
CSE Qualifying Exam, Fall 2023

CSCE 513-Computer Architecture

1. Given: a baseline processor with a clock rate of 1GHz and a base CPI of 1.0 is
executing a program with 20% load and stores instructions. The memory hierarchy of this
processor has the following characteristics:

• L1 hit time = 2 ns, L1 Instruction Cache and L1 Data Cache miss rate = 1%
• Main Memory access time = 100 ns

Sought: You have a budget of $100 to make some changes to the design to enhance the
performance of the computer system. The table below shows the available options and
their corresponding costs.

 Item Cost
1. Replacing the Main Memory with a new memory with an access time of 75 ns. $50
2. Replacing the CPU with a new CPU with a clock rate of 2GHz and a CPI of

1.5 for the same program.
$80

3. Adding a second-level cache with a hit time of 3.5 ns and a miss rate of 2% $30
4. Replacing the first-level cache with a new cache with a hit time of 1 ns, and

similar miss rates as of the baseline first-level cache
$20

Explain your proposed solution to achieve the best performance possible within the $100
budget. Note that you are allowed to use a combination of the above options as long as
you stay within the budget limit.

State any assumptions you make.

2. Given the below latencies between the dependent Floating-Point (FP) and Integer
operations in a MIPS processor:

Instruction Producing Results Instruction Using Results Latency in clock cycles
FP ALU operation FP ALU operation 1
FP ALU operation Store/Load double 1
Store/Load double FP ALU operation 2
Store/Load double Store/Load double 2

Load integer Integer ALU operation 1
Integer ALU operation Branch 0
Integer ALU operation Integer ALU operation 0

What is the minimum CPI that can be achieved when executing the below loop on a 2-
way out-of-order superscalar processor? Use unrolling with a factor of 2 and register-
renaming and scheduling to speed up the execution. Draw a table to show the scheduled
code for the 2-way superscalar processor.

3. Given: Computer System Alpha has a main memory bandwidth of 4 GB/s, peak
computational throughput of 5 GFLops/s, and no cache.

(a) What is the expected performance of the system while running the loop below?

(b) Propose two solutions to achieve a 2× speedup for the computer system while
executing the same loop. Your solutions can include any changes to the memory
hierarchy or peak computational throughput.

State any assumptions you make.

Loop: l.d $f0,0($s1) #FP Load
 sub.d $f1,$f1,$f2 #FP Sub
 add.d $f3,$f1,$f0 #FP Add
 s.d $f3,0($s1) #FP Store
 addi $s1,s1,+8 #integer add
 bne $s1,$zero,Loop #Branch

Loop: l.s $f0,0($s1) #Single Precision FP Load
 l.s $f1,0($s2) #Single Precision FP Load
 mul.s $f2,$f1,$f0 #Single Precision FP Multiplication
 add.s $f10,$f2,$f10 #Single Precision FP Add
 s.s $f10,0($s3) #Single Precision FP Store
 addi $s1,s1,+4 #integer add
 addi $s2,s2,+4 #integer add
 addi $s3,s3,+4 #integer add
 bne $s1,$zero,Loop #Branch

Fall 2023 CSE Qualifying Exam
CSCE 531, Compilers

1. Bootstrapping Assume that you have a “portable compiler kit” that con-
tains the following components, described using T-diagrams (also known
as “tombstone diagram” or “Bratman diagrams”):

Java->JVM

Java

JVM

Java

Java->JVM

JVM

(1; 20%; percentages are for guidance only) Suppose that you want to run
this kit on some machine M for which there is a C compiler, described by
the following tombstone diagram:

C->M

M

Explain how the C compiler is used to obtain the following interpreter:

(2; 10%) Describe the resulting interpretive compiler for machine M, using
tombstone diagrams to explain how you would compile program P written
in Java on machine M.

(3; 60%) Bootstrap the interpretive compiler to produce a native compiler
whose source is Java and whose target is M: use tombstone diagrams
to show each step of your scheme, explaining clearly what needs to be
implemented and what can be reused.

(4; 10%) There are two common solutions to the previous question. One
results in a two-phase compiler, while the other results in a one-phase
compiler. If you obtained the two-phase compiler, also describe (in English
or by using T-diagrams; your choice) how the one-phase compiler can be
obtained. If you obtained the one-phase compiler, also describe (in English
or by using T-diagrams; your choice) how the two-phase compiler can be
obtained. Briefly describe the tradeoff between the two solutions.

