
Machine Learning: Deep Learning
Forest Agostinelli

University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Artificial Neural Networks

• Inspired from biological
neural networks
• Far from an exact model
• The main parallels are
• Dendrites (inputs)
• Action potential (activation

function)
• Axon terminals (outputs)

Jennifer Walinga - https://opentextbc.ca/introductiontopsychology/chapter/3-1-the-neuron-is-the-building-block-of-the-nervous-system/

A biological neuron

Neural Networks

• 𝑓 𝒙,𝒘 = 𝑾(")𝜎(𝑾($)𝒙)
• 𝒉(") = 𝜎(𝑾(")𝒙)
• 𝑓 𝒙,𝒘 = 𝑾($)𝒉"

• Where 𝜎 is some non-linear function
𝑥!

𝑥"

ℎ!
(!)

ℎ"
(!)

'𝑦!

𝑊!!
(!)

𝑊"!
(!)

𝑊!"
(!)

𝑊""
(!)

𝑊!!
(")

𝑊!"
(")

1 1
𝑏!
(!)

𝑏"
(!)

𝑏!
(")

Input

Output

Weights

Neurons/
Units Hidden layer

Quick Quiz: Linear Activation Functions

• The resulting function would also be linear. This is true no matter how deep the
network is.

• 𝑓 𝒙,𝒘 = 𝑾(")𝜎(𝑾($)𝒙)
• 𝒉(") = 𝜎(𝑾(")𝒙)
• 𝑓 𝒙,𝒘 = 𝑾($)𝒉"

• What if 𝜎 is a linear function?
𝑥!

𝑥"

ℎ!
(!)

ℎ"
(!)

'𝑦!

𝑊!!
(!)

𝑊"!
(!)

𝑊!"
(!)

𝑊""
(!)

𝑊!!
(")

𝑊!"
(")

1 1
𝑏!
(!)

𝑏"
(!)

𝑏!
(")

Backpropagation: Activation Functions
• Allow neural network to learn non-linear

functions
• Logistic (Sigmoid)

• 𝜎 𝑥 = !
!"#%&

• 𝜎′ 𝑥 = 𝜎 𝑥 (1 − 𝜎 𝑥)
• Rectified Linear Unit (ReLU)

• 𝜎 𝑥 = max(0, 𝑥)
• 𝜎′ 𝑥 = 0 if 𝑥 ≤ 0
• 𝜎′ 𝑥 = 1 if 𝑥 > 0
• Derivative undefined at zero but does not

matter in practice
• Activation functions can also be

parameterized and learned through
gradient descent

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830.

Adaptive
piecewise
linear units

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Neural Networks: Universal Function Approximation

• Given enough hidden units, neural networks can approximate any function with
arbitrary precision
• Cannot guarantee convergence

Backpropagation
• We do gradient descent via backpropagation

• Just the application of the chain rule

• 𝒉(") = 𝜎(𝑾(")𝒙)
• ℎ!

(#) = 𝜎(∑𝑊!%
(#)𝑥%)

• 𝑓 𝒙,𝒘 = 𝑾($)𝒉(") = +𝒚
• +𝑦& = ∑!𝑊&!

(')ℎ!
(#)

• 𝐸 𝒘 = "
$

𝒚 − +𝒚 $
$ = "

$
𝒆 $

$

• = #
'
∑& 𝑦& − +𝑦& ' =

#
'
∑& 𝑒&'

• ,- 𝐰
,/!"

($) =
,- 𝐰
,𝒆

,𝒆
,1𝒚

,1𝒚
,/!"

($) = − 𝑦3 − +𝑦3 ℎ4

• ,- 𝐰
,/"&

(') =
,- 𝐰
,𝒆

,𝒆
,1𝒚

,1𝒚
,𝒉(')

,𝒉(')

,/"&
(') = ∑3− 𝑦3 − +𝑦3 𝑊34

$ 𝜎′(∑𝑊46
(")𝑥6) 𝑥6

𝑥!

𝑥"

ℎ!
(!)

ℎ"
(!)

'𝑦!
𝑊!!

(!)

𝑊"!
(!)

𝑊!"
(!)

𝑊""
(!)

𝑊!!
(")

𝑊"!
(")

1 1
𝑏!
(!)

𝑏"
(!)

𝑏!
(")

'𝑦"

𝑏"
(")

𝑊!"
(")

𝑊""
(")

Neural Networks: Regression and Classification

Non-Linear

Linear

Classification Regression

Hyperparameters

• Parameters are learned from the data
• Hyperparameters are set before training
• Learning rate
• Defines how large the steps will be during gradient descent
• Usually denoted by 𝛼

• Number of neurons
• How “wide” the neural network is

• Many more!

Quick Quiz: What are the Best Hyperparameters?

𝛼 = 0.1, neurons = 1000

𝛼 = 0.1, neurons = 100

𝛼 = 0.25, neurons = 1000 𝛼 = 0.75, neurons = 1000

𝛼 = 0.25, neurons = 100 𝛼 = 0.75, neurons = 100

Machine Learning

• There are many different machine learning methods
• Linear models
• Deep neural networks
• Support vector machines
• Decision trees
• K-nearest neighbors

• The type of model to use depends on your data
• Deep learning is often the best out of these methods when the data
• High-dimensional
• Low-level
• Plentiful
• Has a non-linear relationship between the input and the output

Deep Neural Networks

Input

Output• Stack hidden layers to obtain a deep neural network
• “Deep learning allows computational models that

are composed of multiple processing layers to learn
representations of data with multiple levels of
abstraction.”

