Bayesian Networks: Representation

Forest Agostinelli
University of South Carolina

Topics Covered in This Class

- Part 1: Search
- Pathfinding
- Uninformed search
- Informed search
- Adversarial search
- Optimization
- Local search
- Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
- Propositional logic
- First-order logic
- Prolog
- Part 3: Knowledge Representation and Reasoning Under Uncertainty
- Probability
- Bayesian networks

- Part 4: Machine Learning

- Supervised learning
- Inductive logic programming
- Linear models
- Deep neural networks
- PyTorch
- Reinforcement learning
- Markov decision processes
- Dynamic programming
- Model-free RL
- Unsupervised learning
- Clustering
- Autoencoders

Outline

- Bayes' Rule
- Chain Rule and Conditional Independence
- Bayesian Networks

Bayes' Rule

- Product Rule
- $P(a, b)=P(a \mid b) P(b)$
- $P(a, b)=P(b \mid a) P(a)$
- Bayes' Rule
- $P(b \mid a)=\frac{P(a \mid b) P(b)}{P(a)}$
- Often, we perceive evidence as the effect of some unknown cause
- We perceive toothache, which may be due to a cavity
- It may be a lot easier to model the probability of the effect given the cause
- I.e. P(symptoms|disease) may be known but P(disease|symptoms) may be unknown
- $P($ cause $\mid e f f e c t)=\frac{P(\text { effect } \mid c a u s e) P(\text { cause })}{P(e f f e c t)}$

Meningitis Example and Concept Check

- Suppose the probability of having a stiff next if you have meningitis is $P(s \mid m)=0.7$, the probability of having meningitis is $P(m)=1 / 50000$, and the probability of having a stiff neck is $\mathrm{P}(\mathrm{s})=0.01$. What is the probability of having meningitis given a stiff neck, $\mathrm{P}(\mathrm{m} \mid \mathrm{s})$?
- $P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.7 \times \frac{1}{50000}}{0.01}=0.0014$

Meningitis Example and Concept Check

- $P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.7 \times \frac{1}{50000}}{0.01}=0.0014$
- What if $P(\mathrm{~s})=0.00001$? Then $\mathrm{P}(\mathrm{m} \mid \mathrm{s})=1.4$?
- But that's not possible!
- What is wrong here?
- $P(a)=\sum_{b} P(a, b) / /$ marginalization
- $\sum_{b} P(a \mid b) P(b) / /$ product rule
- $P(s)=P(s \mid m) P(m)+P(s \mid \neg m) P(\neg m)$
- $P(s \mid m)$ and $P(m)$ affect the value of $P(s)$

Joint Distribution

- Assume we have n random variables that can take on d values
- If we are to store all of this in a table, we would need $O\left(d^{n}\right)$ entries
- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Chain Rule

- Product rule: $P\left(X_{1}, X_{2}\right)=P\left(X_{1} \mid X_{2}\right) P\left(X_{2}\right)=P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)$
- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) P\left(X_{n-1}, \ldots, X_{1}\right)$
$\cdot=P\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) P\left(X_{n-1} \mid X_{n-2}, \ldots, X_{1}\right) P\left(X_{n-2}, \ldots, X_{1}\right)$
$\cdot=P\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) P\left(X_{n-1} \mid X_{n-2}, \ldots, X_{1}\right) \ldots P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)$
$\cdot=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$
- This is just one way to write the joint distribution as a product of conditional distributions
- As long as we follow the product rule, we can write this as a product of different conditional distributions

Joint Distribution w/ Chain Rule

- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$
- For each table we need $\prod_{i=1}^{n} d^{i}$ probabilities
- Still not less than $O\left(d^{n}\right)$

Conditional Independence

- $P\left(X_{1}, X_{2} \mid X_{3}\right)=P\left(X_{1} \mid X_{3}\right) P\left(X_{2} \mid X_{3}\right)$
- If X_{1} and X_{2} and conditionally independent given X_{3}, what about $P\left(X_{1} \mid X_{2}, X_{3}\right)$?
- $P\left(X_{1}, X_{2} \mid X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) / /$ product rule
- $P\left(X_{1} \mid X_{3}\right) P\left(X_{2} \mid X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) / /$ conditional independence
- $P\left(X_{1} \mid X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right)$

Joint Distribution w/ Chain Rule and Conditional Independence

- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$
- We can reduce the size of the tables using conditional independence
- Suppose each variable is conditionally independent of all other variables it is conditioned on given, at most, r variables
- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Vars}\left(X_{i}\right)\right)$
- Where Vars returns the (at most) r variables needed for X_{i} to be conditionally independent of all other variables
- For each table, we would need $\prod_{i=1}^{n} d^{(r+1)}=n d^{(r+1)}$
- Number of entries we need grows linearly with the number of variables instead of exponentially
- If I have 100 variables that can take on 2 different values
- Need $2^{100}=1.3 \times 10^{30}$ probabilities
- However, if each variable can be conditionally independent from others given 3 variables
- $100 \times 2^{3+1}=1600$

