
Machine Learning: Inductive Logic
Programming

Forest Agostinelli
University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Outline

• Machine learning
• Logical inference
• Inductive logic programming
• Theta-subsumption
• Inductive bias

Machine Learning

• An agent improves its performance after making observations about the world
• Supervised learning
• Learn a function that maps inputs to outputs from input and output pairs. Outputs are

often referred to as labels.

• Reinforcement learning
• The agent learns from feedback from the environment in the form of rewards. Rewards

are often delayed and the agent must determine how to modify its actions to obtain more
reward.

• Unsupervised learning
• The agent learns patterns in the input without any explicit feedback

Machine Learning: Supervised Learning

Chemical reaction prediction Exotic particle detection
Image classification

Protein folding Protein folding

Machine Learning Examples: Reinforcement Learning

Beat humans in Go Solve the Rubik’s cubePlay Video Games Robotics

Machine Learning: Unsupervised Learning

Finding patterns in digits Finding patterns in natural language

ML Classes at the University of South Carolina

• Machine learning (Prof Jianjun Hu)
• Machine learning systems (Prof. Pooyan Jamshidi)
• Natural language processing (Prof. Biplav Srivastava)
• Deep reinforcement learning (Prof. Forest Agostinelli and Prof. Qi Zhang)
• One day soon: Deep learning

Supervised Learning

• We would like to come up with a hypothesis to explain some observations
• Each observation can be thought of as having some input and output
• Images -> labels
• Protein -> 3D structure
• Logical statements -> true/false

• We may need to consider many different hypotheses to come up with a good
explanation
• We still may not find a hypothesis that explains all the observations
• The types of hypotheses that we can learn are determined by the hypothesis

space

Hypothesis Space

• The space of all possible hypotheses
• The hypothesis space for inductive logic programming could be all logical

statements made up of a given set of predicates
• This is often further restricted to definite clauses

• The hypothesis space for linear models is all possible lines
• The hypothesis space for neural networks is determined by its architecture and

can theoretically approximate any function

Hypothesis Space

• It is important that the hypothesis space be
appropriate for the task at hand
• For example, if the observations are have a linear

input/output relationship, it is best to use a linear
model
• However, if the observations have a non-linear

input/output relationship, then a linear model
will provide a poor explanation of the data
• On the other hand, if your hypothesis space is too

large, then you may learn unnecessarily
complicated hypotheses

Linear Regression
• Limits model of input/output relationship to a line
• Learning a function # %, (with parameters (also known as weights) (

• Linear model # = [&, (]
• # %,), * =)!% + * = ∑"-"." + *
• Example

• Yield of tomatoes as a function of health
• Amount of medicine to give patient as a function of medical state and history (may not be linear!)

Linear Models: Limitations

• Many interesting problems have a non-linear relationship between the inputs
and outputs
• Linear models cannot handle these cases
•)* = sin(57) + >*

Outline

• Machine learning
• Logical inference
• Inductive logic programming
• Theta-subsumption
• Inductive bias

Logical Inference: Deduction

• white(X):- polar_bear(X)
• polar_bear(thorton)

• We can use the aforementioned logical rule that all polar bears are white to
deduce
• white(thorton)

• If the given background knowledge is true, then our inferred sentence is
guaranteed to be true

Logical Inference: Abduction
• white(X):- polar_bear(X)
• white(X):- swan(X)
• white(thorton)

• We can use the aforementioned rules in the opposite direction as deduction
(from head to body) to abduce
• polar_bear(thorton)
• -or-
• swan(thorton)

• Both of the aforementioned literals explain the observation
white(thorton)
• This process is not truth-preserving like deduction

Logical Inference: Induction

• white(thorton)
• polar_bear(thorton)

• We can use the aforementioned observations to induce a rule
• polar_bear(X):- white(X)
• white(X):- polar_bear(X)

• Both of these rules explain our observations
• This process is not truth-preserving like deduction

Logical Inference: Induction

• white(thorton)
• polar_bear(thorton)
• white(sam)
• swan(sam)

• Given theses additional observations, this would eliminate the possible rule
• polar_bear(X):- white(X)

• However, this rule still explains our observations about thorton
• white(X):- polar_bear(X)

Outline

• Machine learning
• Logical inference
• Inductive logic programming
• Theta-subsumption
• Inductive bias

Inductive Logic Programming

• In inductive logic programming, we seek to learn a hypothesis in the form of an
implication. Example in prolog:
• h(X) :- b1(X), b2(X), b3(X).
• h(X) :- b4(X), \+ b5(X).

