Bayesian Networks: Independence

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

- Part 1: Search
- Pathfinding
- Uninformed search
- Informed search
- Adversarial search
- Optimization
- Local search
- Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
- Propositional logic
- First-order logic
- Prolog
- Part 3: Knowledge Representation and Reasoning Under Uncertainty
- Probability
- Bayesian networks

- Part 4: Machine Learning

- Supervised learning
- Inductive logic programming
- Linear models
- Deep neural networks
- PyTorch
- Reinforcement learning
- Markov decision processes
- Dynamic programming
- Model-free RL
- Unsupervised learning
- Clustering
- Autoencoders

Outline

- Chains
- Common cause
- Common effect
- D-Separation examples

Bayesian Networks: Independence

- Bayesian Networks make the assumption that a variable is independent of its non-descendents given its parents
- This induces other conditional independence assumptions
- We can understand these assumptions by looking at the graph structure
- Understanding these conditional independencies will help us design our Bayesian Network

Notation

- X and Y are independent
- $X \perp Y$
- $P(X, Y)=P(X) P(Y)$
- X and Y are conditionally independent given Z
- $X \perp Y \mid Z$
- $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$
- W is conditionally independent of X and Y given Z
- $W \perp\{X, Y\} \mid Z$
- $P(W, X \mid Z)=P(W \mid Z) P(X \mid Z)$
- $P(W, Y \mid Z)=P(W \mid Z) P(Y \mid Z)$

Independence Example

- Conditional independence assumptions directly from simplifications in chain rule:
- $P(X, Y, Z, W)=P(X) P(Y \mid X) P(Z \mid X, Y) P(W \mid X, Y, Z)$
- $P(X, Y, Z, W)=P(X) P(Y \mid X) P(Z \mid Y) P(W \mid Z)$
- Conditional independence assumptions
- $Z \perp X \mid Y$
- $W \perp\{X, Y\} \mid Z$
- Additional implied conditional independence assumptions?
- $W \perp X \mid Y$

Independence in Bayesian Networks

- Important question about a BN:

- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example of conditional probability tables (CPTs)
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?
- We can write the conditional probability tables so that they actually are independent. However, they are not guaranteed to be independent

Examining Triples

- We will later use D-separation to show whether any two variables X_{i} and X_{j} are guaranteed to be conditionally independent given $X_{k_{1}}, \ldots, X_{k_{n}}$

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- This will involve examining triples of nodes that are connected via an undirected path (the network still must be a DAG)
- This can simplify our computation as we only have to know independence regarding all possible combinations of triples
- Chains

- Common cause

- Common effect

Structure of Proofs

- X and Y are independent
- if and only if $P(X, Y)=P(X) P(Y)$
- if and only if $P(X \mid Y)=P(X)$
- if and only if $P(Y \mid X)=P(Y)$
- X and Y are conditionally independent given Z
- if and only if $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$
- if and only if $P(X \mid Y, Z)=P(X \mid Z)$
- if and only if $P(Y \mid X, Z)=P(Y \mid Z)$
- Therefore, if we can show that any of these relationships hold, we can prove independence
- However, if can give a counterexample, meaning a set of conditional probability tables in which this does not hold, then we can not guarantee independence

Chains: Not Given Middle

- L guaranteed to be independent of S ?
- No! Let's give a counter example

$\mathrm{P}(\mathrm{S}=+\mathrm{s})$ $\mathrm{P}(\mathrm{P}=+\mathrm{p} \mid \mathrm{S})$ P $\mathrm{P}(\mathrm{L}=+\| \| \mathrm{P})$ 0.5 0.9 0.9 +s 0.1 0.1 -s 0.1 0

Chains: Not Given Middle

- $P(+s,+l)=\sum_{p} P(+s, p,+l)=P(+s) \sum_{p} P(p \mid+s) P(+l \mid p)$
- $=0.5 *(0.9 * 0.9+0.1 * 0.1)=0.41$
- $P(+s)=\sum_{p, l} P(+s, p, l)=P(+s) \sum_{p} P(p \mid+s) \sum_{l} P(l \mid p)$
$\cdot=0.5 *[0.9 *(0.9+0.1)+0.1 *(0.1+0.9)]=0.5$
- $P(+l)=\sum_{s, p} P(+s, p, l)=\sum_{p} P(+l \mid p) \sum_{s} P(+s) P(p \mid+s)$
$\cdot=0.9 *(0.5 * 0.9+0.5 * 0.1)+0.1 *(0.5 * 0.1+0.5 * 0.9)=0.5$
- $P(+s,+l) \neq P(+s) P(+l)$
- $0.41 \neq 0.5 * 0.5$

