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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Motivation
• Probability
• Joint distribution
• Conditional distribution
• Inference
• Independence
• Baye’s rule



Uncertainty

• We cannot predict everything with absolute certainty due to immense 
computational complexity, simply not knowing enough, or inherit randomness
• “If a fruit is a tomato and it is red, then it is ripe”
• Sometimes, a tomato can be red but might not be ready
• Other indicators: tomato texture, weather, etc.
• We may not know everything that makes a tomato ripe

• “ If I drive to the airport 90 minutes before my flight, I will get there in time”
• Must be perfect road conditions, no accidents, no earthquakes, etc.
• It would be impractical to model every possibility

• Apparent/Inherent randomness
• Chaotic systems
• Quantum physics



How to Handle Uncertainty?

• Uncertainty comes from limits on computation, lack of knowledge, and inherent 
randomness
• We cannot say something is true or false with absolute certainty, however, we 

can provide a degree of belief
• Probability theory gives us the tools to deal with degrees of belief



Toothache Example

• A toothache may be a sign of a cavity
• However, a toothache may also be a sign of a gum problem, abscess, etc.
• Before running a battery of tests on a patient, we can assess the probability that 

they have a cavity given that they have a toothache and other relevant factors 
(age, diet, medical history, etc.)
• If we say that they have a cavity with probability 0.8, this means that, out of all 

the situations that are indistinguishable from the current situation, as far as our 
knowledge goes, the patient will have a cavity in 80% of them



Epistemological Commitments

• Propositional and first-order logic
• This can either be true, false, or unknown

• Probability
• There are degrees of belief



Random Variables
• A variable can take on a value from its domain
• Variable: Temperature
• Domains could be

• {Hot, Cold}
• {0deg, 0.1deg, … 100deg}

• Types of random variables
• Boolean: {True, False}
• Discrete
• Continuous

• We will not focus on these in this class

• Domain values must be exhaustive and mutually exclusive
• Exhaustive: The domain must have every possible value for the variable
• Mutually exclusive: Two or more values cannot be assigned at the same time (i.e. cannot 

be both hot and cold)



Probability Model

• Associates a numerical probability 𝑃 𝑤 for every possible world 𝑤
• Axioms:
• 0 ≤ 𝑃 𝑤 ≤ 1
• ∑!∈#𝑃 𝑤 = 1 (Ω is the set of all possible worlds)

• Probability of a specific event 𝜙
• ∑!∈$𝑃(𝑤)
• For example, if we have two six sided die, there are 36 possible worlds
• If we want to know the probability that the die sum to 11, we sum the probability of 

rolling a 5 and 6 as well as rolling a 6 and 5.



Notation

• The probability of variable A taking on value a can be written as
• 𝑃 𝐴 = 𝑎 or 𝑃 𝑎

• The probability of A=a AND B=b is written as
• 𝑃 𝑎, 𝑏

• The probability of A=a OR B=b is written as
• 𝑃 𝑎 ∨ 𝑏



Probability Distributions

• Unobserved random variables have distributions
• A distribution is a table of probabilities of values
• A probability is a single number
• 𝑃 𝑊 = 𝑟𝑎𝑖𝑛 = 0.1
• Sometimes written 𝑃 𝑟𝑎𝑖𝑛 = 0.1

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

• A joint distribution over a set of random variables 
specifies a probability for every possible assignment to 
those variables
• 𝑃 𝑇,𝑊
• In this example, the temperature can only be hot or cold 

and the weather can only be sun or rain

• Probabilities must still be between 0 and 1 and 
probabilities must sum to 1

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Quick Quiz

• Probability for a specific event is the sum of the probabilities of the worlds in 
which it holds

• P(+x, +y) ?
• 0.2

• P(+x) ?
• 0.2+0.3=0.5

• P(-y ∨ +x) ?
• 0.1 + 0.3 + 0.2 = 0.6

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Probability Space

• Probability	of	two	binary	variables
• 𝐴 ∈ {𝑎,¬𝑎}
• 𝐵 ∈ {𝑏,¬𝑏}

• 𝑃 𝑎 + 𝑃 ¬𝑎 = 1
• 𝑃 ¬𝑎 = 1 − 𝑃(𝑎)

• 𝑃 𝑎, 𝑏 = 𝑃 𝑎 𝑏 𝑃 𝑏 <-Product rule
• 𝑃 𝑎 ∨ 𝑏 = 𝑃 𝑎 + 𝑃 𝑏 − 𝑃(𝑎, 𝑏) P(b)P(a)

P(a,b)



Marginal Distributions
• Marginal distributions are sub-tables which eliminate variables 
• Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x 0.5
-x 0.5

Y P
+y 0.6
-y 0.4



Conditional Probabilities
• The probability of an event given the value of one or more variables have been observed
• For example, the probability of a cavity given a toothache
• Often said to be conditioned on the evidence
• Can obtain from joint probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)



Quick Quiz

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

• P(+x | +y) ?
• .2/.6=1/3

• P(-x | +y) ?
• .4/.6=2/3

• P(-y | +x) ?
• .3/.5=.6



Conditional Probability Distributions
• Conditional probability distributions are probability 

distributions over some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution



Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6



Normalization Trick

SELECT the joint 
probabilities 
matching the 

evidence
T W P

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Probabilistic Inference

• Compute a desired probability from other known probabilities
• We generally compute conditional probabilities 
• P(on time | no reported accidents) = 0.90
• These represent the agent’s beliefs given the evidence

• Probabilities change with new evidence:
• P(on time | no accidents, 5 a.m.) = 0.95
• P(on time | no accidents, 5 a.m., raining) = 0.80
• Observing new evidence causes beliefs to be updated



Inference by Enumeration

• P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration

• P(W)?
• P(sun)=.3+.1+.1+.15=.65
• P(rain)=1- P(sun)=1-0.65=0.35

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration

• P(W|winter, hot)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration

• P(W|winter, hot)?
• P(W, winter, hot)/P(winter, hot)
• P(sun|winter,hot)=0.1/(0.1 + 0.05)=2/3
• P(rain|winter,hot)=0.05/(0.1 + 0.05)=1/3

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration

• P(W|winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration

• P(W|winter)?
• P(W|winter)=P(W,winter)/P(winter)
• P(sun|winter)=(0.1 + 0.15)/0.5=0.5
• P(rain|winter)=(0.05 + 0.2)/0.5=0.5

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration

• General case:
• Evidence variables: 
• Query* variable:
• Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize



Inference by Enumeration Analysis

• Worst case time complexity 𝑂 𝑑!

• Space complexity 𝑂 𝑑!

• Where there are 𝑛 variables that can take on 𝑑 values



Independence

• Independence
• 𝑃 𝑎|𝑏 = 𝑃 𝑎
• 𝑃 𝑠𝑢𝑛𝑛𝑦|𝑐𝑎𝑣𝑖𝑡𝑦 = 𝑃 𝑠𝑢𝑛𝑛𝑦
• 𝑃 𝑎, 𝑏 = 𝑃 𝑎 𝑃 𝑏
• Derived from the product rule

• 𝑃 𝑎, 𝑏 = 𝑃 𝑎 𝑏 𝑃 𝑏 = 𝑃 𝑎 𝑃 𝑏

• Independence between two variables can be written as
• 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃 𝐵
• 𝑃 𝐴|𝐵 = 𝑃 𝐴
• 𝑃 𝐵|𝐴 = 𝑃 𝐵



Independence

• P(A,B,C)=P(A)P(B)P(C)
• Greatly reduces the representation size



Conditional Independence

• Symptom 1 and symptom 2 are conditionally independent given the group
• But, symptom 1 and symptom 2 are dependent when the group has not been 

given



Conditional Independence

• P(A,B|C)=P(A|C)P(B|C)
• Rain causes both increased umbrella usage and worsened road conditions. 

These events are not independent because seeing lots of umbrellas makes 
worsened road conditions more likely
• However, given the condition that it is raining makes the events conditionally 

independent. Once you know it is raining, seeing umbrellas tells you nothing 
more about road conditions



Conditional Independence

• P(T,D|C)=P(T|C)P(D|C)
• Like independence, conditional 

independence can greatly reduce the 
representation size



Bayes’ Rule

• Product Rule
• 𝑃 𝑎, 𝑏 = 𝑃 𝑎 𝑏 𝑃 𝑏
• 𝑃 𝑎, 𝑏 = 𝑃 𝑏 𝑎 𝑃 𝑎

• Bayes’ Rule
• 𝑃 𝑏|𝑎 = % 𝑎 𝑏 % &

% '

• Often, we perceive evidence as the effect of some unknown cause
• We perceive toothache, which may be due to a cavity

• It may be a lot easier to model the probability of the effect given the cause
• I.e. P(symptoms|disease) may be known but P(disease|symptoms) may be unknown

• 𝑃 𝑐𝑎𝑢𝑠𝑒|𝑒𝑓𝑓𝑒𝑐𝑡 = ' 𝑒𝑓𝑓𝑒𝑐𝑡 𝑐𝑎𝑢𝑠𝑒 ' ()*+,
' ,--,(.



Quick Quiz



Quick Quiz

• P(windows|hardware)=15/75
• P(driver|windows) = p(windows|driver)p(driver)/p(windows)=0.5
• p(windows|driver)p(driver) = (15/25) * (25/100)
• P(windows)=P(windows,hardware) + P(windows,driver)
• P(windows)=P(windows|hardware)P(hardware) + P(windows|driver)P(driver)
• P(windows)=(15/75) * (75/100) + (15/25) * (25/100)

• P(driver|windows)=
!"
#"

#"
!$$
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%"
!$$(
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#"
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=
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= 0.5



Summary

• Probabilistic inference by enumeration
• Start with a table that represents the joint distribution
• Select entries consistent with the evidence
• Obtain the marginal distribution by summing out all hidden variables (not evidence or 

query variables)
• Obtain the conditional distribution by normalizing
• Space and time complexity is 𝑂 𝑑)

• Exploiting independence can lead to a more compact representation of the joint 
distribution
• Using Bayes’ rule, we can do probabilistic inference with known conditional and 

marginal distributions