• The predicate defining the hypothesis is in the head (consequent) and the
hypothesis space determines what can go in the body (antecedent)
• For example, if we want to learn about chemical reactions, we would need

predicates related to atoms, bonds, charge, etc.

Inductive Logic Programming (ILP)

• Given some examples (can be positive or negative) and some background
knowledge, find a logic program (hypothesis) that explains the examples
• The hypothesis should entail all positive examples and should not entail any

negative examples

ILP: Example
• Given this background knowledge, what is a hypothesis that, together with the background

knowledge, entails all positive examples and no negative examples?

• Available predicates
• happy
• lego_builder
• estate_agent
• enjoys_lego

ILP: Example

• Background knowledge
• animal(X):- dog(X)
• animal(X):- cat(X)
• dog(fido). dog(spot). dog(rover).
• cat(kitty). cat(kelly).
• duck(donald). duck(daffy). duck(huey).

• Positive examples
• barks(fido)

• Negative examples
• None

• Hypothesis
• barks(X):- animal(X)

ILP: Example

• Background knowledge
• animal(X):- dog(X)
• animal(X):- cat(X)
• dog(fido). dog(spot). dog(rover).
• cat(kitty). cat(kelly).
• duck(donald). duck(daffy). duck(huey).

• Positive examples
• barks(fido). barks(spot).

• Negative examples
• barks(kitty). barks(donald).

• Hypothesis
• barks(X):- dog(X)

ILP: Example
• Background knowledge

• animal(X):- dog(X)
• animal(X):- cat(X)
• dog(fido). dog(spot). dog(rover).
• cat(kitty). cat(kelly).
• duck(donald). duck(daffy). duck(huey).

• Positive examples
• four_legged(fido). four_legged(kitty).

• Negative examples
• four_legged(daffy). four_legged(tree17).

• Hypothesis
• four_legged(X):- animal(X), \+ duck(X).

• Hypothesis (if only definite clauses are allowed)
• four_legged(X):- dog(X).
• four_legged(X):- cat(X).

Automatic Induction of Logic Programs

• We would like a domain-independent method of learning a logic program given
background knowledge, positive examples, and negative examples
• Furthermore, we are interested in finding optimal programs
• In this context, a program is optimal if it uses the fewest literals possible

• For simplicity, let us assume all programs are definite clauses
• h(X) :- b1(X), b2(X), b3(X).
• Only positive literals in the body

• Also, let us assume that we need only a single clause
• What is an algorithm that is guaranteed to find an optimal program?
• We can do a breadth first search and, for each program, check whether or not it meets

our criteria

Outline

• Machine learning
• Logical inference
• Inductive logic programming
• Theta-subsumption
• Inductive bias

The Generality Relation
• We can order hypotheses according to their generality
• Suppose we have hypotheses H1 and H2 with a single predicate, h, in the head
• H1 = h(Y) :- b1(Y)
• H2 = h(X) :- b1(X), b2(X)

• Then, H1 is more general than H2 if, for every object o, if H1∪ B entails h(o),
then H2∪B entails h(o)
• In other words, the objects entailed by H1 is a superset of the objects entailed by H2

• Using this relationship, we can prune our search space
• If H entails a negative example, then all generalizations of H will also entail that

negative example
• If H does not entail a positive example, then no specializations of H will entail

that positive example

Theta-Subsumption

• Using entailment to compute the generality relation can present problems in
practice
• Undecidable
• Even if decidable, can be computationally expensive

• We can use a weaker generality relation, namely, theta-subsumption, to
compute generality
• Decidable
• Computationally faster than entailment
• Still NP-complete

• If H1 theta-subsumes H2, then H1 entails H2
• However, if H1 entails H2, then it does not necessarily follow that H1 theta-

subsumes H2

Theta-Subsumption

• When limiting hypotheses to a single clause, H1 theta-subsumes H2 if and only
if there exists some substitution 𝛉 to H1 such that H1𝛉 ⊆ H2
• Example
• H1 = h(Y) :- b1(Y)
• H2 = h(X) :- b1(X), b2(X)
• H1𝛉 ⊆ H2 with 𝛉={Y/X}

• The theta-subsumption relationship forms a lattice
• This lattice can then be used to direct search and prune the search space

Theta-Subsumption Lattice
• Breadth-first search: “expand” returns all children in the lattice
• We can prune the search space once we fail to entail a positive example

Breadth-First Search (General to Specific)
• Background Knowledge

• lifts(jordan). sleeps_well(jordan). funny(jordan).
• lifts(sally). sleeps_well(sally). eats_well(sally).
• sleeps_well(bob). eats_wells(bob).
• lifts(sue). eats_well(sue). funny(sue).

