x) =0ifx <0 o Bearn . besozaeas
cd'(x)=1ifx>0 :
* Derivative undgfined at zero but does not Adaptive
matter in practice SIS S S piecewise
* Activation functions can also be - linear units
parameterized and learned through
gradient descent S~ Y

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830.

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Neural Networks: Universal Function Approximation

* Given enough hidden units, neural networks can approximate any function with
arbitrary precision

* Cannot guarantee convergence

Backpropagation

* We do gradient descent via backpropagation
» Just the application of the chain rule

« kD = g(WwWyx)
+ Y = o (E W x)

« flx,w) =WPhD =%
+ 9= 3, WA

s Ew) =y = 9)I3 =3 llell3
= T — 9P =2 ef
 OE(wW) _ dEwW)de 3y _
ow? L 2y ow? -
, OE(w) _ 9E(w)de 3y OhV
awj(}:) ~ de 9y0h(D aWj(’:)

(i — Ji)h;

~ / 1
=i~ (i — yi)Wif-Z)a 2 VIG;(C x10) xi

Neural Networks: Regression and Classification

Classification Regression
0..‘
e ©
2 ?‘ °
Linear " 3
‘s
’ bt o0
5 - ':’.'
Non-Linear > P S
IR N
.:Q

Hyperparameters

 Parameters are learned from the data
* Hyperparameters are set before training

* Learning rate
* Defines how large the steps will be during gradient descent
e Usually denoted by

* Number of neurons
* How “wide” the neural network is

* Many more!

Quick Quiz: What are the Best Hyperparameters?

..“ ..
[

00 %" o o ‘:.‘ ° ° ° g
. ° . ° ..° o ° ° . ° o:
..o .. 0.‘ ° ..:0.
P ° '. ” °
a = 0.1, neurons = 100 a = 0.25, neurons = 100 a = 0.75, neurons =100
] ..) -) o . ‘:... o.
@ o ® e: ..:.\ :: @ o. .
o .' o ..:... ' " <o .:) :.00 ..‘.f
> PEIIN S . | ———————teee
e X e %o . “ o .o.' «® * ° %,
® .. .:::. ..0.. 00. ”
“,. o ks al

a = 0.1, neurons = 1000 a = 0.25, neurons = 1000 a = 0.75, neurons = 1000

Machine Learning

* There are many different machine learning methods
* Linear models
* Deep neural networks
e Support vector machines
* Decision trees
* K-nearest neighbors

* The type of model to use depends on your data

* Deep learning is often the best out of these methods when the data
* High-dimensional
* Low-level
 Plentiful
* Has a non-linear relationship between the input and the output

Deep Neural Networks

 Stack hidden layers to obtain a deep neural network

* “Deep learning allows computational models that
are composed of multiple processing layers to learn
representations of data with multiple levels of
abstraction.”

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

Deep Neural Networks

* There are a wide variety of
ways one can create a deep
neural network

r—

r—

Twem

)
T Wem

T wem

aaaaas

T wem

T wem

m o o
EIRENEIRENERE
ighliE bl
EIRCIREIREINENE]

OO0 - OO0

W(l)

AN

Convolution and Pooling

* We can design neural networks to take
advantage of structured data, such as
Images

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

A=\ Yo\ A S\

* Convolution helps to add translation
Invariance T]

e Strong inductive bias

R

VTR MR T T

VT IN

(R

RV

RO N,

* Pooling shrinks the representation,

allowing subsequent layers to focus on N P P (pooling laver)
higher-level information and have a ,/ . —

. . Ny cot=p h*;; H* (detection layer
larger receptive field g

7
;v/ wak) v / V (visible layer)

Convolution and Pooling

Feature Maps Feature Maps Feature Maps
| FeatureMaps [= | p———g """
|
%#f— [eoat (0.04)
[e @ [JHouse (0.05)
Il] [] Tree (0.9)
. : [—
‘ - a ____Icat(o.01)
Convoluticn Pooling Convoluticn Pooling Y
+ Relu + Relu Fully Connected Layers

Qutput Layer

Convolution and Pooling

* Was central to the breakthrough on
the Imagenet dataset

. : ’.-/"-'-fi’;" =
mite container ship motor scooter leopard
] mite container ship motor scooter lecpard
[| black widow lifeboat go-kart jaguar
| cockroach amphibian moped cheetah
i tick fireboat bumper car snow leopard
I

starfish

grille

drilling platform

golfcart

Egyptian cat

mushroom cherry Madagas
convertible agaric dalmatian squ_i?p'el monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

Deep Neural Networks

Elephants Chairs

Layer 3

SANE B
/Lol =\
2= WAV Layer 2

2-,
I
A
W

|
A=
=
alad

Bt LI Layer 1
A 04NN . \ : I

AN

INEB¥”
—/ \:—-

AZ7S

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009, June). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th annual ICML (pp. 609-616). ACM.

Overfitting/Regularization

* Training Dataset: Used to train neural network

e Validation Dataset: Not used to train neural network. Used to determine how
well neural network generalizes

» Test Dataset: Only for seeing the final performance of neural network. Not used
for training or validation.

