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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Linear regression
• Gradient descent

• Logistic regression (probabilistic classification)
• Gradient descent



Hypothesis Space

• It is important that the hypothesis space be 
appropriate for the task at hand
• For example, if the observations have a linear 

input/output relationship, it is best to use a linear 
model
• However, if the observations have a non-linear 

input/output relationship, then a linear model 
will provide a poor explanation of the data
• On the other hand, if your hypothesis space is too 

large, then you may learn unnecessarily 
complicated hypotheses

Linear Regression
• Limits model of input/output relationship to a line
• Learning a function # %, ( with parameters (also known as weights) (

• Linear model # = [&, (]
• # %,), * = )!% + * = ∑"-"." + *
• Example

• Yield of tomatoes as a function of health
• Amount of medicine to give patient as a function of medical state and history (may not be linear!)

Linear Models: Limitations

• Many interesting problems have a non-linear relationship between the inputs 
and outputs
• Linear models cannot handle these cases
• )* = sin(57) + >*



Regression and Classification

• Learn the relationship between the input 𝒙 ∈ ℝ! and output 𝒚 ∈ ℝ"
• 𝒚 = 𝑓(𝒙)

• The input 𝒙 is also known as the features or predictors
• Regression: 𝒚 is a continuous variable
• Classification: 𝒚 is a categorical variable



Linear Regression
• Limits model of input/output relationship to a line
• Learning a function 𝑓 𝒙, 𝜽 with parameters 𝜽

• Linear model 𝜽 = [𝒘, 𝑏]

• 𝑓 𝒙,𝒘, 𝑏 = 𝒘!𝒙 + 𝑏 = ∑"𝑤"𝑥" + 𝑏
• Examples (may not truly be linear!)

• Yield of tomatoes as a function of health
• Expression of a gene as a function of drug concentration



Linear Regression
• Assume 1 dimensional output
• Data

• Inputs: 𝒙!, … , 𝒙" where 𝒙# ∈ ℝ$×!
• Outputs: 𝑦!, … , 𝑦" where 𝑦# ∈ ℝ

• Data matrix
• 𝑿 ∈ ℝ"×$
• The 𝑖&' row contains example 𝒙#

• Vector of outputs
• 𝒚 ∈ ℝ"×!

• Parameters
• 𝒘 ∈ ℝ$×! (weights)
• 𝑏 ∈ ℝ (biases)

• Loss
• ℒ 𝜽 = ∑( 𝑦( − 𝑓 𝒙, 𝜽 )



Linear Regression: Analytical Solution

• ℒ 𝜽 = ∑* 𝑦* − 𝑓 𝒙, 𝜽
+
= ||𝑿𝒘 − 𝒚||++

• ∇𝜽ℒ 𝜽 = 2𝑿, 𝑿𝒘 − 𝒚 = 0
• 𝒘∗ = 𝑿,𝑿 ./𝑿,𝒚

• Say there is no analytical solution, what kind of problem can this be posed as?
• Optimization problem
• We can do something similar to hill-climbing search where we want to minimize the loss



Linear Regression: Gradient Descent

• ℒ 𝜽 = /
+*
∑* 𝑦* − 𝑓 𝒙, 𝜽

+

• Gradient – A vector of partial derivatives
• ∇𝜽ℒ 𝜽 = [$ℒ &

$&!
, … , $ℒ &

$&"#$
]

• 𝒘 = 𝒘− 𝛼∇𝜽ℒ(𝜽)
• Where 𝛼 is the learning rate
• This determines how big of a step we take in that direction



