
CSE Qualifying Exam, Spring 2024

CSCE 513-Computer Architecture

1. Given: A baseline computer system has a processor with a clock rate of 1GHz and a
base CPI of 1.0 that is executing a program with 50% load and store instructions. The
memory hierarchy of this processor has the following characteristics:

• L1 hit time = 1 ns, L1 Instruction Cache and L1 Data Cache miss rate = 1%
• Main Memory access time = 100 ns

Sought: You have the below options to upgrade the system to enhance its performance:

 Item Cost
1. Replacing the Main Memory with a new memory with an access time of 50 ns. $20
2. Replacing the CPU with a new CPU with a clock rate of 2 GHz and a CPI of

1.0 for the same program.
$40

3. Adding a second-level cache with a hit time of 2 ns and a miss rate of 2% $25
4. Replacing the first-level cache with a new cache with a hit time of 0 second,

and similar miss rates as of the baseline first-level cache
$25

What is the minimum cost required to achieve a speed improvement of more than two-
fold for the upgraded system compared to the baseline system? Note that you are
allowed to use a combination of the above options as well.

State any assumptions you make.

2. Given: The below latencies between the dependent Floating-Point (FP) and Integer
operations in a MIPS processor:

Instruction Producing Results Instruction Using Results Latency in clock cycles
FP ALU operation FP ALU operation 1
FP ALU operation Store/Load double 1
Store/Load double FP ALU operation 2
Store/Load double Store/Load double 2

Load integer Integer ALU operation 1
Integer ALU operation Branch 0
Integer ALU operation Integer ALU operation 0

Sought: Is it possible to achieve a CPI of 0.5 on a 2-way out-of-order superscalar
processor executing the below code? If yes, how many times the below loop should be
unrolled to achieve the CPI of 0.5? You can use unrolling, register-renaming and
scheduling to speed up the execution. Draw a table to show the scheduled code for the
2-way superscalar processor.

State any assumptions you make.

Loop: l.d $f0,0($s1) #FP Load
 sub.d $f4,$f0,$f2 #FP Sub
 add.d $f6,$f4,$f0 #FP Add
 s.d $f6,0($s1) #FP Store
 addi $s1,s1,+8 #integer add
 bne $s1,$zero,Loop #Branch

3. Given: Computer System Alpha has a main memory bandwidth of 128 GB/s, peak
computational throughput of 4 GFlops/s, and no cache. Given the code below:

(a) If the system has a Vector Processor with an instruction set architecture that supports
vector operations on vectors with 64 double-precision elements, what is the expected
performance of the system while executing the above code?

(b) What is the overall speedup obtained if the system is equipped with an on-chip cache
that accommodates the entire $v1 and $v2 vectors?

State any assumptions you make.

 lv $v1,0($s0) #Load Vector
 lv $v2,0($s1) #Load Vector
 mulvv.d $v3,$v1,$v2 #vector-vector Multiplication
 lv $v4,0($s2) #Load Vector
 addvv.d $v5,v4,v3 #vector-vector add
 sv $v5,0($s3) #Store Vector

Spring 2024 CSE Qualifying Exam
CSCE 531, Compilers

1. Bootstrapping Assume that you have a “portable compiler kit” that con-
tains the following components, described using T-diagrams (also known
as “tombstone diagram” or “Bratman diagrams”):

Java->JVM

Java

JVM

Java

Java->JVM

JVM

(1; 20%; percentages are for guidance only) Suppose that you want to run
this kit on some machine M for which there is a C compiler, described by
the following tombstone diagram:

C->M

M

Explain how the C compiler is used to obtain the following interpreter:

(2; 10%) Describe the resulting interpretive compiler for machine M, using
tombstone diagrams to explain how you would compile program P written
in Java on machine M.

(3; 60%) Bootstrap the interpretive compiler to produce a native compiler
whose source is Java and whose target is M: use tombstone diagrams
to show each step of your scheme, explaining clearly what needs to be
implemented and what can be reused.

