

Bayesian Networks: Independence

Forest Agostinelli University of South Carolina

Topics Covered in This Class

• Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

- Chains
- Common cause
- Common effect
- D-Separation examples

Bayesian Networks: Independence

- Bayesian Networks make the assumption that a variable is independent of its non-descendents given its parents
- This induces other conditional independence assumptions
- We can understand these assumptions by looking at the graph structure
- Understanding these conditional independencies will help us design our Bayesian Network

Notation

- X and Y are independent
 - $X \perp Y$
 - P(X,Y) = P(X)P(Y)
- X and Y are conditionally independent given Z
 - $X \perp Y | Z$
 - P(X,Y|Z) = P(X|Z)P(Y|Z)
- ${\ensuremath{\cdot}}$ W is conditionally independent of X and Y given Z
 - $W \perp \{X, Y\}|Z$
 - P(W, X|Z) = P(W|Z)P(X|Z)
 - P(W,Y|Z) = P(W|Z)P(Y|Z)

Independence Example

- Conditional independence assumptions directly from simplifications in chain rule:
 - P(X, Y, Z, W) = P(X)P(Y|X)P(Z|X, Y)P(W|X, Y, Z)
 - P(X, Y, Z, W) = P(X)P(Y|X)P(Z|Y)P(W|Z)
- Conditional independence assumptions
 - $Z \perp X | Y$
 - $W \perp \{X, Y\}|Z$
- Additional implied conditional independence assumptions?
 - $W \perp X | Y$

Independence in Bayesian Networks

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example of conditional probability tables (CPTs)
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?
 - We can write the conditional probability tables so that they actually are independent. However, they are not *guaranteed* to be independent

Examining Triples

• We will later use D-separation to show whether any two variables X_i and X_j are guaranteed to be conditionally independent given X_{k_1}, \dots, X_{k_n}

$$X_i \perp X_j | \{ X_{k_1}, \dots, X_{k_n} \}$$

- This will involve examining triples of nodes that are connected via an undirected path (the network still must be a DAG)
- This can simplify our computation as we only have to know independence regarding all possible combinations of triples
 - Chains

Common cause

Common effect

Structure of Proofs

- X and Y are independent
 - if and only if P(X, Y) = P(X)P(Y)
 - if and only if P(X|Y) = P(X)
 - if and only if P(Y|X) = P(Y)
- X and Y are conditionally independent given Z
 - if and only if P(X, Y|Z) = P(X|Z)P(Y|Z)
 - if and only if P(X|Y,Z) = P(X|Z)
 - if and only if P(Y|X,Z) = P(Y|Z)
- Therefore, if we can show that any of these relationships hold, we can prove independence
- However, if can give a counterexample, meaning a set of conditional probability tables in which this does not hold, then we can not guarantee independence

Chains: Not Given Middle

- L guaranteed to be independent of S?
- No! Let's give a counter example

S: Sun P: Photosynthesis L: Leaves green

P(S, P, L) = P(S)P(P|S)P(L|P)

Chains: Not Given Middle

- $P(+s,+l) = \sum_{p} P(+s,p,+l) = P(+s) \sum_{p} P(p|+s) P(+l|p)$
- = 0.5 * (0.9 * 0.9 + 0.1 * 0.1) = 0.41
- $P(+s) = \sum_{p,l} P(+s, p, l) = P(+s) \sum_{p} P(p|+s) \sum_{l} P(l|p)$
- = 0.5 * [0.9 * (0.9 + 0.1) + 0.1 * (0.1 + 0.9)] = 0.5
- $P(+l) = \sum_{s,p} P(+s,p,l) = \sum_{p} P(+l|p) \sum_{s} P(+s) P(p|+s)$
- = 0.9 * (0.5 * 0.9 + 0.5 * 0.1) + 0.1 * (0.5 * 0.1 + 0.5 * 0.9) = 0.5
- $P(+s,+l) \neq P(+s)P(+l)$
- $0.41 \neq 0.5 * 0.5$

	S	P(P=+p S)	Р	P(L=+ P)
P(S=+s)				
	+s	0.9	+p	0.9
0.5	-S	0.1	-р	0.1
P(S P L) = P(S)P(P S)P(L P)				

Chains: Given Middle

- L guaranteed to be independent of S given P?
- Yes. Let's prove it using the assumptions encoded in this BN.
- Proof
 - $P(L|S,P) = \frac{P(L,S,P)}{P(S,P)}$ //product rule • $= \frac{P(S)P(P|S)P(L|P)}{P(P|S)P(S)}$ //assumptions (numerator) product rule (denominator) • P(L|P)

S: Sun P: Photosynthesis L: Leaves green P(S, P, L) = P(S)P(P|S)P(L|P)

Chains: Given Middle

• Other ways to prove?