Loss — Train: 0.042, Val: 0.35

DNN 5 hidden layers and 500
neurons per layer

Regularization: Weight Regularization

* Weight regularization

1 ~
*EW) = —Znllyn —FnllZ + AR Z: X W3
* Make the weights less “sensitive” to the input

Loss — Train: 0.12, Val: 0.29, 4 = 0.01 Loss — Train: 0.18, Val: 0.26, A = 0.05 Loss — Train: 0.70, Val: 0.77, A = 0.2

Dropout

C
O
i)

(g0

N
o
L)

>

o))

Q
al

N

(0] 0)

C
)
+
4—

| -

Q

>
@)

A

* Dropout

o/

»)
WX

Y
./
sv..“ X

(XN

i

0\

._
ﬂ@x’ XX
.?.?'.5 »ﬁ.
DK

.l_,.

D »oo/‘shs.«of’/

2R
...,\
e\

ALY IAAN

\

(a) Standard Neural Net

* Randomly drop connections between

/

neurons during training

(b) After applying dropout.

Loss — Train: 0.70, Val: 0.75,p = 0.9

Loss — Train: 0.23, Val: 0.25, p = 0.5

Regularization: Add More Data

 Harder to overfit if there is more data
e Collect more data

* Augment current data
* Rotations, flipping, translations
* Adding noise

Overfitting/Regularization

’\\NJ\/

o o
Underfitting Desired Overfitting
Error
Early Validation Error

Termination

Training Error

. » Training Steps

Unbalanced Datasets

* Some datasets have classes that are significantly overrepresented

* For example, | have many weather readings that were not followed by a hurricane and
only a few that were followed by a hurricane

* If the training data reflects this imbalance, the model can get good prediction
simply by being biased towards the overrepresented class

* Therefore, one must sample their training data so that it is balanced

Optimization: Loss Surface

* No longer convex
* Local minima

» Saddle points

Optimization: Gradient Based Methods

e Vanilla Gradient Descent
w=w-—aVyE(w)

e Gradient Descent with Momentum
* v =uv + aVyE(w)
‘*W=wW-—7D

e ADAM

em=pm+ (1— L) (VwE(W))? //estimate of the mean of the gradients
v =L+ (1—B)(Vy,E(W))? //estimate of the variance of the gradients

* M and P are bias corrected estimates of the mean and variance
a A~

Jore
* Many others: https://ruder.io/optimizing-gradient-descent/

.W:w_

https://ruder.io/optimizing-gradient-descent/

Optimization: Stochastic Gradient Descent

Data

Gradient
Descent

» Compute
loss

* There can be millions of datapoints
* Gradient descent will take too long

Batch of Data

* Do gradient descent on random
subsets of the data, instead

Optimization: Stochastic Gradient Descent

Data

Gradient

B D
atch of Data Descent

» Compute
loss

Optimization: Stochastic Gradient Descent

Data

Gradient
Descent

» Compute
loss

Batch of Data

Optimization: Residual Neural Networks

* Training can become more difficult as the number of layers increases
* Adding skip connections allows us to train networks with hundreds of layers

weight layer
F(x) l relu %
weight layer identity

(a) without skip connections (b) with skip connections

Loss surface

Optimization: Batch Normalization

* Normalizes the input to the activation function to have a of mean 0 and
standard deviation of 1

* Stabilizes training
* Allows larger learning rates
* Reduces importance of initialization

 H = o(BN(WX))

* Adds some regularization

1

09} ¢
I
0.8 ll O O
’ . — = = Without BN
0.7 - 1 -
10K 20K 30K 40K 50K 2 2

(a) (b) Without BN (c) With BN

Optimization: Initialization

* The weights of the DNN are randomly initialized
* Initialization can play a large role in optimization
 Xavier/Glorot initialization is fairly common

* Initialization matters less when doing

* Batch normalization
* Weight normalization

What to Try?

* Activation Function
e Rectified Linear Units

* Gradient-Based Optimization

e SGD with momentum
« ADAM

* Convolution (for structured input like images or sound)
* Batch Normalization
* Residual Networks

* If overfitting?
* Weight regularization

* Dropout
* In higher layers first

Deep Learning/Machine Learning Demos

* https://p.migdal.pl/interactive-machine-learning-list/

* https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

https://p.migdal.pl/interactive-machine-learning-list/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

Relevant Papers

» Xavier/Glorot Init: Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training
deep feedforward neural networks." Proceedings of the thirteenth international conference
on artificial intelligence and statistics. 2010.

* SGD w/ Momentum: Sutskever, llya, et al. "On the importance of initialization and
momentum in deep learning." International conference on machine learning. 2013.

* Imagenet: Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification
with deep convolutional neural networks." Advances in neural information processing
systems. 2012.

« ADAM: Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization."
arXiv preprint arXiv:1412.6980 (2014).

* Batch Normalization: loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating
deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167
(2015).

* Residual Networks: He, Kaiming, et al. "Deep residual learning for image recognition."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

