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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Chains
• Common cause
• Common effect
• D-Separation examples



Bayesian Networks: Independence

• Bayesian Networks make the assumption that a variable is independent of its 
non-descendents given its parents
• This induces other conditional independence assumptions
• We can understand these assumptions by looking at the graph structure
• Understanding these conditional independencies will help us design our 

Bayesian Network



Notation

• X		and	Y	are	independent
• 𝑋 ⊥ 𝑌
• 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌)

• X	and	Y	are	conditionally	independent	given	Z
• 𝑋 ⊥ 𝑌|𝑍
• 𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋|𝑍 𝑃(𝑌|𝑍)

• W	is	conditionally	independent	of	X	and	Y	given	Z
• 𝑊 ⊥ {𝑋, 𝑌}|𝑍
• 𝑃 𝑊,𝑋|𝑍 = 𝑃 𝑊|𝑍 𝑃(𝑋|𝑍)
• 𝑃 𝑊, 𝑌|𝑍 = 𝑃 𝑊|𝑍 𝑃(𝑌|𝑍)



Independence Example

• Conditional independence assumptions directly from simplifications in 
chain rule:
• 𝑃 𝑋, 𝑌, 𝑍,𝑊 = 𝑃 𝑋 𝑃 𝑌 𝑋 𝑃 𝑍 𝑋, 𝑌 𝑃(𝑊|𝑋, 𝑌, 𝑍)
• 𝑃 𝑋, 𝑌, 𝑍,𝑊 = 𝑃 𝑋 𝑃 𝑌 𝑋 𝑃 𝑍 𝑌 𝑃(𝑊|𝑍)

• Conditional independence assumptions
• 𝑍 ⊥ 𝑋|𝑌
• 𝑊 ⊥ {𝑋, 𝑌}|𝑍

• Additional implied conditional independence assumptions?
• 𝑊 ⊥ 𝑋|𝑌

X Y Z W



Independence in Bayesian Networks

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example of conditional probability tables (CPTs)
• Example:

• Question: are X and Z necessarily independent?
• Answer: no. X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?

• We can write the conditional probability tables so that they actually are independent. However, they are not 
guaranteed to be independent

X Y Z



Examining Triples

• We will later use D-separation to show whether any two variables 𝑋! and 𝑋" are 
guaranteed to be conditionally independent given 𝑋#!,… ,𝑋#"

• This will involve examining triples of nodes that are connected via an undirected 
path (the network still must be a DAG)
• This can simplify our computation as we only have to know independence 

regarding all possible combinations of triples
• Chains

• Common cause

• Common effect

Xi �� Xj |{Xk1 , ..., Xkn}



Structure of Proofs

• X and Y are independent 
• if and only if 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌)
• if and only if 𝑃 𝑋|𝑌 = 𝑃 𝑋
• if and only if 𝑃 𝑌|𝑋 = 𝑃(𝑌)

• X and Y are conditionally independent given Z
• if and only if 𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋|𝑍 𝑃(𝑌|𝑍)
• if and only if 𝑃 𝑋|𝑌, 𝑍 = 𝑃 𝑋|𝑍
• if and only if 𝑃 𝑌|𝑋, 𝑍 = 𝑃 𝑌|𝑍

• Therefore, if we can show that any of these relationships hold, we can prove 
independence
• However, if can give a counterexample, meaning a set of conditional probability 

tables in which this does not hold, then we can not guarantee independence



Chains: Not Given Middle

• L guaranteed to be independent of S?
• No! Let’s give a counter example

P LS

S: Sun P: Photosynthesis L: Leaves green

𝑃 𝑆, 𝑃, 𝐿 = 𝑃 𝑆 𝑃 𝑃 𝑆 𝑃(𝐿|𝑃)

P P(L=+l|P)

+p 0.9

-p 0.1

S P(P=+p|S)

+s 0.9

-s 0.1

P(S=+s)

