AI

Machine Learning: Linear Models

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

- Part 1: Search
- Pathfinding
- Uninformed search
- Informed search
- Adversarial search
- Optimization
- Local search
- Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
- Propositional logic
- First-order logic
- Prolog
- Part 3: Knowledge Representation and Reasoning Under Uncertainty
- Probability
- Bayesian networks

- Part 4: Machine Learning

- Supervised learning
- Inductive logic programming
- Linear models
- Deep neural networks
- PyTorch
- Reinforcement learning
- Markov decision processes
- Dynamic programming
- Model-free RL
- Unsupervised learning
- Clustering
- Autoencoders

Outline

- Linear regression
- Gradient descent
- Logistic regression (probabilistic classification)
- Gradient descent

Hypothesis Space

- It is important that the hypothesis space be appropriate for the task at hand
- For example, if the observations have a linear input/output relationship, it is best to use a linear model

- However, if the observations have a non-linear input/output relationship, then a linear model will provide a poor explanation of the data
- On the other hand, if your hypothesis space is too large, then you may learn unnecessarily

Underfitting

Desired

Overfitting complicated hypotheses

Regression and Classification

- Learn the relationship between the input $\boldsymbol{x} \in \mathbb{R}^{p}$ and output $\boldsymbol{y} \in \mathbb{R}^{q}$
- $\boldsymbol{y}=f(\boldsymbol{x})$
- The input \boldsymbol{x} is also known as the features or predictors
- Regression: \boldsymbol{y} is a continuous variable
- Classification: \boldsymbol{y} is a categorical variable

Linear Regression

- Limits model of input/output relationship to a line
- Learning a function $f(\boldsymbol{x}, \boldsymbol{\theta})$ with parameters $\boldsymbol{\theta}$
- Linear model $\boldsymbol{\theta}=[\boldsymbol{w}, b]$
- $f(\boldsymbol{x}, \boldsymbol{w}, b)=\boldsymbol{w}^{T} \boldsymbol{x}+b=\sum_{i} w_{i} x_{i}+b$
- Examples (may not truly be linear!)
- Yield of tomatoes as a function of health
- Expression of a gene as a function of drug concentration

Linear Regression

- Assume 1 dimensional output
- Data
- Inputs: $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$ where $\boldsymbol{x}_{i} \in \mathbb{R}^{p \times 1}$
- Outputs: y_{1}, \ldots, y_{N} where $y_{i} \in \mathbb{R}$
- Data matrix
- $\boldsymbol{X} \in \mathbb{R}^{N \times p}$
- The $i^{\text {th }}$ row contains example \boldsymbol{x}_{i}
- Vector of outputs
- $\boldsymbol{y} \in \mathbb{R}^{N \times 1}$
- Parameters
- w $\in \mathbb{R}^{p \times 1}$ (weights)
- $b \in \mathbb{R}$ (biases)
- Loss
- $\mathcal{L}(\boldsymbol{\theta})=\sum_{n}\left(y_{n}-f(\boldsymbol{x}, \boldsymbol{\theta})\right)^{2}$

Linear Regression: Analytical Solution

- $\mathcal{L}(\boldsymbol{\theta})=\sum_{n}\left(y_{n}-f(\boldsymbol{x}, \boldsymbol{\theta})\right)^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}$
- $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})=2 \boldsymbol{X}^{T}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y})=0$
- $\boldsymbol{w}^{*}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$
- Say there is no analytical solution, what kind of problem can this be posed as?
- Optimization problem
- We can do something similar to hill-climbing search where we want to minimize the loss

Linear Regression: Gradient Descent

- $\mathcal{L}(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{n}\left(y_{n}-f(\boldsymbol{x}, \boldsymbol{\theta})\right)^{2}$
- Gradient - A vector of partial derivatives
- $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})=\left[\frac{\partial \mathcal{L}(\theta)}{\partial \theta_{0}}, \ldots, \frac{\partial \mathcal{L}(\theta)}{\partial \theta_{p+1}}\right]$
- $\boldsymbol{w}=\boldsymbol{w}-\alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$
- Where α is the learning rate
- This determines how big of a step we take in that direction

Gradient Descent: 1D Example

- One dimensional example
- $\mathcal{L}(w)=w^{2}$
- $\frac{\partial \mathcal{L}(w)}{\partial w}=2 w$