(4; 10%) There are two common solutions to the previous question. One
results in a two-phase compiler, while the other results in a one-phase
compiler. If you obtained the two-phase compiler, also describe (in English
or by using T-diagrams; your choice) how the one-phase compiler can be
obtained. If you obtained the one-phase compiler, also describe (in English
or by using T-diagrams; your choice) how the two-phase compiler can be
obtained. Briefly describe the tradeoff between the two solutions.

1

2. Liveness Analysis and Register Allocation

Consider the following program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. For your convenience, an example of the table to be filled is
provided next to the program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

i succ[i] gen[i] kill[i]

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

(c) Draw the (register-)interference graph for a, b, n, t, and z. Also
show the interference table (with columns for statement number, kill
set, and intereferes with set) that you used to build the interference
graph.

(d) Make a four-coloring of the interference graph.

(e) Explain how one could modify the program to use only three registers.
You do not need to provide a solution; only describe the approach
that you would take.

2

3. Predictive (LL(1)) Parsing

Consider the following (“micro-English”) grammar, where terminal sym-
bols and in bold and the productions are labeled for convenience. Note
the bold period (.) at the end of the first production. If you need to
distinguishe terminals from nonterminals in your answer, please underline
the terminals.

(1) S ::= Sub V Obj.
(2a, 2b, 2c) Sub ::= I | a Noun | the Noun
(3a, 3b, 3c) Obj ::= me | a Noun | the Noun
(4a, 4b, 4c) Noun ::= cat |mat | rat
(5a, 5b, 5c, 5d) V ::= like | is | see | sees

You are asked to build an LL(1) parser for the micro-English grammar by
following a sequence of steps. Since the grammar is very simple, some of
the steps will require no work or very little work; still, indicate the result
of each step, even if just by wrting “no change.” Please clearly label your
work according to step number.

(a) Eliminate left-recursion in the grammar.

(b) Left-factorize.

(c) Calculate Nullable for each nonterminal.

(d) Calculate Nullable for each production.

(e) Calculate FIRST for every nonterminal, by using set equations.

(f) Calculate FIRST for each production. (Hint: are any of the nonter-
minals nullable?)

(g) Calculate FOLLOW for each nonterminal. (As usual, add a new start
production before doing this.)

(h) Make an LL(1) parse table for the micro-English grammar. Use the
following order of nonterminals in the table: S’, S, Sub, Obj, Noun,
V. Use the following order of terminals in the table: I, a, the, me,
cat, mat, rat, like, is, see, sees, ., $.

(i) Show the input and stack during table-driven parsing of the string I
see a cat..

3

Spring 2024 CSE Qualifying Exam—Theory (551)

1. Let Σ := {0, 1}. For any language L ⊆ Σ∗, define

FLIP-01(L) := {x1y0z : x, y, z ∈ Σ∗ and x0y1z ∈ L} .

So FLIP-01(L) is the set of all strings obtained from strings in L by changing an
occurrence of 0 in the string to 1 and a later occurrence of 1 to 0. For example,

FLIP-01({001, 011, 11100}) = {100, 010, 101, 110} .

Show by construction that if L is regular, then FLIP-01(L) is regular. If your con-
struction works, you need not justify it. [Hint: given an n-state DFA for L, there is a
3n-state NFA for FLIP-01(L). Other constructions are possible.]

2. We assume the TM model given in Sipser with a single 1-way infinite tape with cells
0, 1, 2,

Let f be a function such that, for every TM M and string w over M ’s input alphabet,
f(⟨M,w⟩) outputs a natural number n such that

if M accepts w, then in its computation on input w, it makes no more than
n many transitions where the head is directed to move left (which include
move-left transitions when scanning cell 0).

Show that no such f can be computable.

(In the definition above, if M loops on input w, then we make no assertions about the
value of f(⟨M,w⟩).)

3. The HC-THRU problem is

Instance: A graph G and an edge e of G.
Question: Is there a Hamiltonian circuit in G that traverses edge e?

HC-THRU is clearly in NP. You have two options:

For 80% credit: Show that if HC-THRU is in P, then P = NP.

For full credit: Show that HC-THRU is NP-hard by giving a polynomial reduction
to HC-THRU from some well-known NP-complete problem. If your reduction is
correct, you need not justify it.

