i v
4 " \\ i VIS
7 < "5”:’; »,
"~ . | >
\~ |
4 ‘ ¢ <
f.4 \
K
D X >
S e |/ |
) /A/ - AN
ot/ Al
NZ
N4 >
INA
S .
(i

INSTITUTE %t #AI11SC
UNIVERSITY OF SOUTH CAROLINA

Classes Part 2

Forest Agostinelli
University of South Carolina

* Enum classes
 Static methods and properties
* Breadth-first search

Enum

An enumeration (“enum”) is a special kind
of Class that only contains constants

Used when creating a type that only has a
set number of potential values

Good programming practice to create in a
separate Java File (like classes)

The constant values are separated using a

comma (“”) and values should be

capitalized

Declare an enum just like any other class
— Does not require construction

an

Access the defined values using the dot (“.

)

Defining an Enum

public enum <<identifier>>{
<<Value0o>>,
<<Value@l>>,

Example

enum PetType {CAT, DOG, HAMSTER, HEDGEHOG,
ARMADILLO, TURKEY, OWL, ABOMINATION};

Enum

An enumeration (“enum”) is a special kind
of Class that only contains constants

Used when creating a type that only has a
set number of potential values

Good programming practice to create in a
separate Java File (like classes)

The constant values are separated using a
o

comma (“”) and values should be
capitalized

Declare an enum just like any other class
— Does not require construction

an

Access the defined values using the dot (“.

)

Declaring and Using an Enum

//Delare Enum

<<enum identifier>> <<id>>;

//Using

<<id>> = <<enum identifier>>.<<Value>>;

Example

PetType type;
type = PetType.DOG;

Enum Example

/*
* Written by JJ Shepherd
*/
public enum PetType {
CAT,
DOG,
HAMSTER,
HEDGEHOG,
ARMADILLO,
TURKEY,
OWL,
UNKNOWN

* Enum classes
 Static methods and properties
* Breadth-first search

Memory Allocation

Programs have different sections of
memory

— Stack / Call Stack

— Heap

— Data (Global)

— Text

Methods are pushed on and popped off of
the Stack

Objects are Dynamically Allocated in the
Heap

The Stack and the Heap grow toward each
other

Process in Memory

Static Properties

Static methods and properties are created
statically

— Opposed to created dynamically

— Created one time in the Data (Global) part of
memory

Static methods and properties are shared
across all instances

— Unlike dynamic methods or properties (instance
variables) that are unique to each instance

Uses the reserved word “static”

CANNOT use the reserved word “this” to call
static methods or properties

— It only refers to dynamic instances

Static Properties

//Inside of a class
public static <<type>> <<id>>;

Example

public static int sharedInt;

Static Methods

Static methods do not require an instance
(object) to be called

— Can be called directly from the Class
Sometimes referred to as “Class Methods”
Generally the scope is “public”

Great to use when an action does not
pertain to a particular instance (object)

— Saves memory as it does not have to redefine
the method for every instance. Only defined
once.

CANNOT use the reserved word “this” to
call static methods or properties

— It only refers to dynamic instances

Static Methods

public static <<return type>> <<id>> (<<parameters>>)

{
//Body of the method

}

Example
//Assume inside the class “SimpleMath”
public static int addition(int a, int b)

{

return a+b;

Static Methods

Static methods do not require an instance
(object) to be called

— Can be called directly from the Class
Sometimes referred to as “Class Methods”
Generally the scope is “public”

Great to use when an action does not
pertain to a particular instance (object)

— Saves memory as it does not have to redefine
the method for every instance. Only defined
once.

