

Bayesian Networks: Representation

Forest Agostinelli University of South Carolina

Topics Covered in This Class

• Part 1: Search

- Pathfinding
 - Uninformed search
 - Informed search
- Adversarial search
- Optimization
 - Local search
 - Constraint satisfaction
- Part 2: Knowledge Representation and Reasoning
 - Propositional logic
 - First-order logic
 - Prolog

Part 3: Knowledge Representation and Reasoning Under Uncertainty

- Probability
- Bayesian networks

• Part 4: Machine Learning

- Supervised learning
 - Inductive logic programming
 - Linear models
 - Deep neural networks
 - PyTorch
- Reinforcement learning
 - Markov decision processes
 - Dynamic programming
 - Model-free RL
- Unsupervised learning
 - Clustering
 - Autoencoders

Outline

- Bayes' Rule
- Chain Rule and Conditional Independence
- Bayesian Networks

Bayes' Rule

- Product Rule
 - P(a,b) = P(a|b)P(b)
 - P(a,b) = P(b|a)P(a)
- Bayes' Rule

•
$$P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

- Often, we perceive evidence as the effect of some unknown cause
 - We perceive toothache, which may be due to a cavity
- It may be a lot easier to model the probability of the effect given the cause
 - I.e. P(symptoms|disease) may be known but P(disease|symptoms) may be unknown
- $P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$

Meningitis Example and Concept Check

 Suppose the probability of having a stiff next if you have meningitis is P(s|m)=0.7, the probability of having meningitis is P(m)=1/50000, and the probability of having a stiff neck is P(s)=0.01. What is the probability of having meningitis given a stiff neck, P(m|s)?

•
$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times \frac{1}{50000}}{0.01} = 0.0014$$

Meningitis Example and Concept Check

•
$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times \frac{1}{50000}}{0.01} = 0.0014$$

- What if P(s)=0.00001? Then P(m|s)=1.4?
 - But that's not possible!
 - What is wrong here?
 - $P(a) = \sum_{b} P(a, b) //marginalization$
 - $\sum_{b} P(a|b)P(b)$ //product rule
- $P(s) = P(s|m)P(m) + P(s|\neg m)P(\neg m)$
- P(s|m) and P(m) affect the value of P(s)

Joint Distribution

- Assume we have n random variables that can take on d values
- If we are to store all of this in a table, we would need $O(d^n)$ entries
 - $P(X_1, X_2, \dots, X_n)$

Chain Rule

- Product rule: $P(X_1, X_2) = P(X_1|X_2)P(X_2) = P(X_2|X_1)P(X_1)$
- $P(X_1, X_2, \dots, X_n) = P(X_n | X_{n-1}, \dots, X_1) P(X_{n-1}, \dots, X_1)$
- = $P(X_n|X_{n-1}, ..., X_1)P(X_{n-1}|X_{n-2}, ..., X_1)P(X_{n-2}, ..., X_1)$
- = $P(X_n|X_{n-1}, ..., X_1)P(X_{n-1}|X_{n-2}, ..., X_1) ... P(X_2|X_1)P(X_1)$
- = $\prod_{i=1}^{n} P(X_i | X_{i-1}, \dots, X_1)$
- This is just one way to write the joint distribution as a product of conditional distributions
 - As long as we follow the product rule, we can write this as a product of different conditional distributions

Joint Distribution w/ Chain Rule

- $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, ..., X_1)$
- For each table we need $\prod_{i=1}^{n} d^{i}$ probabilities
 - Still not less than $O(d^n)$

Conditional Independence

- $P(X_1, X_2 | X_3) = P(X_1 | X_3) P(X_2 | X_3)$
- If X_1 and X_2 and conditionally independent given X_3 , what about $P(X_1|X_2,X_3)$?
- $P(X_1, X_2|X_3) = P(X_1|X_2, X_3)P(X_2|X_3)$ //product rule
- $P(X_1|X_3)P(X_2|X_3) = P(X_1|X_2,X_3)P(X_2|X_3)$ //conditional independence
- $P(X_1|X_3) = P(X_1|X_2, X_3)$

Joint Distribution w/ Chain Rule and Conditional Independence

- $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, \dots, X_1)$
- We can reduce the size of the tables using conditional independence
- Suppose each variable is conditionally independent of all other variables it is conditioned on given, at most, r variables