1

2. Liveness Analysis and Register Allocation

Consider the following program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. For your convenience, an example of the table to be filled is
provided next to the program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

i succ[i] gen[i] kill[i]

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

(c) Draw the (register-)interference graph for a, b, n, t, and z. Also
show the interference table (with columns for statement number, kill
set, and intereferes with set) that you used to build the interference
graph.

(d) Make a four-coloring of the interference graph.

(e) Explain how one could modify the program to use only three registers.
You do not need to provide a solution; only describe the approach
that you would take.

2

3. Predictive (LL(1)) Parsing

Consider the following (“micro-English”) grammar, where terminal sym-
bols and in bold and the productions are labeled for convenience. Note
the bold period (.) at the end of the first production. If you need to
distinguishe terminals from nonterminals in your answer, please underline
the terminals.

(1) S ::= Sub V Obj.
(2a, 2b, 2c) Sub ::= I | a Noun | the Noun
(3a, 3b, 3c) Obj ::= me | a Noun | the Noun
(4a, 4b, 4c) Noun ::= cat |mat | rat
(5a, 5b, 5c) V ::= like | is | see | sees

You are aksed to build an LL(1) parser for the micro-English grammar by
following a sequence of steps. Since the grammar is very simple, some of
the steps will require no work or very little work; still, indicate the result
of each step, even if just by wrting “no change.” Please clearly label your
work according to step numbr.

(a) Eliminate left-recursion in the grammar.

(b) Left-factorize.

(c) Calculate Nullable for each nonterminal.

(d) Calculate Nullable for each production.

(e) Caclulate FIRST for every nonterminal, by using set equations.

(f) Calculate FIRST for each production. (Hint: are any of the nonter-
minals nullable?)

(g) Calculate FOLLOW for each nonterminal. (As usual, add a new start
production before doing this.)

(h) Make an LL(1) parse table for the micro-English grammar. Use the
following order of nonterminals in the table: S’, S, Sub, Obj, Noun,
V. Use the following order of terminals in the table: I, a, the, me,
cat, mat, rat, like, is, see, sees, ., $.

(i) Show the input and stack during table-driven parsing of the string I
see a cat..

3

Fall 2023 Q-exam — CSCE 750 (Algorithms)

1. (Solving a Recurrence) Let T (n) be any positive-valued function defined for all
integers n > 0 by the following recurrence, which holds for all sufficiently large n:

T (n) = 2T (n/2) + 16T (
√
n) + n .

Find tight asymptotic bounds on T (n), that is, find a function f(n), as simple as
possible, such that T (n) = Θ(f(n)) as n → ∞. Justify your answer using the
substitution method. You may assume that any implicit floors or ceilings are of no
consequence.

2. (Maximizing Disjoint Subarrays) Given an array A[1 . . . n] of positive integers,
we will say that a k-cluster (for 1 ≤ k ≤ n) is any subarray of A of length k, that is,
A[i · · · (i+ k − 1)] for some i such that 1 ≤ i ≤ n− k + 1. Given an integer ℓ ≥ 0, you
want to find up to ℓ many k-clusters in A that maximizes the sum of all the elements
in the clusters. Clusters cannot overlap, so each entry of A can belong to at most one
k-cluster.

Design an algorithm that takes as input an array A[1 . . . n] as above and integers k, ℓ
(where 1 ≤ k ≤ n and ℓ ≥ 0) and returns the maximum total sum of ℓ or fewer
non-overlapping k-clusters. You do not need to return an optimal arrangement of
clusters, just its sum. Describe your algorithm with enough detail so that an
intelligent reader (who has taken CSCE 750) can implement it.

For up to 50% credit, your algorithm must be correct and run in time O(kℓn). For
full credit, your algorithm must be correct and run in time O(ℓn). As usual, you may
assume that all arithmetic, comparison, and assignment operations on integers take
O(1) time each.

3. (Shortest Alternating Path) Let G := (V,E,w, c) be a directed graph with
nonnegative edge weight function w : E → Z and edge color function
c : E → {red,blue}. That is, each edge e has weight w(e) ≥ 0 and is colored either
red or blue.

Design an algorithm that takes G and vertices s, t ∈ V as input and returns the
minimum weight of any alternating s–t path, i.e., a path where each successive edge
along the path is colored oppositely from the previous edge. (The first edge, if it
exists, can be either color.) If no alternating path exists, the algorithm returns ∞.
Describe your algorithm with enough detail so that an intelligent reader (who has
taken CSCE 750) can implement it. You do not need to output an actual
minimum-length alternating path; only the length.

The worst-case runtime of your algorithm must be O((|V |+ |E|) lg |V |). As usual,
you may assume that G is represented by adjacency lists.