Derivatives

- The rate of change of a function at an infinitesimally small point
- $\frac{\partial f(x)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $\frac{\partial x}{\partial x}=1$
- $\frac{\partial(x c)}{\partial x}=c$
- $\frac{\partial c}{\partial x}=0$
- $\frac{\partial\left(f_{1}(x)+f_{2}(x)\right)}{\partial x}=\frac{\partial f_{1}(x)}{\partial x}+\frac{\partial f_{2}(x)}{\partial x}$
- $\frac{\partial x^{n}}{\partial x}=n x^{n-1}$

Derivatives

$$
\begin{aligned}
& \text { - } \frac{\partial \ln (x)}{\partial x}=\frac{1}{x} \\
& \text { - } \frac{\partial a^{x}}{\partial x}=a^{x} \ln a \\
& \text { - } \frac{\partial e^{x}}{\partial x}=e^{x} \\
& \text { - } \frac{\partial}{\partial x} f_{1}(x) f_{2}(x)=f_{1}(x) \frac{\partial}{\partial x} f_{2}(x)+f_{2}(x) \frac{\partial}{\partial x} f_{1}(x) \\
& \text { - } \frac{\partial}{\partial x} \frac{f_{1}(x)}{f_{2}(x)}=\frac{f_{2}(x) \frac{\partial}{\partial x} f_{1}(x)-f_{1}(x) \frac{\partial}{\partial x} f_{2}(x)}{f_{2}(x)^{2}} \\
& \text { - } \frac{\partial}{\partial x} \frac{1}{f(x)}=-\frac{1}{f(x)^{2}} \frac{\partial}{\partial x} f(x) \\
& \text { - } \frac{\partial}{\partial x} \sigma(x)=\frac{\partial}{\partial x} \frac{1}{1+e^{-x}} \\
& \cdot \sigma(x)(1-\sigma(x))=\sigma(x) \sigma(-x)
\end{aligned}
$$

Derivatives: Chain Rule

- $g=u^{2}$
- $u=f(x)$
- $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial u} \frac{\partial u}{\partial x}$

Linear Regression: 1D with No Bias

$$
\begin{aligned}
& \text { - } y_{n}=3 x+\epsilon_{n} \\
& \text { - } \epsilon_{n} \sim \mathcal{N}(0,0.5) \\
& \text { - } f\left(x_{n}, w\right)=w x_{n}
\end{aligned}
$$

- $\mathcal{L}(w)=\frac{1}{2 n} \sum_{n}\left(y_{n}-w x_{n}\right)^{2}$
- What is $\frac{\partial \mathcal{L}(w)}{\partial w}$?

$$
\text { - } \frac{\partial \mathcal{L}(w)}{\partial w}=-\frac{1}{n} \sum_{n}\left(y_{n}-w x_{n}\right) x_{n}
$$

Linear Regression: 1D with No Bias

- $y_{n}=3 x+\epsilon_{n}$
- $\epsilon_{n} \sim \mathcal{N}(0,0.5)$
- $f\left(x_{n}, w\right)=w x_{n}$
- $\mathcal{L}(w)=\frac{1}{2 n} \sum_{n}\left(y_{n}-w x_{n}\right)^{2}$
- $\frac{\partial \mathcal{L}(w)}{\partial w}=-\frac{1}{n} \sum_{n}\left(y_{n}-w x_{n}\right) x_{n}$
- $w=w-\alpha \frac{\partial \mathcal{L}(w)}{\partial w}$

$$
\alpha=1.0
$$

$$
\alpha=0.1
$$

$\alpha=5.0$

$\alpha=10.0$

Linear Regression: 1D with Bias

$$
\begin{aligned}
\text { - } y_{n}=3 x+3+\epsilon_{n} & -\mathcal{L}(w, b)=\frac{1}{2 n} \sum_{n}\left(y_{n}-\left(w x_{n}+b\right)\right)^{2} \\
\text { - } \epsilon_{n} \sim \mathcal{N}(0,0.5) & \text { - What is } \frac{\partial \mathcal{L}(w, b)}{\partial w} \text { and } \frac{\partial \mathcal{L}(w, b)}{\partial b} \text { ? } \\
\text { - } f\left(x_{n}, w, b\right)=w x_{n}+b & \text { • } \frac{\partial \mathcal{L}(w, b)}{\partial w}=-\frac{1}{n} \sum_{n}\left(y_{n}-\left(w x_{n}+b\right)\right) x_{n} \\
& \text { • } \frac{\partial \mathcal{L}(w, b)}{\partial b}=-\frac{1}{n} \sum_{n}\left(y_{n}-\left(w x_{n}+b\right)\right)
\end{aligned}
$$