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

Deep Neural Networks

• There are a wide variety of
ways one can create a deep
neural network

Convolution and Pooling

• We can design neural networks to take
advantage of structured data, such as
images
• Convolution helps to add translation

invariance
• Strong inductive bias

• Pooling shrinks the representation,
allowing subsequent layers to focus on
higher-level information and have a
larger receptive field

Convolution and Pooling

Convolution and Pooling

• Was central to the breakthrough on
the Imagenet dataset

Deep Neural Networks

Layer 3

Layer 2

Layer 1

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009, June). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th annual ICML (pp. 609-616). ACM.

Overfitting/Regularization

• Training Dataset: Used to train neural network
• Validation Dataset: Not used to train neural network. Used to determine how

well neural network generalizes
• Test Dataset: Only for seeing the final performance of neural network. Not used

for training or validation.
Loss – Train: 0.042, Val: 0.35

DNN 5 hidden layers and 500
neurons per layer

Regularization: Weight Regularization

• Weight regularization
• 𝐸 𝒘 = "

$>
∑> || 𝒚> − +𝒚>||$$ + 𝜆∑?∑3∑4𝑊34

$

• Make the weights less “sensitive” to the input

Loss – Train: 0.12, Val: 0.29, 𝜆 = 0.01 Loss – Train: 0.18, Val: 0.26, 𝜆 = 0.05 Loss – Train: 0.70, Val: 0.77, 𝜆 = 0.2

Overfitting/Regularization: Dropout

• Dropout
• Randomly drop connections between

neurons during training

Loss – Train: 0.23, Val: 0.25, 𝑝 = 0.5 Loss – Train: 0.70, Val: 0.75, 𝑝 = 0.9

Regularization: Add More Data

• Harder to overfit if there is more data
• Collect more data
• Augment current data
• Rotations, flipping, translations
• Adding noise

Overfitting/Regularization

Validation Error

Unbalanced Datasets

• Some datasets have classes that are significantly overrepresented
• For example, I have many weather readings that were not followed by a hurricane and

only a few that were followed by a hurricane

• If the training data reflects this imbalance, the model can get good prediction
simply by being biased towards the overrepresented class
• Therefore, one must sample their training data so that it is balanced

Optimization: Loss Surface

• No longer convex
• Local minima
• Saddle points

Optimization: Gradient Based Methods

• Vanilla	Gradient	Descent
• 𝒘 = 𝒘− 𝛼∇𝐰E(𝐰)

• Gradient Descent with Momentum
• 𝒗 = 𝜇𝒗 + 𝛼∇𝐰E(𝐰)
• 𝒘 = 𝒘− 𝒗

• ADAM
• 𝒎 = 𝛽"𝒎+ (1 − 𝛽")(∇𝐰E 𝐰)$ //estimate of the mean of the gradients
• 𝒗 = 𝛽$𝒗 + (1 − 𝛽$)(∇𝐰E 𝐰)$ //estimate of the variance of the gradients
• +𝒎 and +𝒗 are bias corrected estimates of the mean and variance
• 𝒘 = 𝒘− C

1𝒗EF
+𝒎

• Many others: https://ruder.io/optimizing-gradient-descent/

https://ruder.io/optimizing-gradient-descent/

Optimization: Stochastic Gradient Descent

Data

Batch of Data
Compute

loss
Gradient
Descent

• There can be millions of datapoints
• Gradient descent will take too long

• Do gradient descent on random
subsets of the data, instead

Optimization: Stochastic Gradient Descent

Data

Batch of Data
Compute

loss
Gradient
Descent

Optimization: Stochastic Gradient Descent

Data

Batch of Data
Compute

loss
Gradient
Descent

Optimization: Residual Neural Networks
• Training can become more difficult as the number of layers increases
• Adding skip connections allows us to train networks with hundreds of layers

Loss surface

Optimization: Batch Normalization

• Normalizes	the	input	to	the	activation	function	to	have	a	of	mean	0	and	
standard	deviation	of	1
• Stabilizes	training
• Allows	larger	learning	rates	
• Reduces	importance	of	initialization

• 𝑯 = 𝜎(𝐵𝑁(𝑾𝑿))
• Adds some regularization

Optimization: Initialization

• The weights of the DNN are randomly initialized
• Initialization can play a large role in optimization
• Xavier/Glorot initialization is fairly common
• Initialization matters less when doing
• Batch normalization
• Weight normalization

What to Try?

• Activation Function
• Rectified Linear Units

• Gradient-Based Optimization
• SGD with momentum
• ADAM

• Convolution (for structured input like images or sound)
• Batch Normalization
• Residual Networks
• If overfitting?
• Weight regularization
• Dropout

• In higher layers first

Deep Learning/Machine Learning Demos

• https://p.migdal.pl/interactive-machine-learning-list/
• https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

https://p.migdal.pl/interactive-machine-learning-list/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

Relevant Papers
• Xavier/Glorot Init: Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training

deep feedforward neural networks." Proceedings of the thirteenth international conference
on artificial intelligence and statistics. 2010.
• SGD w/ Momentum: Sutskever, Ilya, et al. "On the importance of initialization and

momentum in deep learning." International conference on machine learning. 2013.
• Imagenet: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification

with deep convolutional neural networks." Advances in neural information processing
systems. 2012.
• ADAM: Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization."

arXiv preprint arXiv:1412.6980 (2014).
• Batch Normalization: Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating

deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167
(2015).
• Residual Networks: He, Kaiming, et al. "Deep residual learning for image recognition."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