Gradient Descent: 1D Example

• One dimensional example
• ℒ 𝑤 = 𝑤+

• 0ℒ 2
02

= 2𝑤

Minimized

ℒ 𝑤

𝑤



Derivatives

• The rate of change of a function at an infinitesimally small 
point

• 03(5)
05

= lim
7→9

3 5:7 .3 5
7

• 05
05
= 1

• 0(5;)
05

= 𝑐

• 0;
05
= 0

• 0(3! 5 :3"(5))
05

= 03!(5)
05

+ 03"(5)
05

• 05
#

05
= 𝑛𝑥*./



Derivatives

• 0<=(5)
05

= /
5

• 0>
$

05
= 𝑎5 ln 𝑎

• 0?
$

05
= 𝑒5

• 0
05
𝑓/ 𝑥 𝑓+ 𝑥 = 𝑓/ 𝑥

0
05
𝑓+ 𝑥 + 𝑓+ 𝑥

0
05
𝑓/ 𝑥

• 0
05

3!(5)
3"(5)

=
3" 5 %

%$3! 5 .3!(5)
%
%$3" 5

3" 5 "

• 0
05

/
3(5)

= − /
3 5 "

0
05
𝑓 𝑥

• 0
05
𝜎 𝑥 = 0

05
/

/:?&𝒙
• 𝜎 𝑥 1 − 𝜎 𝑥 = 𝜎 𝑥 𝜎(−𝑥)



Derivatives: Chain Rule

• 𝑔 = 𝑢+

• 𝑢 = 𝑓 𝑥

• 0@
05
= 0@

0A
0A
05



Linear Regression: 1D with No Bias

• ℒ 𝑤 = /
+*
∑* 𝑦* −𝑤𝑥*

+

• What is 0ℒ 2
02

?

• 0ℒ 2
02

= − /
*
∑* 𝑦* −𝑤𝑥* 𝑥*

• 𝑦* = 3𝑥 + 𝜖*
• 𝜖* ∼ 𝒩 0,0.5
• 𝑓 𝑥* , 𝑤 = 𝑤𝑥*



Linear Regression: 1D with No Bias

• ℒ 𝑤 = /
+*
∑* 𝑦* −𝑤𝑥*

+

• 0ℒ 2
02

= − /
*
∑* 𝑦* −𝑤𝑥* 𝑥*

• 𝑤 = 𝑤 − 𝛼 0ℒ 2
02

• 𝑦* = 3𝑥 + 𝜖*
• 𝜖* ∼ 𝒩 0,0.5
• 𝑓 𝑥* , 𝑤 = 𝑤𝑥*

𝛼 = 1.0 𝛼 = 0.1 𝛼 = 5.0 𝛼 = 10.0



Linear Regression: 1D with Bias

• ℒ 𝑤, 𝑏 = /
+*
∑* 𝑦* − (𝑤𝑥* + 𝑏)

+

• What is 0ℒ 2,B
02

and 0ℒ 2,B
0B

?

• 0ℒ 2,B
02

= − /
*
∑* 𝑦* − (𝑤𝑥* + 𝑏) 𝑥*

• 0ℒ 2,B
0B

= − /
*
∑* 𝑦* − (𝑤𝑥* + 𝑏)

• 𝑦* = 3𝑥 + 3 + 𝜖*
• 𝜖* ∼ 𝒩 0,0.5
• 𝑓 𝑥* , 𝑤, 𝑏 = 𝑤𝑥* + 𝑏



Linear Regression: 1D with Bias
• ℒ 𝑤, 𝑏 = .

/0
∑0 𝑦0 − (𝑤𝑥0 + 𝑏)

/

• $ℒ 1,3
$1

= − .
0
∑0 𝑦0 − (𝑤𝑥0 + 𝑏) 𝑥0

• $ℒ 1,3
$3

= − .
0
∑0 𝑦0 − (𝑤𝑥0 + 𝑏)

• 𝑤 = 𝑤 − 𝛼 $ℒ 1,3
$1

• 𝑏 = 𝑏 − 𝛼 $ℒ 1,3
$3

• 𝑦* = 3𝑥 + 3 + 𝜖*
• 𝜖* ∼ 𝒩 0,0.5
• 𝑓 𝑥* , 𝑤, 𝑏 = 𝑤𝑥* + 𝑏

No bias 𝛼 = 0.5 Bias 𝛼 = 0.5



Binary Classification

• We would like to differentiate between 2 classes
• Dog/cat
• Disease/no disease
• Pedestrian/no pedestrian