• Positive Examples
• strong(sally).

• Negative Examples
• strong(jordan). strong(bob). strong(sue).

Breadth-First Search (General to Specific)
• Background Knowledge

• lifts(jordan).
sleeps_well(jordan).
funny(jordan).

• lifts(sally).
sleeps_well(sally).
eats_well(sally).

• sleeps_well(bob).
eats_wells(bob).

• lifts(sue).
eats_well(sue).
funny(sue).

• Positive Examples
• strong(sally).

• Negative Examples
• strong(jordan).
strong(bob).
strong(sue).

strong(X)
{sally, jordan, bob, sue}

strong(X):- lifts(X)
{jordan, sally, sue}

strong(X):- sleeps_well(X)
{jordan, sally, bob}

strong(X):- eats_well(X)
{sally, bob, sue}

strong(X):- funny(X)
{jordan, sue}

Prune
specializations!

Heuristic Search
• Background Knowledge

• lifts(jordan).
sleeps_well(jordan).
funny(jordan).

• lifts(sally).
sleeps_well(sally).
eats_well(sally).

• sleeps_well(bob).
eats_wells(bob).

• lifts(sue).
eats_well(sue).
funny(sue).

• Positive Examples
• strong(sally).

• Negative Examples
• strong(jordan).
strong(bob).
strong(sue).

strong(X)
{sally, jordan, bob, sue}

strong(X):- lifts(X)
{jordan, sally, sue}

strong(X):- lifts(X),funny(X)
{jordan, sue}

strong(X):- eats_well(X)
{jordan, sally, bob}

strong(X):- lifts(X),sleeps_well(X)
{jordan, sally}

strong(X):- funny(X)
{jordan, sue}

strong(X):- lifts(X), sleeps_well(X), eats_well
{sally}

Outline

• Machine learning
• Logical inference
• Inductive logic programming
• Theta-subsumption
• Inductive bias

Inductive Bias

• We can significantly reduce the search space by encoding knowledge about the
form we think a hypothesis should or should not take
• This can greatly speed up search and result in hypotheses that are easier for

humans to understand
• However, if we are not careful, we can accidentally remove valid hypotheses

from consideration and, perhaps, this may result in us not finding a solution at
all
• One can think of convolution and weight regularization as a form of an inductive

bias

Inductive Bias
• There are many hypotheses that we

already know are not going to work
• We can explicitly ban these by requiring

no hypothesis be theta-subsumed by
these programs
• h(X):- dog(X),cat(X)
• h(X):- duck(X),cat(X)
• h(X):- cheetah(X),cat(X)
• …

• If we have access to higher-order logic,
we can ban all combinations in one
higher-order constraint
• h(X):- P1(X),P2(X),type(P1,
animal), type(P2,animal), P1
\= P2

• Background knowledge
• animal(X):- dog(X)
• animal(X):- cat(X)
• animal(X):- duck(X)
• animal(X):- cheetah(X)
• animal(X):- lion(X)
• animal(X):- duck(X)
• dog(fido). dog(spot). dog(rover).
• cat(kitty). bony_hyoid(kitty).
• cheetah(speedy). bony_hyoid(speedy)
• duck(donald). duck(daffy).
duck(huey).

• lion(simba)
• Positive examples

• purrs(speedy). purrs(kitty).
• Negative examples

• purrs(simba). purrs(rover).
purrs(spot).

Inductive Bias

• There are systems that propositionalize the ILP problem and solve it using a SAT solver
• Popper (Cropper et. al)
• ILASP (Law et. al)

• This formulation often allows for very robust inductive biases

Summary

• We wish to find a hypothesis that, along with the background knowledge,
entails all positive examples and does not entail any negative examples
• Using theta-subsumption, we can order the hypothesis space to guide our

search for a hypothesis
• Inductive biases can be used to prune the hypothesis space before the induction

process begins

References

• Cropper, Andrew, and Rolf Morel. "Learning programs by learning from failures."
Machine Learning 110.4 (2021): 801-856.
• Cropper, Andrew, and Sebastijan Dumančić. "Inductive logic programming at 30:

a new introduction." Journal of Artificial Intelligence Research 74 (2022): 765-
850.
• Law, Mark, Alessandra Russo, and Krysia Broda. "Inductive learning of answer

set programs." European Workshop on Logics in Artificial Intelligence. Springer,
Cham, 2014.
• Turcotte, Marcel, Stephen H. Muggleton, and Michael JE Sternberg. "The effect

of relational background knowledge on learning of protein three-dimensional
fold signatures." Machine Learning 43.1 (2001): 81-95.