S	$\mathrm{P}(\mathrm{P}=+\mathrm{p} \mid \mathrm{S})$	
$\mathrm{P}(\mathrm{S}=+\mathrm{s})$		
0.5	P	$\mathrm{P}(\mathrm{L}=+\mathrm{l} \mid \mathrm{P})$
+s	0.9	
-s	0.1	
+p	0.9	
-p	0.1	

Chains: Given Middle

- L guaranteed to be independent of S given P ?
- Yes. Let's prove it using the assumptions encoded in this BN.
- Proof
- $P(L \mid S, P)=\frac{P(L, S, P)}{P(S, P)} / /$ product rule
- $=\frac{P(S) P(P \mid S) P(L \mid P)}{P(P \mid S) P(S)} / /$ assumptions (numerator) product rule (denominator)
- $P(L \mid P)$

Chains: Given Middle

- Other ways to prove?
- $P(L, S \mid P)=\frac{P(L, S, P)}{P(P)}$
- $=\frac{P(S) P(P \mid S) P(L \mid P)}{P(P)}$
- $=\frac{P(S) P(S \mid P) P(P) P(L \mid P)}{P(S) P(P)}$
$\cdot=P(S \mid P) P(L \mid P)$

Common Cause: Not Given Cause

- Is L and F guaranteed to be independent?
- No. Let's prove it with a counter example
- Counter example
- $P(L=T \mid P=T)=0.9$
- $P(L=T \mid P=F)=0.1$
- $P(F=T \mid P=T)=0.9$
- $P(F=T \mid P=F)=0.1$

Common Cause: Given Cause

- Is L and F guaranteed to be independent given P?
- Yes. Let's prove it using the assumptions encoded in this BN.
- Proof
- $P(L \mid F, P)=\frac{P(P, L, F)}{P(F, P)}$
- $=\frac{P(P) P(L \mid P) P(F \mid P)}{P(F \mid P) P(P)}$
- $=P(L \mid P)$

Common Cause: Given Cause

- Other ways to prove?
- Show $P(L, F \mid P)=P(L \mid P) P(F \mid P)$
- $P(L, F \mid P)=\frac{P(L, F, P)}{P(P)}$
- $=\frac{P(P) P(L \mid P) P(F \mid P)}{P(P)}$
- $P(L \mid P) P(F \mid P)$

P: Photosynthesis

Common Effect: Not Given Effect

- S guaranteed to be independent of G ?
- Yes. Let's prove it using our assumptions
- Proof
- $P(s, g)=\sum_{p} P(s, g, p)$
- = $\sum_{p} P(s) P(g) P(p \mid s, g)$
- $=P(s) P(g) \sum_{p} P(p \mid s, g)$
$\cdot=P(s) P(g)$

Common Effect: Given Effect

- S guaranteed to be independent of G given P?
- No. Observing photosynthesis puts the two explanations in competition with one another
- Observing an effect activates influences between possible causes

Active/Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables $\{Z\}$?
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A->B->C$ where B is unobserved (either direction)
- Common cause $A<-B->C$ where B is unobserved
- Common effect (aka v-structure)
$A->B<-C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

D-Separation

- Show whether any two variables X_{i} and X_{j} are guaranteed to be conditionally independent given $X_{k_{1}}, \ldots, X_{k_{n}}$

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- Check all undirected paths from X_{i} to X_{j}
- If all paths are "inactive" then it is conditionally independent
- A path is active if each consecutive triple in the path is active
- If a single consecutive triple is inactive then the entire path is inactive
- If one or more paths is active, then independence is not guaranteed
- If all paths are inactive, then independence is guaranteed

Example

- $R \perp B$
- Yes
- $R \perp B \mid T$
- No
- $R \perp B \mid T^{\prime}$
- No

Example

$\cdot L \perp T^{\prime} \mid T$

- Yes
- $L \perp B$
- Yes
- $L \perp B \mid T$
- No
- $L \perp B \mid T^{\prime}$
- No
- $L \perp B \mid T, R$
- Yes

Example

$\cdot T \perp D$

- No
- $T \perp D \mid R$
- Yes
- $T \perp D \mid R, S$
- No

Markov Blanket

- Markov Blanket: The parents, children, and children's parents

Figure 13.4 (a) A node X is conditionally independent of its non-descendants (e.g., the $Z_{i j}$ s) given its parents (the $U_{i} \mathrm{~s}$ shown in the gray area). (b) A node X is conditionally independent of all other nodes in the network given its Markov blanket (the gray area).

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- There might be more independences
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

- Inference in Bayesian Networks