Bayesian Networks

- Bayesian networks give us a way of efficiently representing the full joint distribution using independence and conditional independence in the form of a graphical model
- Using Bayesian networks, we can also perform probabilistic inference in a manner that is efficient in many practical scenarios
- Because probabilistic inference can be computationally intractable in the worst case, we can use approximate inference algorithms when exact inference is infeasible

Bayesian Networks

- Directed acyclic graphical model
- Directed acyclic graph (DAG)
- Directed edges connect pairs of nodes
- If there is an arrow from X to Y, then X is said to be a parent of Y
- Nodes have a random variable X and a probability table specifying $P(X \mid \operatorname{Parents}(X))$
- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- Key assumption: a random variable is conditionally independent of all of its non-descendents given its parents
$p(x, y, z)=p(x) p(y \mid x) p(z \mid y)$

$$
p(a, b, c, d)=p(a) p(b \mid a) p(c \mid a, b) p(d \mid b)
$$

Graph must be acyclic

Bayesian Networks

- A variable X is conditionally independent of its non-descendents (Zs) given its parents (Us)

Example: Plant Health Network

H	$P(Y=+y \mid H)$
$+h$	0.7
$-h$	0.1

H	$P(T=+t \mid H)$
$+h$	0.9
$-h$	0.05

B	N	$P(H=+h \mid B, N)$
$+b$	$+n$	0.5
$+b$	$-n$	0.05
$-b$	$+n$	0.99
$-b$	$-n$	0.6

Joint Distribution w/ Bayesian Networks

- Chain rule shows: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$
- Conditional independence shows: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Vars}\left(X_{i}\right)\right)$
- Since Bayesian Networks encode conditional independence of all nondescendents given their parents, we put nodes in topological order
- That is, any order consistent with the directed graph structure
- Since nodes are in topological order, they are only conditioned on their nondescendents
- Therefore, $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$

Dentist Example

- Toothache
- Cavity
- Catch (dentist tool that catches in a hole in the teeth)
- Weather

- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- $P($ Cavity, Toothache, Catch, Weather $)$
- A topological order: Weather, Cavity, Catch, Toothache
- $P($ Weather $) P($ Cavity \mid Weather $) P($ Catch \mid Weather, Cavity) $P($ Toothache \mid Catch, Weather, Cavity)
- $P($ Weather $) P($ Cavity $) P($ Catch \mid Cavity $) P($ Toothache \mid Cavity)
- Other node orders are possible as long as they are in topological order
- E.g. Cavity, weather, toothache, catch

Traffic Example

- Traffic

- Umbrella
- Raining

Traffic Example 2

- T: Traffic
- R: It rains
- L: Low pressure (in atmosphere not in sensor)
- D: Roof leaks
- B: Ballgame
- C: Cavity

Coin Flip Example

- Suppose you flip n coins

Hospital Alarm Example

- 37 variables with 509 probabilities (instead of $2^{37} \approx 10^{11}$)
[Beinlich et al., 1989]

Quick Quiz

Factor the joint probability
$P(A, B, C, D, E, F, G)$

Quick Quiz

Factor the joint probability

$$
\begin{aligned}
& P(A, B, C, D, E, F, G) \\
& \quad=P(A) P(B \mid A) P(G \mid A) P(C) P(D \mid C) P(E \mid D) P(F \mid G, B, D)
\end{aligned}
$$

Quick Quiz

(A) B

(C) $P(A, B, C, D, E, F, G)$

$$
\begin{aligned}
& P(A, B, C, D, E, F, G) \\
& \quad=P(A) P(B) P(G \mid A) P(C \mid B) P(D \mid C) P(E \mid C, D) P(F \mid G, C)
\end{aligned}
$$

Draw the Bayesian network corresponding to the factored conditional probability
(F)

Quick Quiz

Draw the Bayesian network corresponding to the factored conditional probability

$$
\begin{aligned}
& P(A, B, C, D, E, F, G) \\
& \quad=P(A) P(B) P(G \mid A) P(C \mid B) P(D \mid C) P(E \mid C, D) P(F \mid G, C)
\end{aligned}
$$

Simple Traffic Example: Causal Direction

$P(T, R)$	
$+r$ $+t$ $3 / 16$ $+r$ $-t$ $1 / 16$ $-r$ $+t$ $6 / 16$ $-r$ $-t$ $6 / 16$	

Simple Traffic Example: Reverse Direction

$P(T, R)$

$+r$	$+t$	$3 / 16$
$+r$	$-t$	$1 / 16$
$-r$	$+t$	$6 / 16$
$-r$	$-t$	$6 / 16$

Causality

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if variables are missing)
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Summary

- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- If, for each conditional probability table, we need $\prod_{i=1}^{n} d^{(r+1)}=n d^{(r+1)}$
- Number of entries we need grows linearly with the number of variables instead of exponentially
- Key assumption: a random variable is conditionally independent of all of its non-descendents given its parents