• We are given an input vector 𝒙 and want to predict 𝑦
• Suppose we compute a value, 𝒘9

,𝒙, for class 0 and 𝒘/
,𝒙 for class 1

• One way to make decisions
• If 𝒘.!𝒙 > 𝒘4

!𝒙 then label this as class 1
• Otherwise, label as class 0



Binary Classification

• However, what if we are interested in probabilistic decisions?
• 𝑃 𝑦 = 1 𝒙
• 𝑃 𝑦 = 0 𝒙 = 1 − 𝑃 𝑦 = 1 𝒙

• If values are guaranteed to be positive and have a sum greater than zero, then 
we can obtain a probability by dividing each value by their sum
• Ensures normalized values are positive and sum to 1 (obeys the laws of probability)

• We can do this by exponentiating the values 𝒘,𝒙

• 𝑃 𝑦 = 1 𝒙 = 5𝒘$
&𝒙

5𝒘$
&𝒙65𝒘!

&𝒙
= .

.65 𝒘!(𝒘$ &𝒙
= .

.65(𝒘&𝒙

• This gives us the logistic function
• 𝜎 𝑎 = .

.65(𝒂



Derivative of Logistic Function
• Show

• !
!"𝜎 𝑥 = !

!"
#

#$%!" = 𝜎 𝑥 1 − 𝜎 𝑥 = 𝜎 𝑥 𝜎(−𝑥)

• 1 − 𝜎 𝑥 = 1 − #
#$%!" =

#$%!"

#$%!" −
#

#$%!" =
%!"

#$%!" =
#

#
$!"$#

= #
%"$#

• Using
• !
!"

#
&(")

= − #
& " %

!
!"
𝑓 𝑥

• !("))
!"

= 𝑐

• !%"

!"
= 𝑒"

• !)
!"
= 0

• !(&# " $&%("))
!"

= !&#(")
!"

+ !&%(")
!"

• $
$7

.
.65(𝒙 = − .

.65(* +
$
$7 1 + 𝑒8𝒙 = − .

.65(* +
$
$7 1 −

.
.65(* +

$
$7 𝑒

8𝒙

• = 5(𝒙

.65(* + =
.

.65(*
5(𝒙

.65(* = 𝜎 𝑥 1 − 𝜎 𝑥



Likelihood

• Likelihood:	the	joint	probability	of	the	observed	data	given	as	a	function	of	
the	parameters	of	a	statistical	model
• Observed	data:	((𝒙., 𝑦.),	(𝒙/, 𝑦/),…(𝒙:, 𝑦:))
• Parameters:	𝒘

• 𝑙 = ∏LM/
N 𝑃(𝑦L|𝒙L; 𝒘)

• 𝑃(𝑦L|𝒙L; 𝒘) if 𝑦L = 1
• .
.65(𝒘&𝒙

• 𝑃(𝑦L|𝒙L; 𝒘) if 𝑦L = 0
• 1 − .

.65(𝒘&𝒙



Maximum Likelihood

• We	would	like	to	find	𝐰 that	maximizes	the	likelihood	
• 𝑙 = ∏LM/

N 𝑃(𝑦L|𝒙L; 𝒘)
• For numerical stability, we take the log of the likelihood
• 𝑙𝑙 = ∑LM/N log 𝑃(𝑦L|𝒙L; 𝒘)
• = ∑LM/N yOlog 𝑃(𝑦L = 1|𝒙L; 𝒘) + (1 − yO)log(1−𝑃 𝑦L = 1 𝒙L; 𝒘 )

• = ∑LM/N yOlog(
/

/:?&𝒘)𝒙
) + (1 − yO)log(1−

/

/:?&𝒘)𝒙
)