1

Spring 2024 Qualifying Exam—Algorithms (750)

Question 1. Find tight asymptotic bounds on any positive function T (n) satisfying the following
recurrence for all sufficiently large n:

T (n) = T (n3/13) + T (n4/13) + T (n12/13) + (lg n)2 .

You may assume that any implicit floors and ceilings are of no consequence. Prove your answer
by the substitution method.

Question 2. You’ve discovered that a subroutine storing events to a log file seems to have a bug:
it was supposed to log a list of events, one per line, but was actually storing the events all on one
line. There might be other issues as well, like a corrupt file. The result is a very large binary
string that needs to be broken up into possible events. Each event is logged as an id, which is an
arbitrary-length binary string, with duplicates possible (and valid) in the log. You must determine
whether the log file is valid (that is, the concatenation of event id’s), and if so, output a list of
event id’s forming the concatenation.

Input:

• I: a set of k distinct, nonempty binary strings (the possible event id’s), where k > 0, repre-
sented as a linked list of id’s.

• An integer m > 0, the maximum length of any string in I.

• S[0..(n− 1)]: the log file, a binary string of length n, held as an array of bits.

Output:

• If the log file is valid: a sequence ⟨id1, id2, . . .⟩ of id’s in I such that the in-order concatenation
id1id2 · · · equals S[0..(n− 1)] as a string.

• Else: return the empty sequence ⟨⟩.

You should give pseudocode for an algorithm to do this. You have two options:

For 90% credit: Assuming that you are given an O(m)-time subroutine testing membership in
I of any given subarray of S, your algorithm should run in time O(m2n). (You can call this
subroutine using the usual ∈ operator, as in “if S[i..j] ∈ I then . . . ” for some i and j.) [Hint:
Dynamic programming.]

For 100% credit: Your algorithm should run in time O(m2n+mk) with no assumptions. [Hint:
Do the 90% solution first, then with some preprocessing to convert I into another data
structure, implement the O(m) look-up subroutine.]

For the 100% solution, we first convert I from a linked list into (say) a binary prefix tree, where
the left/right directions from the root correspond to the bits in the search string. A hash table is
also a possibility, and deserves partial credit, but hash table performance is not guaranteed without
assumptions, and only in the average case, not the worst case. (The best upper bound for the time
to just compute the hash function is O(m) per look-up.)

Justification (optional): This conversion can be done in time O(mk) and allows for each subse-
quent look-up to be O(m).

1

Question 3. Your boss gave you a weighted digraph G with weight function w : G.E → R (all
edge weights nonnegative) and asked for the shortest distances and paths from some given vertex
s to all other reachable vertices. So to satisfy your boss, you ran Dijkstra’s algorithm on G with
source vertex s to compute d- and π-attributes for each vertex (from which shortest paths can
easily be constructed) and submitted the results to your boss.

Unfortunately, your boss replied that she had made a mistake with one of the edge weights. For
some edge e = (u, v), she said the weight of e should be w(e)+ δ instead of e, for some small δ ∈ R
(which could be positive or negative). She assures you that δ is close enough to 0 so as not to alter
any of the shortest paths you already computed, but she wants you to update the d-attributes to
reflect the new weight of e.

Time is short, so you don’t have time to re-run Dijkstra on the corrected graph. Instead,
describe a linear-time algorithm that takes as input

• a digraph G with edge weight function w as above and source vertex s ∈ G.V , with d- and
π-attributes for all vertices pre-computed using Dijkstra’s algorithm with source s,

• an edge e = (u, v) ∈ G.E whose weight is to be changed,

• the value of δ (assumed small in absolute value) to add to w(e).

and returns the graph G with the updated d-attributes. Your algorithm must run in linear time
(i.e., O(|G.V | + |G.E|)) in the worst case. As mentioned above, you may assume that the change
in the weight of e does not require any changes in the π-attributes.

Your answer should be clear enough that an intelligent programmer (who did well in CSCE 750
but who has no special knowledge of the problem) can implement the algorithm you describe. A
high-level description may suffice.

2