Linear Regression: 1D with Bias

$$
\begin{aligned}
& \text { - } y_{n}=3 x+3+\epsilon_{n} \\
& \text { - } \epsilon_{n} \sim \mathcal{N}(0,0.5) \\
& \text { - } f\left(x_{n}, w, b\right)=w x_{n}+b
\end{aligned}
$$

$$
\cdot \mathcal{L}(w, b)=\frac{1}{2 n} \sum_{n}\left(y_{n}-\left(w x_{n}+b\right)\right)^{2}
$$

$$
\cdot \frac{\partial \mathcal{L}(w, b)}{\partial w}=-\frac{1}{n} \sum_{n}\left(y_{n}-\left(w x_{n}+b\right)\right) x_{n}
$$

$$
\text { - } \frac{\partial \mathcal{L}(w, b)}{\partial b}=-\frac{1}{n} \sum_{n}\left(y_{n}-\left(w x_{n}+b\right)\right)
$$

$$
\cdot w=w-\alpha \frac{\partial \mathcal{L}(w, b)}{\partial w}
$$

$$
\cdot b=b-\alpha \frac{\partial \mathcal{L}(w, b)}{\partial b}
$$

Binary Classification

- We would like to differentiate between 2 classes
- Dog/cat
- Disease/no disease
- Pedestrian/no pedestrian
- We are given an input vector \boldsymbol{x} and want to predict \boldsymbol{y}
- Suppose we compute a value, $\boldsymbol{w}_{0}^{T} \boldsymbol{x}$, for class 0 and $\boldsymbol{w}_{1}^{T} \boldsymbol{x}$ for class 1
- One way to make decisions
- If $\boldsymbol{w}_{1}^{T} \boldsymbol{x}>\boldsymbol{w}_{0}^{T} \boldsymbol{x}$ then label this as class 1
- Otherwise, label as class 0

Binary Classification

- However, what if we are interested in probabilistic decisions?
- $P(y=1 \mid x)$
- $P(y=0 \mid x)=1-P(y=1 \mid x)$
- If values are guaranteed to be positive and have a sum greater than zero, then we can obtain a probability by dividing each value by their sum
- Ensures normalized values are positive and sum to 1 (obeys the laws of probability)
- We can do this by exponentiating the values $\boldsymbol{w}^{T} \boldsymbol{x}$
- $P(y=1 \mid x)=\frac{e^{w_{1}^{T} x}}{e^{w_{1}^{T} x}+e^{w_{0}^{T} x}}=\frac{1}{1+e^{\left(w_{0}-w_{1}\right)^{T} x}}=\frac{1}{1+e^{-w^{T} x}}$
- This gives us the logistic function
- $\sigma(a)=\frac{1}{1+e^{-a}}$

Derivative of Logistic Function

- Show
- $\frac{\partial}{\partial x} \sigma(x)=\frac{\partial}{\partial x} \frac{1}{1+e^{-x}}=\sigma(x)(1-\sigma(x))=\sigma(x) \sigma(-x)$
- $1-\sigma(x)=1-\frac{1}{1+e^{-x}}=\frac{1+e^{-x}}{1+e^{-x}}-\frac{1}{1+e^{-x}}=\frac{e^{-x}}{1+e^{-x}}=\frac{1}{\frac{1}{e^{-x}+1}}=\frac{1}{e^{x}+1}$
- Using
- $\frac{\partial}{\partial x} \frac{1}{f(x)}=-\frac{1}{f(x)^{2}} \frac{\partial}{\partial x} f(x)$
- $\frac{\partial(x c)}{\partial x}=c$
- $\frac{\partial e^{x}}{\partial x}=e^{x}$
- $\frac{\partial c}{\partial x}=0$
- $\frac{\partial\left(f_{1}(x)+f_{2}(x)\right)}{\partial x}=\frac{\partial f_{1}(x)}{\partial x}+\frac{\partial f_{2}(x)}{\partial x}$
- $\frac{\partial}{\partial x} \frac{1}{1+e^{-x}}=-\frac{1}{\left(1+e^{-x}\right)^{2}} \frac{\partial}{\partial x}\left(1+e^{-x}\right)=-\frac{1}{\left(1+e^{-x}\right)^{2}} \frac{\partial}{\partial x} 1-\frac{1}{\left(1+e^{-x}\right)^{2}} \frac{\partial}{\partial x} e^{-x}$
- $=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\frac{1}{\left(1+e^{-x}\right)} \frac{e^{-x}}{\left(1+e^{-x}\right)}=\sigma(x)(1-\sigma(x))$

