
CSE Qualifying Exam, Fall 2024

CSCE 513-Computer Architecture

1. A MIPS processor with a clock rate of 1GHz and a base CPI of 1.0 is executing the
below loop:

If the memory hierarchy for this processor has the following characteristics:

• L1 hit time = 1 ns, L1 Instruction cache miss rate = 1%, L1D miss rate = 6%
• L2 hit time = 2 ns, L2 miss rate = 2%
• Main Memory access time = 400 ns

Which one of the below options leads to a higher performance improvement compared to
the base computer system, and by how much?

(a) Increasing the clock rate to 2GHz
(b) Adding a third-level cache (L3) with a hit time of 0 ns and a miss rate of 25%

State any assumptions you make.

2. Given: The below latencies between the dependent Floating-Point (FP) and
Integer operations in a MIPS processor:

Instruction Producing Results Instruction Using Results Latency in clock cycles
FP ALU operation FP ALU operation 1
FP ALU operation Store/Load double 1
Store/Load double FP ALU operation 1
Store/Load double Store/Load double 2

Load integer Integer ALU operation 1
Integer ALU operation Branch 0
Integer ALU operation Integer ALU operation 0

Sought: If possible, how many times the below loop should be unrolled to achieve a CPI
of 0.5? You can use unrolling, register-renaming, and scheduling to speed up the
execution. Draw a table to show the scheduled code for the 2-way superscalar
processor.

for (int i=0;i<n;i++){

 for (int j=0;j<m;j++)

 res[i]+= mat[i][j]*vec[j];

}

State any assumptions you make.

3. Computer system Alpha has a memory bandwidth of 4 GB/s and a peak
computational throughput of 4 GFlops/s, while computer system Beta has a peak
throughput of 3 GFlops/s and a memory bandwidth of 3GB/s. Given the code below:

Assuming the Computer System Beta fits the entire $v2 vector in on-chip caches, which
computer system is faster in executing the above code by how much? Provide your
performance calculation results in GFlops/s. State any assumptions you make.

Loop: l.d $f0,0($s1) #FP Load
 sub.d $f4,$f0,$f2 #FP Sub
 add.d $f6,$f4,$f0 #FP Add
 s.d $f6,0($s1) #FP Store
 addi $s1,s1,+8 #integer add
 bne $s1,$zero,Loop #Branch

 lv $v1,0($s0) #Load Vector
 lv $v2,0($s1) #Load Vector
 mulvv.d $v3,$v1,$v2 #vector-vector Multiplication
 addvv.d $v4,$v2,$v3 #vector-vector add
 subvs.d $v5,$v4,$F0 #vector-scalar subtraction
 sv $v5,0($s3) #Store Vector

Spring 2024 CSE Qualifying Exam
CSCE 531, Compilers

1. Predictive (LL(1)) Parsing

Consider the following grammar:

(i) S ::= R
(ii) S ::= a S c
(iii) R ::=
(iv) R ::= R bR

(a) Show that the grammar is ambiguous, by providing two different syn-
tax trees for the same string. Please use a short string!

The following grammar is equivalent to the first one but is not ambiguous:

(1) S ::= R
(2) S ::= a S c
(3) R ::=
(4) R ::= bR

(b) Briefly argue that this grammar is equivalent to the first one and is
not ambiguous. No proof is needed.

From this point on, you will use only the grammar in part (b). You need
to build an LL(1) parser for the grammar, following a sequence of steps.
Since the grammar is very simple, some the steps will require no work
or very little work; still, indicate the result of each step, even if just by
writing “no change.” Clearly label your work according to step letter.
If you need to distinguishe terminals from nonterminals in your answer,
please underline the terminals.

(c) Eliminate left-recursion in the grammar.

(d) Left-factorize.

(e) Calculate Nullable for each nonterminal.

(f) Calculate Nullable for each production.

(g) Calculate FIRST for every nonterminal, by using set equations.

(h) Calculate FIRST for each production. (Hint: are any of the nonter-
minals nullable?)

(i) Calculate FOLLOW for each nonterminal. (As usual, add a new start
production with a new start symbol S’ before doing this.)

1

(j) Make an LL(1) parse table for the grammar. Use the following order
of nonterminals in the table: S’, S, R. Use the following order of
terminals in the table: a, b, c, $.

(k) Show the input and stack during table-driven parsing of the string
aabbcc$; use a two-column format, with the left column for the
input and the right column for the stack (top element on the left).

2. Bootstrapping Assume that you have a “portable compiler kit” that con-
tains the following components, described using T-diagrams (also known
as “tombstone diagram” or “Bratman diagrams”):

Java->JVM

Java

JVM

Java

Java->JVM

JVM

(1; 20%; percentages are for guidance only) Suppose that you want to run
this kit on some machine M for which there is a C compiler, described by
the following tombstone diagram:

C->M

M

Explain how the C compiler is used to obtain the following interpreter:

(2; 10%) Describe the resulting interpretive compiler for machine M, using
tombstone diagrams to explain how you would compile program P written
in Java on machine M.

(3; 60%) Bootstrap the interpretive compiler to produce a native compiler
whose source is Java and whose target is M, the language of machine
M: use tombstone diagrams to show each step of your scheme, explaining
clearly what needs to be implemented and what can be reused. (Hint:
your goal is to avoid writing code in M.)