CANNOT use the reserved word “this” to
call static methods or properties

— It only refers to dynamic instances

Calling Static Methods

<<Class Id>>.<<static method>>(<<parameters>>);

Example

int sum = SimpleMath.addition(2,3);

Static Methods

Static methods can call other static
methods

Dynamic methods can call static methods
Static methods CANNOT call dynamic

methods directly

— These methods can only be called when an
instance (object) has been constructed

— Just like for the Main Method

Static methods can be called directly from
the Main Method

Calling Static Methods

<<Class Id>>.<<static method>>(<<parameters>>);

Example

int sum = SimpleMath.addition(2,3);

Static Methods

e Commonly used Classes with Static
Methods

— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods

* Wrapper Classes like Integer, Double,
Character

— Provides common functionality and constants
for primitive types

— Very common is “.parselnt” or “.parseDouble”

Math Class Methods

pow(<<double>><<

. 2.0,3.0);
aolbles) Double Power Math.pow(2.0,3.0)
Absolute Math.abs(-7);
abs(<<A.N.T.>>) AN.T Value Math.abs(-3.0);
Maximum
max(<<A.N.T.>>, AN.T Value Math.max(2,3);
<<A.N.T>>) between two Math.max(3.5,2.5);
values
Minimum
min(<<A.N.T.>>, ANT Value Math.max(2,3);
<<A.N.T>>) o between two Math.max(3.5,2.5);

values

A.N.T. = Any numeric type, such as int, double, float, or long

Static Methods

 Commonly used Classes with Static Math Class Methods
Methods

— Wrapper Classes

") . . ceil(<<double>>) Double ﬁ'f)i:j:gsu) Math.ceil(2.1);
* The class “Math” is built in to Java and g
. . . Floor
prOVIdeS many mathematlc funCtlonS floor(<<double>>) Double (rounds Math.floor(3.9);
— Does not require an instance of Math to use down)
methods sqrt(<<double>>) Double Square root Math.sqrt(4.0);
* Wrapper Classes like Integer, Double,
C h aracter round(<<float>>) Integer E?:g:lanp Math.round(4.0f);
— Provides common functionality and constants ound(<<doubless) ong E?ggisnup Viath.round(4.0)

for primitive types
— Very common is “.parselnt” or “.parseDouble” A.N.T. = Any numeric type, such as int, double, float, or long

Static Methods

* Commonly used Classes with Static Integer Class Methods and Properties
Methods
— Math
— Wrapper Classes
* The class “Math” is built in to Java and “
provides many mathematic functions MAX_VALUE Integer il Integer.MAX_VALUE
— Does not require an instance of Math to use
methods MIN_VALUE Integer ?;tl”ms Integer.MIN_VALUE
* Wrapper Classes like Integer, Double, Converts
Ch aracter parselnt(<<String>>) Integer String to Integer.parselnt(“32")
Integer
— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Static Methods

* Commonly used Classes with Static Double Class Methods and Properties
Methods
— Math
. e . Method/Property Return Type Description
* The class “Math” is built in to Java and
provides many mathematic functions SELTITE
MAX_VALUE Double Max Double Double.MAX_VALUE
— Does not require an instance of Math to use Value
methods Returns
. MIN_VALUE Doubl Min Doubl Double.MIN_VALUE
* Wrapper Classes like Integer, Double, B e vale T
Character
. . . parseDouble Doubl gto[we;ts Double.parseDouble
— Provides common functionality and constants (<<String>>) ouble In:::gi r° (“32.0”)
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Static Methods

« Commonly used Classes with Static Character Class Methods
Methods

— Math

 The class “Math” is built in to Java and

. . . h h Ci? nverts Character.toUpperCase

provides many mathematic functions foUpperCaselccchar>) - Character Sharacers” ()

— Does not require an instance of Math to use Convert

methods onverts Character.toUpperCase

toLowerCase(<<char>>) Character character to (‘A);

. lower case ’

* Wrapper Classes like Integer, Double,

. Tests for Character.isUpperCase(

C h aracter isUpperCase(<<char>>) Boolean S @);
— Provides common functionality and constants | owerCase(<<charss] oo Tests for Character.isLowerCase(

for primitive types isLowerCase(<<char oolean lowercase @);

— Very common is “.parselnt” or “.parseDouble”

Static Methods

 Commonly used Classes with Static
Methods

— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods

* Wrapper Classes like Integer, Double,
Character

— Provides common functionality and constants
for primitive types

— Very common is “.parselnt” or “.parseDouble”