•
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Vars(X_i))$$

- Where Vars returns the (at most) r variables needed for X_i to be conditionally independent of all other variables
- For each table, we would need $\prod_{i=1}^{n} d^{(r+1)} = nd^{(r+1)}$
- Number of entries we need grows linearly with the number of variables instead of exponentially
- If I have 100 variables that can take on 2 different values
 - Need $2^{100} = 1.3 \times 10^{30}$ probabilities
- However, if each variable can be conditionally independent from others given 3 variables
 - $100 \times 2^{3+1} = 1600$

Bayesian Networks

- Bayesian networks give us a way of efficiently representing the full joint distribution using independence and conditional independence in the form of a graphical model
- Using Bayesian networks, we can also perform probabilistic inference in a manner that is efficient in many practical scenarios
- Because probabilistic inference can be computationally intractable in the worst case, we can use approximate inference algorithms when exact inference is infeasible

Bayesian Networks

- Directed acyclic graphical model
 - Directed acyclic graph (DAG)
- Directed edges connect pairs of nodes
 - If there is an arrow from X to Y, then X is said to be a parent of Y
- Nodes have a random variable X and a probability table specifying P(X|Parents(X))
- $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$
 - Key assumption: a random variable is conditionally independent of all of its non-descendents given its parents

```
p(x, y, z) = p(x) \ p(y \mid x) \ p(z \mid y)
```

$$p(a, b, c, d) = p(a) \ \underline{p(b \mid a)} \ p(c \mid a, b) \ p(d \mid b)$$

Bayesian Networks

 A variable X is conditionally independent of its non-descendents (Zs) given its parents (Us)

Example: Plant Health Network

Joint Distribution w/ Bayesian Networks

- Chain rule shows: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, ..., X_1)$
- Conditional independence shows: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Vars(X_i))$
- Since Bayesian Networks encode conditional independence of all nondescendents given their parents, we put nodes in topological order
 - That is, any order consistent with the directed graph structure
- Since nodes are in topological order, they are only conditioned on their nondescendents
- Therefore, $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$

Dentist Example

- $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$
- *P*(*Cavity*, *Toothache*, *Catch*, *Weather*)
- A topological order: Weather, Cavity, Catch, Toothache
- *P(Weather)P(Cavity|Weather)P(Catch|Weather,Cavity)P(Toothache|Catch,Weather,Cavity)*
- P(Weather)P(Cavity)P(Catch|Cavity)P(Toothache|Cavity)
- Other node orders are possible as long as they are in topological order
 - E.g. Cavity, weather, toothache, catch

Traffic Example

Traffic Example 2

- T: Traffic
- R: It rains
- L: Low pressure (in atmosphere not in sensor)
- D: Roof leaks
- B: Ballgame
- C: Cavity

Coin Flip Example

• Suppose you flip n coins

Hospital Alarm Example

• 37 variables with 509 probabilities (instead of $2^{37} \approx 10^{11}$)

Factor the joint probability

P(A, B, C, D, E, F, G)

Factor the joint probability

P(A, B, C, D, E, F, G) = P(A) P(B|A) P(G|A) P(C) P(D|C) P(E|D) P(F|G, B, D)

Draw the Bayesian network corresponding to the factored conditional probability

$$\begin{split} P(A, B, C, D, E, F, G) \\ &= P(A) \ P(B) \ P(G|A) \ P(C|B) \ P(D|C) \ P(E|C, D) \ P(F|G, C) \end{split}$$

Draw the Bayesian network corresponding to the factored conditional probability

P(A, B, C, D, E, F, G) = P(A) P(B) P(G|A) P(C|B) P(D|C) P(E|C, D) P(F|G, C)

Simple Traffic Example: Causal Direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Simple Traffic Example: Reverse Direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1, \dots, x_{i-1}) = P(x_i| parents(X_i))$$

Summary

- $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$
 - If, for each conditional probability table, we need $\prod_{i=1}^{n} d^{(r+1)} = nd^{(r+1)}$
 - Number of entries we need grows linearly with the number of variables instead of exponentially
- Key assumption: a random variable is conditionally independent of all of its non-descendents given its parents