0.5



Chains: Not Given Middle

• 𝑃 +𝑠,+𝑙 = ∑!𝑃 +𝑠, 𝑝, +𝑙 = 𝑃 +𝑠 ∑!𝑃 𝑝 +𝑠 𝑃(+𝑙|𝑝)
• = 0.5 ∗ (0.9 ∗ 0.9 + 0.1 ∗ 0.1) = 0.41
• 𝑃 +𝑠 = ∑!,# 𝑃(+𝑠, 𝑝, 𝑙) = 𝑃 +𝑠 ∑!𝑃 𝑝 +𝑠 ∑# 𝑃(𝑙|𝑝)
• = 0.5 ∗ 0.9 ∗ 0.9 + 0.1 + 0.1 ∗ 0.1 + 0.9 = 0.5
• 𝑃 +𝑙 = ∑$,!𝑃(+𝑠, 𝑝, 𝑙) = ∑!𝑃(+𝑙|𝑝)∑$𝑃 +𝑠 𝑃 𝑝 +𝑠
• = 0.9 ∗ 0.5 ∗ 0.9 + 0.5 ∗ 0.1 + 0.1 ∗ 0.5 ∗ 0.1 + 0.5 ∗ 0.9 = 0.5
• 𝑃 +𝑠,+𝑙 ≠ 𝑃 +𝑠 𝑃 +𝑙
• 0.41≠ 0.5 ∗ 0.5

𝑃 𝑆, 𝑃, 𝐿 = 𝑃 𝑆 𝑃 𝑃 𝑆 𝑃(𝐿|𝑃)

P P(L=+l|P)

+p 0.9

-p 0.1

S P(P=+p|S)

+s 0.9

-s 0.1

P(S=+s)

0.5



Chains: Given Middle

• L guaranteed to be independent of S given P?
• Yes. Let’s prove it using the assumptions encoded in this BN.
• Proof
• 𝑃 𝐿 𝑆, 𝑃 = ) *,+,)

)(+,))
//product rule

• = ) + )()|+))(*|))
)()|+))(+) //assumptions (numerator) product rule (denominator)

• 𝑃 𝐿 𝑃

P LS

S: Sun P: Photosynthesis L: Leaves green

𝑃 𝑆, 𝑃, 𝐿 = 𝑃 𝑆 𝑃 𝑃 𝑆 𝑃(𝐿|𝑃)



Chains: Given Middle

• Other ways to prove?

• 𝑃(𝐿, 𝑆|𝑃) = % &,',%
%(%)

• = % ' %(%|')%(&|%)
% %

• = % ' %('|%)% % %(&|%)
% ' % %

• = 𝑃(𝑆|𝑃)𝑃(𝐿|𝑃)

P LS

S: Sun P: Photosynthesis L: Leaves green

𝑃 𝑆, 𝑃, 𝐿 = 𝑃 𝑆 𝑃 𝑃 𝑆 𝑃(𝐿|𝑃)



Common Cause: Not Given Cause

• Is L and F guaranteed to be independent?
• No. Let’s prove it with a counter example
• Counter example
• 𝑃 𝐿 = 𝑇|𝑃 = 𝑇 = 0.9
• 𝑃 𝐿 = 𝑇|𝑃 = 𝐹 = 0.1
• 𝑃 𝐹 = 𝑇|𝑃 = 𝑇 = 0.9
• 𝑃 𝐹 = 𝑇|𝑃 = 𝐹 = 0.1

P
P: Photosynthesis

L FL: Leaves 
Green

F: Fruits 
Healthy

𝑃 𝑃, 𝐿, 𝐹 = 𝑃 𝑃 𝑃(𝐿|𝑃)𝑃(𝐹|𝑃)



Common Cause: Given Cause

• Is L and F guaranteed to be independent given P?
• Yes. Let’s prove it using the assumptions encoded in this BN.
• Proof
• 𝑃 𝐿 𝐹, 𝑃 = ) ),*,-

)(-,))

• = ) ) )(*|)))(-|))
)(-|)))())

• = 𝑃(𝐿|𝑃)

P
P: Photosynthesis

L FL: Leaves 
Green

F: Fruits 
Healthy

𝑃 𝑃, 𝐿, 𝐹 = 𝑃 𝑃 𝑃(𝐿|𝑃)𝑃(𝐹|𝑃)