Character Class Methods

Tests for
letter

isLetter(<<char>>) Boolean

e Tests for
isDigit(<<char>>) Boolean digit
Tests for
space such
as ‘ r’ l\tr’
and \n’

isWhitespace(<<char>>) Boolean

Character.isLetter(‘a’);

Character.isDigit(‘a’);

Character.isWhitespace

(“’);

* Enum classes
 Static methods and properties
* Breadth-first search

Case Study: 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start state Goal state

* Actions: swap the empty position with any tile that is horizontally or vertically
adjacent

» 1.8x10° possible states (configurations)

* Larger versions
e 15-puzzle: 1.0x 103 states
e 24-puzzle: 7.7x10%* states
* 35-puzzle: 1.8x10%! states
 48-puzzle: 3.0x10%% states

Defining a Classical Planning Problem

e States 5
* Only keeps the details needed to solve the problem

* Actions A
* |t is not always the case that every action can be taken in every state

 Start state s,
* Goalstates G © &

* Transition model
e s' =A(s,a)
* Transition cost function c(s,a, s’)

* Find a path from state s, to a state s, € §

* A minimum cost path is also referred to as an optimal or shortest path
* There can be more than one optimal path

State Space Graph

Vertices: States

Directed Edges: Actions

Each state appears only once

Pathfinding algorithms can be seen as finding a path between nodes in a graph

[Oradea

S S
M Vaslui LC;{’ o558] ?‘DR LCfgg‘ R 8 E{‘DR
(F T T T
* o OO

Eforie

Example: Traveling in Romania

* Travel from Arad to Bucharest
e States

* Cities
e Actions

* Go to an adjacent city

e Start state
e Arad

* Goal state(s)
* Bucharest

* Transition model
* Go to selected city

* Transition cost function
* Driving time

Search Algorithms

* Expand nodes according to some priority until a goal node is selected for
expansion

e Use a priority gueue to sort nodes according to priority
* This is referred to as OPEN or the “fringe”
* For some algorithms, it can be implemented as a simple FIFO or LIFO queue

* Some algorithms use a CLOSED set to remember the nodes that have been
generated
* Sometimes referred to as “reached”
* Prevents redundant node expansions

Nodes

* Node: Bookkeeping data structure for search
* State
* Parent node

* Action
* Action that the parent took to generate this node

e Path cost
* Cost of path from the start node to current node

* There can be multiple nodes with the same state
* We will refer to a node with the start state as n, and with a goal state as n,

* A node is expanded when we use the transition function to generate all its
children

Node Expansion

* Apply every possible action to the state associated with the node

for each action a forn.s
s' = A(n.s,a) // next state
g=n.g+c(n.s,a,s") // path cost
d =n.d+1 //depth
n. = Node(s',n,a,g,d) //new node

&

R
N - BE

Search Tree

e Pathfinding algorithms can form a tree where states appear multiple times;
representing different paths one can take to the same state

« Remember, every node except for the root node has exactly one parent
* Vertices: States
* Directed Edges: Actions

[JHirsova

|]
Eforie

State space graph Search tree

Breadth First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <— NODE(problem .INITIAL)
if problem.IS-GOAL(node.STATE) then return node
frontier <— a FIFO queue, with node as an element
reached <— { problem.INITIAL }
while not IS-EMPTY(frontier) do

node < POP(frontzer) Breadth-first search

for each child in EXPAND(problem, node) do is a special case
s < child.STATE where we can do
if problem.IS-GOAL(S) then return chill G ——————————————— the goal test when
" ; : nodes are generated
if s 1s not in reached then instead of when
add s to reached they are selected for
add child to frontier expansion

return failure

Breadth-First Search

* Prioritize the shallowest nodes

* For breadth-first search, we do not have to wait until the goal node is selected for
expansion, we can terminate when the goal state is generated

Node to be \ . Q b
expanded next __+ Not yet generate n