(4; 10%) There are two common solutions to the previous question. One
results in a two-phase compiler, while the other results in a one-phase
compiler. If you obtained the two-phase compiler, also describe (in English
or by using T-diagrams; your choice) how the one-phase compiler can be
obtained. If you obtained the one-phase compiler, also describe (in English
or by using T-diagrams; your choice) how the two-phase compiler can be
obtained. Briefly describe the tradeoff between the two solutions.

2

3. Liveness Analysis and Register Allocation

Consider the following program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. For your convenience, an example of the table to be filled is
provided next to the program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

i succ[i] gen[i] kill[i]

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

(c) Draw the (register-)interference graph for a, b, n, t, and z. Also show
the interference table (with columns for statement number, kill set,
and “intereferes with” set) that you used to build the interference
graph.

(d) Make a four-coloring of the interference graph.

(e) Explain how one could modify the program to use only three registers.
You do not need to provide a solution; only describe the approach
that you would take.

3

Fall 2024 CSE Qualifying Exam—Theory (551)

1. Let Σ := {a, b, c}. For any language string w ∈ Σ∗, define MTE(w) to be the set of all
strings obtained from w by moving one of its symbols to the end of the string. (MTE
stands for “Move To End”). So for example,

MTE(abcab) = {bcaba, acabb, ababc, abcba, abcab}
MTE(ε) = ∅

(Note that MTE(w) always includes w because moving its last symbol to the end does
not change the string.)

For any L ⊆ Σ∗, define

MTE(L) :=
⋃
w∈L

MTE(w) .

So MTE(L) is the set of all strings obtained from strings in L by moving any symbol
in the string to its end.

Show by construction that if L is regular, then MTE(L) is regular. If your construction
works, you need not justify it. [Hint: given an n-state DFA for L, there is an NFA for
MTE(L) with roughly n+ |Σ|n = 4n states.]

2. We assume all languages are over the binary alphabet {0, 1} for this problem.

Let f be a function that, for every enumerator E and natural number n ≥ 0 as inputs,
outputs the number of strings in L(E) of length n, i.e.,

f(⟨E, n⟩) = |L(E) ∩ {0, 1}n| .

Show that no such f can be computable.

3. The VC-OVERLAP problem is

Instance: A graph G and a natural number k ≤ |G.V |.
Question: Is there a vertex cover C of G of size ≤ k such that at least one
edge of G has both its endpoints of C?

VC-OVERLAP is clearly in NP. Show that VC-OVERLAP is NP-hard by giving a
polynomial reduction to VC-OVERLAP from some well-known NP-complete problem.
If your reduction is correct, you need not justify it.

1

Fall 2024 Qualifying Exam—Algorithms (750)

Question 1 (A Recurrence). Find tight asymptotic bounds on any positive function T (n)
satisfying the following recurrence for all sufficiently large n:

T (n) = 3T (n/2) + n
√
n .

You may assume that any implicit floors and ceilings are of no consequence.
Prove your upper bound by the substitution method. (You do not need to prove the matching

lower bound, but if your upper bound is not tight, you will not receive credit even for a correct
substitution proof.)

Question 2 (Optimal Restricted Sheet Cutting). You are given a sheet of metal that has
width w (the horizontal dimension) and height h (the vertical dimension), where w and h are
natural numbers (all units are in centimeters). You can cut the sheet and sell off the pieces. You
have a table of prices P [1..w, 1..h] where P [j, k] ≥ 0 is the amount of money you can charge for a
piece of width j and height k. You want to maximize the total amount you can charge selling the
pieces.

You are allowed to make the following cuts in order:

• First you can make any number of horizontal cuts through the entire sheet, creating horizontal
strips of various integer heights.

• You may then cut each strip into pieces with vertical cuts, independent of how you cut the
other strips. The pieces must all have integer dimensions.

For example, here is legal way of cutting the sheet:

h

w

Note that cuts are not required. It may be that the best option involves no cuts at all.

Describe an algorithm that finds the maximum total price you can charge from cutting the
w × h sheet. You do not need to find an optimal cut, just its total price. Describe your algorithm
in enough detail so that someone who did well in CSCE 750 can implement it without specific
knowledge of the problem.

For 95% credit: Your algorithm must run in time O((wh)2).

For 100% credit: Your algorithm must run in time O(wh(w + h)).

You can assume that all numerical arithmetic and comparison operations take O(1) time each.
[Hint: dynamic programming.]

1

Question 3 (Minimum-Weight Directed Cycle). You are given a directed graph G with
weight function w : G.E → R such that w(e) ≥ 0 for all e ∈ G.E. You want to find the minimum
total weight of any directed cycle passing through a given vertex s. A cycle must include at least
one edge (which could be a self-loop).

Describe an algorithm that, given digraph G, weight function w, and s ∈ G.V , returns the
minimum total weight of any directed cycle through s, or ∞ if there is no such cycle. You only
need to return the weight, not the actual cycle. Describe your algorithm in enough detail so that
someone who did well in CSCE 750 can implement it without specific knowledge of the problem.

Your algorithm should run in time O((V + E) lg V), where V := |G.V | and E := |G.E|.

2