Likelihood

- Likelihood: the joint probability of the observed data given as a function of the parameters of a statistical model
- Observed data: $\left(\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots\left(\boldsymbol{x}_{N}, y_{N}\right)\right)$
- Parameters: \boldsymbol{w}
- $l=\prod_{i=1}^{N} P\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)$
- $P\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)$ if $y_{i}=1$
$\cdot \frac{1}{1+e^{-w^{T}}}$
- $P\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)$ if $y_{i}=0$
- $1-\frac{1}{1+e^{-w^{T} x}}$

Maximum Likelihood

- We would like to find \mathbf{w} that maximizes the likelihood
- $l=\prod_{i=1}^{N} P\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)$
- For numerical stability, we take the log of the likelihood
- $l l=\sum_{i=1}^{N} \log P\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)$
$\cdot=\sum_{i=1}^{N} \mathrm{y}_{\mathrm{i}} \log P\left(y_{i}=1 \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)+\left(1-\mathrm{y}_{\mathrm{i}}\right) \log \left(1-P\left(y_{i}=1 \mid \boldsymbol{x}_{i} ; \boldsymbol{w}\right)\right)$
$\cdot=\sum_{i=1}^{N} \mathrm{y}_{\mathrm{i}} \log \left(\frac{1}{1+e^{-w^{T}}}\right)+\left(1-\mathrm{y}_{\mathrm{i}}\right) \log \left(1-\frac{1}{1+e^{-w^{T} x}}\right)$

Logistic Regression: Gradient Descent

- Because of the non-linearity, we cannot find an analytical solution as we did with linear regression
- Because we want to maximize the log-likelihood, we perform gradient descent on the negative log-likelihood
- $L(\boldsymbol{w})=-\left(\sum_{i=1}^{N} \mathrm{y}_{\mathrm{i}} \log \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)+\left(1-\mathrm{y}_{\mathrm{i}}\right) \log \left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)\right)\right)$
- $\frac{\partial}{\partial w_{i}}\left(y \log \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)+(1-y) \log \left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right)\right)$
- $\left(\frac{y}{\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)} \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right)-\frac{1-y}{1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)} \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right) x_{i}\right.$
- $\left(\frac{y}{\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)}-\frac{1-y}{1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)}\right) \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right) x_{i}$
- $\left(\frac{y\left(1-\sigma\left(\boldsymbol{w}^{T} x\right)\right)}{\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right)}-\frac{\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)(1-y)}{\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\left(1-\sigma\left(\boldsymbol{w}^{T} x\right)\right)}\right) \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right) x_{i}$
- $\left(y-y \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)+y \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right) x_{i}$
- $\left(y-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right) x_{i}$
- $\frac{\partial L(\boldsymbol{w})}{\partial w_{i}}=-\sum_{i=1}^{N}\left(y-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right) x_{i}=\sum_{i=1}^{N}\left(\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)-y\right) x_{i}$

Logistic Regression: Gradient Descent

- The input is two dimensional
- $P(y=1 \mid x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}\right)}}$
- No bias b
- We can plot the decision boundary between the positive and negative class as when $w_{0} x_{0}+w_{1} x_{1}$ is 0 $P(y=1 \mid \boldsymbol{x})=0.5$
- $w_{0} x_{0}+w_{1} x_{1}=0$
- $x_{1}=-w_{0} x_{0} / w_{1}$

Classes Cannot Always be Perfectly Separated

- In many real-world applications, the classes are not perfectly separated
- Data could be inherently noisy
- The predictors may not be informative enough
- The machine learning model may not be expressive enough
- The training algorithm used may not be appropriate
- What could happen if your data contains more of one class than another?
- For example, you want to learn if someone has a rare disease from medical tests
- Since most people do not have the disease, most examples are of people that do not have the disease

Balanced vs Unbalanced Data

- One should always ensure that they balance their datasets!
- Every gradient step can sample an equal number of states from each class
- Or weight the contributions to the loss for each class to account for data being unbalanced
- Is this enough?

Decision boundary
with balanced data

Decision boundary with unbalanced data

Balanced vs Unbalanced Data

- Even if the classes themselves are balanced, there may be outliers within those classes
- If these are not explicitly accounted for, the model may ignore them entirely
- For example, a rare disease that affects older people much more than children

Softmax Regression

- If we have more than two classes, we can generalize logistic regression
- We got the logistic function from this equation $\frac{e^{w_{1}^{T} x}}{e^{w_{1}^{T} x}+e^{w_{0}^{T} x}}$
- If we have C classes, the probability of class i is $\frac{e^{w_{i}^{T} x}}{\sum_{j=1}^{C} e^{w_{j}^{T} x}}$

Linear Models: Limitations

- Many interesting problems have a non-linear relationship between the inputs and outputs
- Linear models cannot handle these cases