•
$$P(L, S|P) = \frac{P(L, S, P)}{P(P)}$$

• $= \frac{P(S)P(P|S)P(L|P)}{P(P)}$
• $= \frac{P(S)P(S|P)P(P)P(L|P)}{P(S)P(P)}$
• $= P(S|P)P(L|P)$

$$(S) \rightarrow (P) \rightarrow (L)$$

S: Sun P: Photosynthesis L: Leaves green

$$P(S, P, L) = P(S)P(P|S)P(L|P)$$

Common Cause: Not Given Cause

- Is L and F guaranteed to be independent?
- No. Let's prove it with a counter example
- Counter example
 - P(L = T | P = T) = 0.9
 - P(L = T | P = F) = 0.1
 - P(F = T | P = T) = 0.9
 - P(F = T | P = F) = 0.1

P(P, L, F) = P(P)P(L|P)P(F|P)

Common Cause: Given Cause

- Is L and F guaranteed to be independent given P?
- Yes. Let's prove it using the assumptions encoded in this BN.
- Proof
 - $P(L|F,P) = \frac{P(P,L,F)}{P(F,P)}$ • $= \frac{P(P)P(L|P)P(F|P)}{P(F|P)P(P)}$ • = P(L|P)

P(P, L, F) = P(P)P(L|P)P(F|P)

Common Cause: Given Cause

- Other ways to prove?
- Show P(L, F|P) = P(L|P)P(F|P)

•
$$P(L, F|P) = \frac{P(L, F, P)}{P(P)}$$

• $= \frac{P(P)P(L|P)P(F|P)}{P(P)}$
• $P(L|P)P(F|P)$

Common Effect: Not Given Effect

- S guaranteed to be independent of G?
- Yes. Let's prove it using our assumptions
- Proof
 - $P(s,g) = \sum_{p} P(s,g,p)$
 - = $\sum_{p} P(s)P(g)P(p|s,g)$
 - = $P(s)P(g)\sum_{p}P(p|s,g)$
 - = P(s)P(g)

P(S,G,P) = P(S)P(G)P(P|S,G)

Common Effect: Given Effect

- S guaranteed to be independent of G given P?
- No. Observing photosynthesis puts the two explanations in competition with one another
- Observing an effect activates influences between possible causes

Active/Inactive Paths

D-Separation

• Show whether any two variables X_i and X_j are guaranteed to be conditionally independent given X_{k_1}, \dots, X_{k_n}

$$X_i \perp \perp X_j | \{ X_{k_1}, \dots, X_{k_n} \}$$

- Check all undirected paths from X_i to X_j
- If all paths are "inactive" then it is conditionally independent
 - A path is active if each consecutive triple in the path is active
 - If a single consecutive triple is inactive then the entire path is inactive
- If one or more paths is active, then independence is not guaranteed
- If all paths are inactive, then independence is guaranteed

Example

- $R \perp B$
 - Yes
- $R \perp B | T$
 - No
- $R \perp B | T'$
 - No

Example

- $L \perp T' | T$
 - Yes
- $L \perp B$
 - Yes
- $L \perp B | T$
 - No
- $L \perp B | T'$
 - No
- $L \perp B | T, R$
 - Yes

Example

- $T \perp D$
 - No
- $T \perp D | R$
 - Yes
- $T \perp D | R, S$
 - No

Markov Blanket

• Markov Blanket: The parents, children, and children's parents

Figure 13.4 (a) A node X is conditionally independent of its non-descendants (e.g., the $Z_{ij}s$) given its parents (the U_is shown in the gray area). (b) A node X is conditionally independent of all other nodes in the network given its Markov blanket (the gray area).

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
 - There might be more independences
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

• Inference in Bayesian Networks