Common Cause: Given Cause

P
P: Photosynthesis

L FL: Leaves 
Green

F: Fruits 
Healthy

𝑃 𝑃, 𝐿, 𝐹 = 𝑃 𝑃 𝑃(𝐿|𝑃)𝑃(𝐹|𝑃)

• Other ways to prove?
• Show 𝑃 𝐿, 𝐹 𝑃 = 𝑃 𝐿 𝑃 𝑃 𝐹 𝑃

• 𝑃 𝐿, 𝐹 𝑃 = % &,+,%
%(%)

• = % % %(&|%)%(+|%)
%(%)

• 𝑃(𝐿|𝑃)𝑃(𝐹|𝑃)



Common Effect: Not Given Effect

• S guaranteed to be independent of G?
• Yes. Let’s prove it using our assumptions
• Proof
• 𝑃 𝑠, 𝑔 = ∑.𝑃(𝑠, 𝑔, 𝑝)
• = ∑.𝑃 𝑠 𝑃(𝑔)𝑃(𝑝|𝑠, 𝑔)
• = 𝑃 𝑠 𝑃(𝑔)∑.𝑃(𝑝|𝑠, 𝑔)
• = 𝑃 𝑠 𝑃(𝑔)

P

S GS: Sun

P: Photosynthesis

G: Grow Lights

𝑃 𝑆, 𝐺, 𝑃 = 𝑃 𝑆 𝑃(𝐺)𝑃(𝑃|𝑆, 𝐺)



Common Effect: Given Effect

• S guaranteed to be independent of G given P?
• No. Observing photosynthesis puts the two explanations in competition with 

one another
• Observing an effect activates influences between possible causes

P

S GS: Sun

P: Photosynthesis

G: Grow Lights

𝑃 𝑆, 𝐺, 𝑃 = 𝑃 𝑆 𝑃(𝐺)𝑃(𝑃|𝑆, 𝐺)



Active/Inactive Paths
• Question: Are X and Y conditionally independent given 

evidence variables {Z}?
• Yes, if X and Y “d-separated” by Z
• Consider all (undirected) paths from X to Y
• No active paths = independence!

• A path is active if each triple is active:
• Causal chain A ->  B -> C where B is unobserved (either direction)
• Common cause A <- B -> C where B is unobserved
• Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

• All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



D-Separation

• Show whether any two variables 𝑋! and 𝑋" are guaranteed to be conditionally 
independent given 𝑋#!,… ,𝑋#"

• Check all undirected paths from 𝑋! to 𝑋"
• If all paths are “inactive” then it is conditionally independent
• A path is active if each consecutive triple in the path is active
• If a single consecutive triple is inactive then the entire path is inactive

• If one or more paths is active, then independence is not guaranteed
• If all paths are inactive, then independence is guaranteed

Xi �� Xj |{Xk1 , ..., Xkn}



Example

R

T

B

Tʼ

• 𝑅 ⊥ 𝐵
• Yes

• 𝑅 ⊥ 𝐵|𝑇
• No

• 𝑅 ⊥ 𝐵|𝑇′
• No



Example

• 𝐿 ⊥ 𝑇,|𝑇
• Yes

• 𝐿 ⊥ 𝐵
• Yes

• 𝐿 ⊥ 𝐵|𝑇
• No

• 𝐿 ⊥ 𝐵|𝑇′
• No

• 𝐿 ⊥ 𝐵|𝑇, 𝑅
• Yes

R

T

B

D

L

Tʼ



Example

• 𝑇 ⊥ 𝐷
• No

• 𝑇 ⊥ 𝐷|𝑅
• Yes

• 𝑇 ⊥ 𝐷|𝑅, 𝑆
• No T

S

D

R



Markov Blanket
• Markov Blanket: The parents, children, and children’s parents



Topology Limits Distributions

X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}

• Given some graph topology G, 
only certain joint distributions 
can be encoded

• The graph structure 
guarantees certain 
(conditional) independences
• There might be more 

independences

• Adding arcs increases the set 
of distributions, but has 
several costs

• Full conditioning can encode 
any distribution



Next Time

• Inference in Bayesian Networks