Logistic Regression: Gradient Descent
• Because of the non-linearity, we cannot find an analytical solution as we did with linear 

regression
• Because we want to maximize the log-likelihood, we perform gradient descent on the 

negative log-likelihood

• 𝐿 𝒘 = − ∑";.: y< log 𝜎 𝒘!𝒙" + 1 − y< log 1−𝜎 𝒘!𝒙"
• $
$1,

𝑦 log 𝜎 𝒘!𝒙 + 1 − 𝑦 log 1−𝜎 𝒘!𝒙

• *
+ 𝒘&𝒙 𝜎 𝒘.𝒙 1 − 𝜎 𝒘.𝒙 − #/*

# / + 𝒘&𝒙 𝜎 𝒘.𝒙 1 − 𝜎 𝒘.𝒙 𝑥0

• *
+ 𝒘&𝒙

− #/*
# / + 𝒘&𝒙

𝜎 𝒘.𝒙 1 − 𝜎 𝒘.𝒙 𝑥0

• * # / + 𝒘&𝒙
+ 𝒘&𝒙 # / + 𝒘&𝒙

− + 𝒘&𝒙 #/*
+ 𝒘&𝒙 # / + 𝒘&𝒙

𝜎 𝒘.𝒙 1 − 𝜎 𝒘.𝒙 𝑥0
• 𝑦 − 𝑦𝜎 𝒘.𝒙 − 𝜎 𝒘.𝒙 + 𝑦𝜎 𝒘.𝒙 𝑥0
• 𝑦 − 𝜎 𝒘.𝒙 𝑥0

• $= 𝒘$1,
= −∑";.: 𝑦 − 𝜎 𝒘!𝒙 𝑥" =∑";.: 𝜎 𝒘!𝒙 − 𝑦 𝑥"



Logistic Regression: Gradient Descent

• The	input	is	two	dimensional
• 𝑃 𝑦 = 1 𝒙 = /

/:?&(+,$,-+!$!)

• No bias 𝑏
• We can plot the decision boundary 

between the positive and negative class 
as when 𝑤9𝑥9 +𝑤/𝑥/ is 0 
𝑃 𝑦 = 1 𝒙 = 0.5
• 𝑤4𝑥4 +𝑤.𝑥. = 0
• 𝑥. = −𝑤4𝑥4/𝑤.



Classes Cannot Always be Perfectly Separated

• In many real-world applications, the classes are not perfectly separated
• Data could be inherently noisy
• The predictors may not be informative enough
• The machine learning model may not be expressive enough
• The training algorithm used may not be appropriate

• What could happen if your data contains more of one class than another?
• For example, you want to learn if someone has a rare disease from medical tests
• Since most people do not have the disease, most examples are of people that do not have 

the disease



Balanced vs Unbalanced Data
• One should always ensure that they balance their datasets!

• Every gradient step can sample an equal number of states from each class
• Or weight the contributions to the loss for each class to account for data being unbalanced

• Is this enough?

Decision boundary 
with balanced data

Decision boundary 
with unbalanced data

𝑃 𝑦 = 1 𝒙 =
1

1 + 𝑒!(#!$!%#"$"%&)
Has bias 𝑏



Balanced vs Unbalanced Data

• Even if the classes themselves are balanced, there may be 
outliers within those classes
• If these are not explicitly accounted for, the model may 

ignore them entirely
• For example, a rare disease that affects older people much 

more than children

Outliers



Softmax Regression

• If we have more than two classes, we can generalize logistic regression

• We got the logistic function from this equation ?𝒘!
)𝒙

?𝒘!
)𝒙:?𝒘,

)𝒙

• If we have 𝐶 classes, the probability of class 𝑖 is ?𝒘/
)𝒙

∑01!
2 ?

𝒘0
)𝒙



Linear Models: Limitations

• Many interesting problems have a non-linear relationship between the inputs 
and outputs
• Linear models cannot handle these cases


